Supporting Information

Electrocatalytic CO_2 Reduction to Alcohols with High Selectivity over Two-Dimensional $Fe_2P_2S_6$ Nanosheet

Lei Ji,^{†,§,#} Le Chang,^{†,#} Ya Zhang,^{†,§} Shiyong Mou,[†] Ting Wang,^{⊥,†} Yonglan Luo,^{*,⊥} Zhiming Wang,[†] and Xuping Sun^{*,†}

[†]Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China, [§]College of Chemistry, Sichuan University, Chengdu 610064, Sichuan, China, and [⊥]Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, Sichuan, China

[#]L.J. and L.C. contributed equally to this work

*E-mail: luoylcwnu@hotmail.com (Y.L.); xpsun@uestc.edu.cn (X.S.)

Experimental Section

Materials: Elemental iron (Fe, 99.99%, Sigma Aldrich, USA), red phosphorus powder (P, 100 mesh, 99%, Alfa Aesar, USA), potassium bicarbonate (KHCO₃), and sulfur (S, 99.98%, Aldrich, USA) were purchased. Analytical grade acetone was purchased from Fisher Scientific and it was distilled and used for the exfoliation of layered Fe₂P₂S₆. The sealing system (PPS-90, MRVS-1002) was purchased from Partulab Technology Co. Ltd. The water use throughout all experiments was purified through a Millipore system.

Preparation of bulk Fe₂P₂S₆ and Fe₂P₂S₆ nanosheet: Bulk Fe₂P₂S₆ was obtained by heating the mixture (about 0.5 g in total) of elements (Fe, P and S with 99.99% purity) in the required stoichiometric ratio in evacuated (~ 10⁻⁴ Pa) quartz tube at 700 °C at a ramping rate of 1 °C min⁻¹ and held at this temperature for 6 days. Fe₂P₂S₆ nanosheets were prepared by exfoliation of bulk crystals. Briefly, 30 mg of the bulk crystals were dispersed in 10 mL of distilled acetone and sonicated for 4 h by ultrasonic cell disruptor. The moderately stable colloidal dispersions were centrifuged at 3000 rpm for 15 mins to remove bulky, unexfoliated material. Very stable, clear supernatant containing large quantities of Fe₂P₂S₆ nanosheets was obtained. Next, 500 µL of the obtained solution was added into 480 µL H₂O containing 20 µL of 5 wt% Nafion and sonicated for 1 h by normal ultrasonic instrument. Then 20 µL catalyst ink was loaded on a 1 × 1 cm² carbon paper and dried under ambient condition, the catalyst loading mass is 0.1 mg.

Characterizations: XRD data were obtained from a LabX XRD-6100 X-ray diffractometer with Cu K α radiation (40 kV, 30 mA) of wavelength 0.154 nm (SHIMADZU, Japan). XPS measurements were performed on an ESCALABMK II X-ray photoelectron spectrometer using Mg as the exciting source. SEM images were collected from the tungsten lamp-equipped SU3500 scanning electron microscope at an accelerating voltage of 20 kV (HITACHI, Japan). TEM images were obtained from a Zeiss Libra 200FE transmission electron microscope operated at 200 kV. ¹H NMR spectra were collected on NMR spectrometer (Bruker AVANCEAV III HD 500) and

dimethyl sulphoxide was used as an internal to calibrate the chemical shifts in the spectra. Pre-saturation method was used to suppress water peak.

Electrochemical measurements: All electrochemical measurements were conducted using a CHI660E potentiostat (CH Instruments, China) in an H-type electrochemical cell separated by a Nafion 117 membrane, where graphite rod as the counter electrode and Ag/AgCl as the reference electrode. A mass flow controller was used to set the CO_2 flow rate at 30 sccm. All potentials measured were calibrated to RHE using the following equation: E (RHE) = E (Ag/AgCl) + 0.61 V. All electrolytes were saturated by Ar or CO_2 bubbles before and during the experiments. Polarization curves were obtained using LSV with a scan rate of 2 mV s⁻¹. The long-term durability test was performed using chronopotentiometric measurements.

GC analysis: Detection and quantification of possible products was performed on an SHIMADZU GC-2014C gas chromatograph system equipped with two flame ionization detectors, one thermal conductivity detector and headspace auto-sampling sampler (COLINTech AutoHS). Separation was achieved using a DB-WAX column (100% polyethylene glycol, 30 m long with a 0.53 mm i.d. and 1.0 µm film thickness) and aluminium oxide column.

