Supporting Information

NiAl₂O₄ Spinel Supported Pt Catalyst: High Performance and Origin in Aqueous-phase Reforming of Methanol

Didi Li,^{†,||} Yi Li,^{‡,||} Xiaohui Liu,[†] Yong Guo,^{*†} Chih-Wen Pao,[§] Jeng-Lung Chen,[§] Yongfeng Hu^{\perp} and Yanqin Wang^{*†}

[†]Shanghai Key Laboratory of Functional Materials Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai 200237, P. R. China

[‡]School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China.

[§]National Synchrotron Radiation Research Centre, Hsinchu, 30076, Taiwan.

[⊥]Canadian Light Source Inc., 44 Innovation Boulevard, Saskatoon, SK S7N

2V3, Canada

^I These two authors contribute equally to this work.

*guoyong@ecust.edu.cn

*wangyanqin@ecust.edu.cn

Figure. S1. *In-situ* DRIFTS of APR over $Pt/\gamma-Al_2O_3$ catalyst: (a) and (b) exposed to the mixture of CH_3OH/H