Ion chromatography: Detection and quantification of possible products (HCOO⁻) was performed on a Metrohm 940 professional ion chromatograph system.

Calculations of FE for H₂, methanol, and ethanol: FE was detemined using the following equation:

 $\mathsf{FE} = \frac{\mathsf{Amount of electrons required to form the products}}{\mathsf{Total amount of electrons supplied to system}} \times 100\%$

Density functional theory calculations (DFT) calculation details: DFT calculations were performed with the spin-polarized planewave method implemented in the Quantum Espresso packag.¹ The Perdew–Burke–Ernzerhof (PBE) functional based on the generalized gradient approximation (GGA) were employed to evaluate the non-local exchange-correlation (xc) energy.² In a cubic supercell, the values of 40 and 400 Ry were used as the kinetic energy cutoff for wave functions and charge densities. The current work employs the Fe₂P₂S₆ surface. The possible positions of the atoms in

the complex were fully optimized until the forces were smaller than 0.01 eV Å⁻¹ per atom. The first Brillouin zone was sampled at the G point, and the electronic levels were broadened with a Gaussian smearing of about 0.002 Ry.³ The self-consistent field calculation has convergence criteria of 10^{-6} Hartree. The spin-polarization calculation was considered throughout the DFT calculation. A computational hydrogen electrode (CHE) was used to establish a free energy profile for electrochemical reduction reactions, as pioneered by Nørskov and co-workers.⁴ Briefly, to convert electronic energies to free energies, zero-point energy, enthalpy and entropy corrections of adsorbates were calculated using a harmonic oscillator approximation at 298.15 K. In details, Gibbs free energy is defined:

$\Delta G = \Delta E + \Delta E_{ZPE} - T^* \Delta S$

where ΔE represents the variation of the reaction energy obtained from DFT calculations as the expression: $\Delta E = E_{AB} - E_A - E_B$, where ΔE_{ZPE} is zero-point energy (ZPE) difference between the products and reactants in the reaction whose expression is similar to ΔE , where T represents the temperature (T = 298.15 K), and ΔS represents the change of entropy. For molecules, free energy corrections are taken from the reference.⁵

Figure S1. Energy dispersive X-ray spectrum of bulk Fe₂P₂S₆.

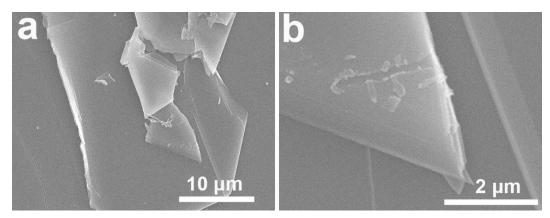
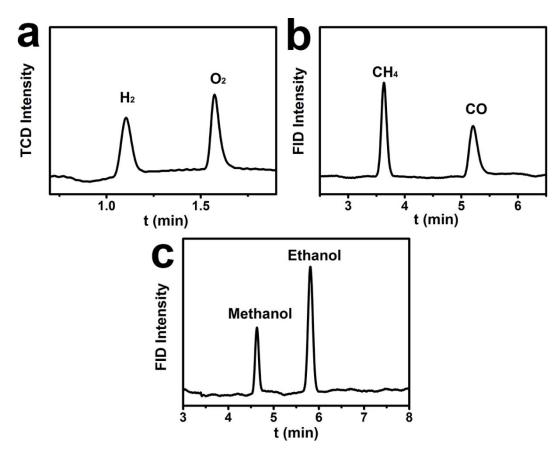



Figure S2. (a, b) SEM images of bulk $Fe_2P_2S_6$.

Figure S3. Typical chromatograms of H_2 , CH_4 , CO, methanol and ethanol measured by GC and HS-GC with FID.

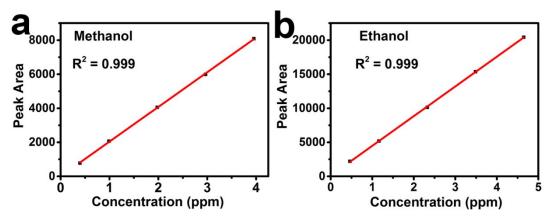


Figure S4. Standard calibration curves for (a) methanol and (b) ethanol.

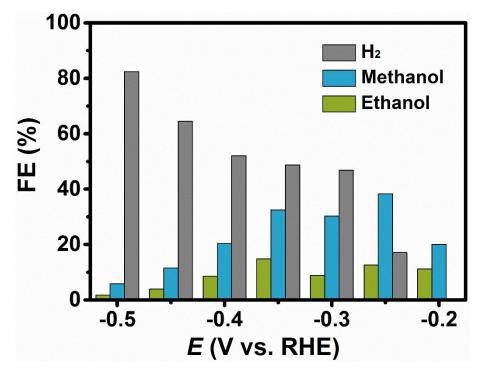
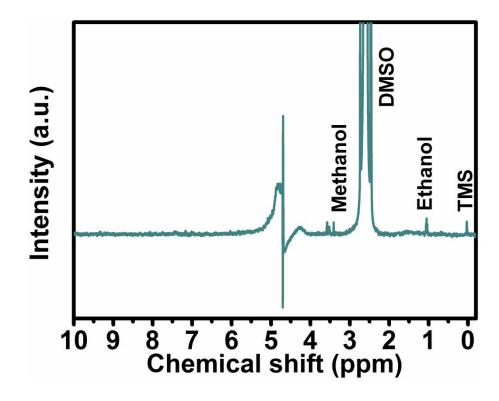
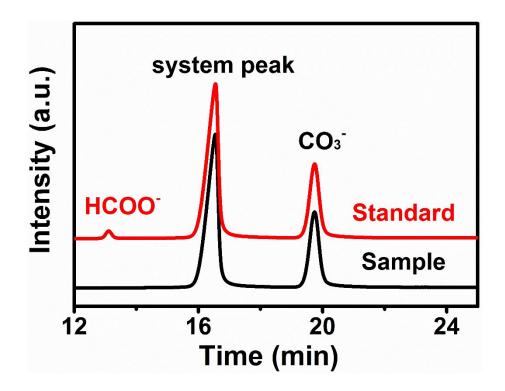
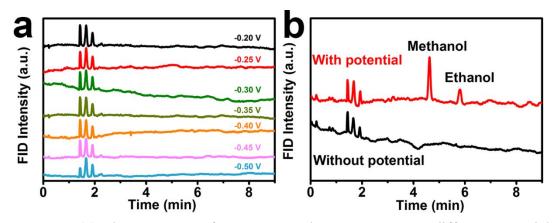


Figure S5. FEs of CO_2RR products on bulk $Fe_2P_2S_6/CP$ at different potentials.

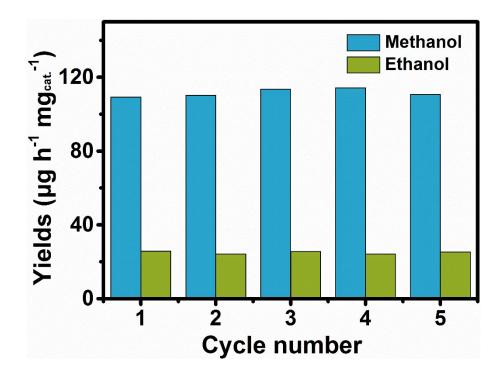

Figure S6. ¹H NMR spectrum of electrolyte after CO₂RR.

Figure S7. Ion chromatograms of standard sample (2.936 ppm HCOO⁻ in 0.5 M KHCO₃ solution) and the electrolyte after 2-h electrolysis.

Figure S8. (a) Chromatograms for Ar-saturated 0.5 M KHCO₃ at different potentials using HS-GC. (b) Chromatograms for CO₂-saturated 0.5 M KHCO₃ with and without potential applied to the electrochemical cell.

Figure S9. Alcohol yields on $Fe_2P_2S_6$ nanosheet/CP at applied potential -0.50 V for 5 times cycle measurements

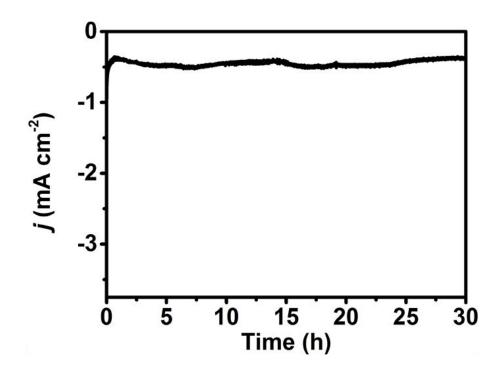
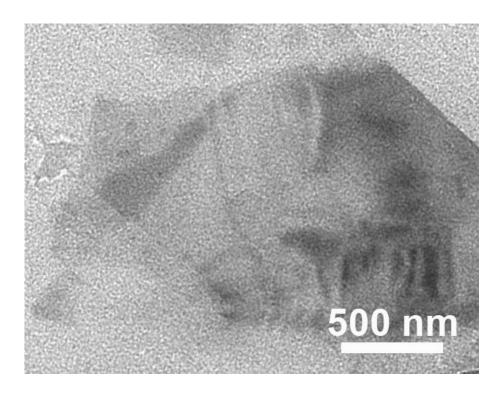
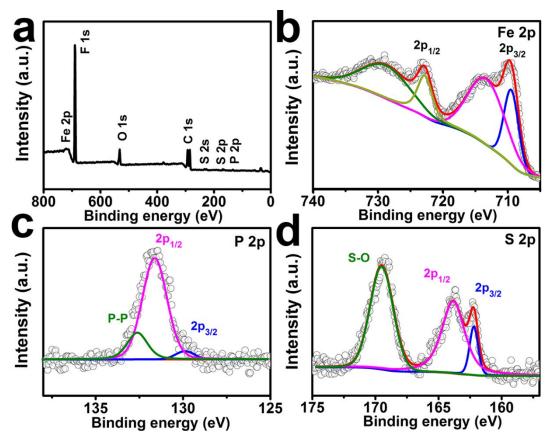
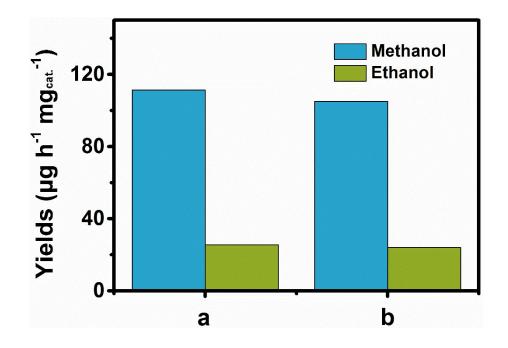
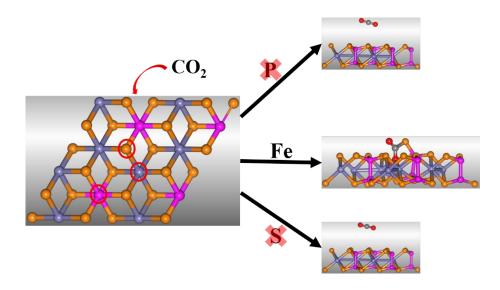
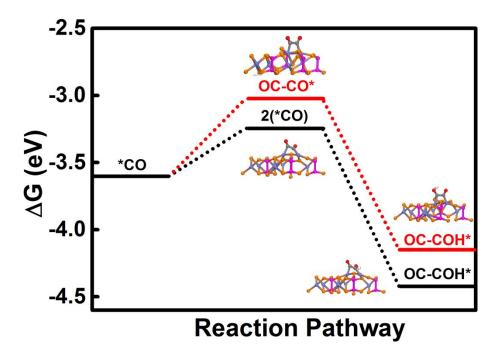
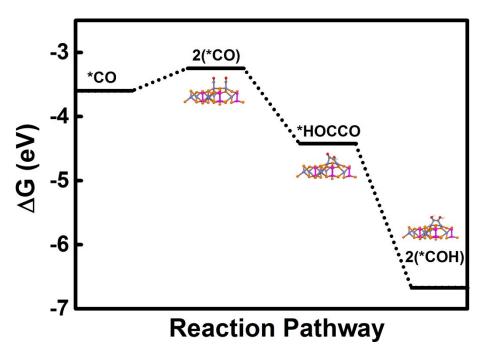


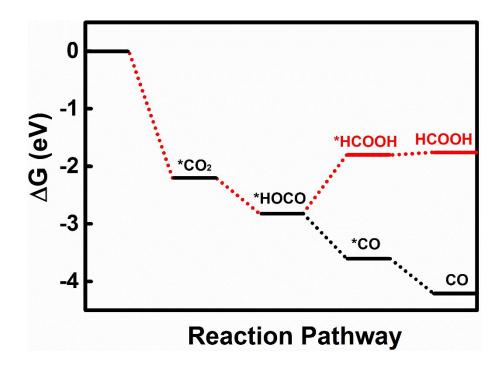
Figure S10. Chronopotentiometry curve under -0.50 V for 30 h in 0.5 M KHCO₃.


Figure S11. TEM image for $Fe_2P_2S_6$ nanosheet after long-term CO_2RR electrolysis.


Figure S12. (a) XPS survey spectrum of $Fe_2P_2S_6$ nanosheet after long-term CO₂RR electrolysis. XPS spectra in (b) Fe 2p, (c) P 2p, and S 2p regions for $Fe_2P_2S_6$ nanosheet. C 1s signals arise from carbon paper and Nafion. F element and S-O bond were attributed to Nafion.


Figure S13. Yields of methanol and ethanol on $Fe_2P_2S_6$ nanosheet/CP before (a) and after (b) long-term electrolysis at -0.50 V for 2 h in 0.5 M KHCO₃.


Figure S14. Tests on the active sites: P (pink), Fe (bluish violet), S (orange), O (red), and C (gray) atoms.

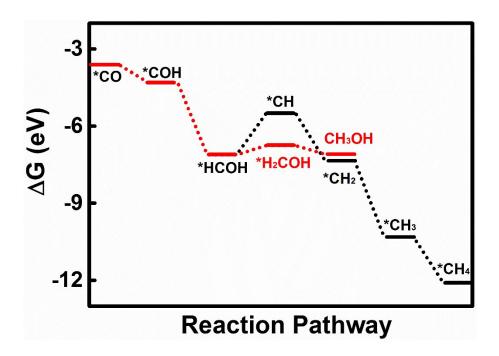

Figure S15. Reaction energy profile from DFT calculations for coupling path of CO + CO over Fe₂P₂S₆ surface. The nearby *CO is coupled to form 2(*CO) intermediate with Δ G of 0.35 eV. And the *CO couples with the nearby CO(g) to form the intermediate OC-CO* with Δ G of 0.57 eV. This implies that the intermediate *CO is also available to combine another nearly CO(g) to produce the intermediate OC-CO* and further hydrogenation into C₂H₅OH.

Figure S16. Reaction energy profile from DFT calculations for 2 (*CO) \rightarrow 2 (*COH) stage over Fe₂P₂S₆ surface. The detailed 2 (*CO) \rightarrow 2 (*COH) stage is considered in this work, where the H atom occurs to react subsequently.

Figure S17. Reaction energy profile from DFT calculations for $*CO_2 \rightarrow *HCOO \rightarrow$ *HCOOH \rightarrow HCOOH stage over Fe₂P₂S₆ surface. The hydrogenation process of *HOCO \rightarrow *HCOOH is an uphill pathway with $\Delta G = 0.97$ eV, impling that *CO is preferentially generated in this reaction pathway rather than *HCOOH.

Figure S18. Reaction energy profile from DFT calculations for reaction pathway of CH_4 over $Fe_2P_2S_6$ surface. Processes of *HCOH \rightarrow *CH and *HCOH \rightarrow *H₂COH are uphill pathway with $\Delta G = 1.60$ eV and 0.36 eV, respectively. Thus, compared with *CH, the *HCOH preferentially converts to *H₂COH, which further hydrogenation into CH₃OH.

			FE (%)		D.A	
Catalyst	Electrolyte	Potential (V)	methanol	ethanol	Ref.	
$Fe_2P_2S_6$ nanosheet	0.5 M KHCO ₃	–0.20 vs. RHE	65.2	23.1	This work	
Pd/SnO ₂	0.1 M NaHCO ₃	–0.24 vs. RHE	54.8±2	-	(6)	
Cu ₂ O/ZnO-based electrodes	0.5 M KHCO ₃	–1.3 V vs. Ag/AgCl	17.7	-	(7)	
RuO ₂ -TiO ₂ nanoparticle	0.5 M NaHCO ₃	–0.8 V vs. SCE	60.5	-	(8)	
Cu ₂ O-MWCNTs	0.5 M NaHCO ₃	-0.8 V vs. Ag/AgCl	38	-	(9)	
Ru/Cu	0.5 M NaHCO ₃	–0.8 V vs. SCE	41.3	-	(10)	
Cu(I) oxide	0.5 M NaHCO ₃	–1.1 V vs. SCE	38	-	(11)	
Cu-Au alloy	0.5 M NaHCO ₃	-1.1 V vs. SCE	15.9	12.0	(12)	
Cu Nanowire Arrays	0.1 M KHCO3	-1.1 V vs. SCE	-	5.0	(13)	
Cu2O films	0.1 M KHCO3	–0.99 V vs. RHE	-	17.22	(14)	
Cu ₄ Zn	0.1 M NaHCO ₃	–1.05 V vs. RHE	-	29.1	(15)	
Co/SL-NG	0.1 M NaHCO ₃	–0.90 V vs. SCE	71.4	-	(16)	
Co(CO ₃) _{0.5} OH·0.11H ₂ O	0.1 M NaHCO ₃	–0.98 V vs. SCE	97.0	-	(17)	
Cu ₈₈ Sn ₆ Pb ₆ alloy	1.5 M HCl-0.17 M BaCl ₂	–0.6 V vs. Ag/AgCl	36.3	-	(18)	
[PYD]@Pd	0.5 M KCl	–0.6 V vs. SCE	35	-	(19)	
[PYD]@Cu-Pt	0.5 M KCl	–0.6 V vs. SCE	37	-	(20)	
[PYD]@Cu-Pd	0.5 M KCl	–0.6 V vs. RHE	_	12±1	(21)	

Table S1. Comparison of CO_2RR performance in aqueous media for $Fe_2P_2S_6$ nanosheet with other alcohol-producing electrocatalysts.

Species	Geometry	Species	Geometry
*CO ₂	KONTRA.	*OCH ₃	nda
*HOCO	NOTESAL.	CH ₃ OH ¹	
*HCOOH	sin	*СОН	Northa.
*CO	xataa	*НСОН	satan.
*2(CO)	xation.	*H ₂ COH	xataa.
*2(COH)	XXXX	CH ₃ OH ²	»» .XXXXXXXX
*C ₂ H ₂ OH	total.	*CH	NOT OTHER
C ₂ H ₅ OH	** .XXXXXXXX.	*CH ₂	KAR ANA
*HCO	Korkiter.	*CH ₃	NOT THE
*OCH ₂	xin	*CH4	NAKAKA

Table S2. All of the species during the reaction pathways. Fe, bluish violet; P, pink; S, orange; O, red; C, gray; H, white.

Reference

- Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G. L.; Cococcioni, M.; Dabo, I.; Corso, A. D.; de Gironcoli, S.; Fabris, S.; Fratesi, G.; Gebauer, R.; Gerstmann, U.; Gougoussis, C.; Kokalj, A.; Lazzeri, M.; Martin-Samos, L.; Marzari, N.; Mauri, F.; Mazzarello, R.; Paolini, S.; Pasquarello, A.; Paulatto, L.; Sbraccia, C.; Scandolo, S.; Sclauzero, G.; Seitsonen, A. P.; Smogunov, A.; Umari, P.; Wentzcovitch, R. M. QUANTUM ESPRESSO: A Modular and Open-Source Software Project for Quantum Simulations of Materials. *J. Phys. Condens. Matter* 2009, *21*, 395502.
- Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. *Phys. Rev. Lett.* 1996, 77, 3865–3868.
- (3) Methfessel, M.; Paxton, A. T. High-Precision Sampling for Brillouin-Zone Integration in Metals. *Phys. Rev. B* 1989, 40, 3616–3621.
- (4) Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L. Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode. J. Phys. Chem. B 2004, 108, 17886–17992.
- (5) Peterson, A. A.; Abild-Pedersen, F.; Studt, F.; Rossmeisla, J.; Nørskov, J. K. How Copper Catalyzes the Electroreduction of Carbon Dioxide into Hydrocarbon Fuels. *Energy Environ. Sci.* **2010**, *3*, 1311–1315.
- (6) Zhang, W.; Qin, Q.; Dai, L.; Qin, R.; Zhao, X.; Chen, X.; Ou, D.; Chen, J.; Chuong, T.; Wu, B.; Zheng, N. Electrochemical Reduction of Carbon Dioxide to Methanol on Hierarchical Pd/SnO₂ Nanosheets with Abundant Pd–O–Sn Interfaces. *Angew. Chem. Int. Ed.* **2018**, *57*, 9475–9479.
- (7) Albo, J.; Sáez, A.; Solla-Gullón, J.; Montie, V.; Irabien, A. Production of Methanol from CO₂ Electroreduction at Cu₂O and Cu₂O/ZnO-Based Electrodes in Aqueous Solution. *Appl. Catal. B: Environ.* **2015**, *176–177*, 709–717.
- Qu, J.; Zhang, X.; Wang, Y.; Xie, C. Electrochemical Reduction of CO₂ on RuO₂/TiO₂ Nanotubes Composite Modified Pt Electrode. *Electrochim. Acta* 2005, 50, 3576–3580.

- (9) Malik, M. I.; Malaibari, Z. O.; Atieh, M.; Abussaud, B. Electrochemical Reduction of CO₂ to Methanol over MWCNTs Impregnated with Cu₂O. *Chem. Eng. Sci.* 2016, *152*, 468–477.
- (10) Popić, J. P.; Avramov-Ivić, M. L.; Vuković, N. B. Reduction of Carbon Dioxide on Ruthenium Oxide and Modified Ruthenium Oxide Electrodes in 0.5 M NaHCO₃. J. Electrochem. Soc. **1997**, 421, 105–110.
- (11) Le, M.; Ren, M.; Zhang, Z.; Sprunger, P. T.; Kurtz, R. L.; Flake, J. C. Electrochemical Reduction of CO₂ to CH₃OH at Copper Oxide Surfaces. J. *Electrochem. Soc.* 2011, 158, E45–E49.
- (12) Jia, F.; Yu, X.; Zhang, L. Enhanced Selectivity for the Electrochemical Reduction of CO₂ to Alcohols in Aqueous Solution with Nanostructured Cu-Au Alloy as Catalyst. J. Power Sources 2014, 252, 85–89.
- (13) Ma, M.; Djanashvili, K.; Smith, W. A. Controllable Hydrocarbon Formation from the Electrochemical Reduction of CO₂ over Cu Nanowire Arrays. *Angew. Chem. Int. Ed.* 2016, 55, 6680–6684.
- (14) Ren, D.; Deng, Y.; Handoko, A. D.; Chen, C. S.; Malkhandi, S.; Yeo, B. S. Selective Electrochemical Reduction of Carbon Dioxide to Ethylene and Ethanol on Copper(I) Oxide Catalysts. *ACS Catal.* **2015**, *5*, 2814–2821.
- (15) Ren, D.; Ang, B. S.-H.; Yeo, B. S. Tuning the Selectivity of Carbon Dioxide Electroreduction toward Ethanol on Oxide-Derived Cu_xZn Catalysts. *ACS Catal.* 2016, *6*, 8239–8247.
- (16) Huang, J.; Guo, X.; Yue, G.; Hu, Q.; Wang, L. Boosting CH₃OH Production in Electrocatalytic CO₂ Reduction over Partially Oxidized 5 nm Cobalt Nanoparticles Dispersed on Single-Layer Nitrogen-Doped Graphene. ACS Appl. Mater. Interfaces 2018, 10, 44403–44414.
- (17) Huang, J.; Hu, Q.; Guo, X.; Zeng, Q.; Wang, L. Rethinking Co(CO₃)_{0.5}(OH)·0.11H₂O: A New Property for Highly Selective Electrochemical Reduction of Carbon Dioxide to Methanol in Aqueous Solution. *Green Chem.* 2018, 20, 2967–2972.

- (18) Schizodimou, A.; Kyriacou, G. Acceleration of the Reduction of Carbon Dioxide in the Presence of Multivalent Cations. *Electrochim. Acta* 2012, 78, 171–176.
- (19) Yang, H.; Qin, S.; Wang, H.; Lu, J. Organically Doped Palladium: A Highly Efficient Catalyst for Electroreduction of CO₂ to Methanol. *Green Chem.* 2015, 17, 5144–5148.
- (20) Yang, H.; Yue, Y.; Qin, S.; Wang, H.; Lu, J. Selective Electrochemical Reduction of CO₂ to Different Alcohol Products by an Organically Doped Alloy Catalyst. *Green Chem.* 2016, *18*, 3216–3220.
- (21) Yang, H.; Qin, S.; Yue, Y.; Liu, L.; Wang, H.; Lu, J. Entrapment of a Pyridine Derivative within a Copper–Palladium Alloy: A Bifunctional Catalyst for Electrochemical Reduction of CO₂ to Alcohols with Excellent Selectivity and Reusability. *Catal. Sci. Technol.* **2016**, *6*, 6490–6494.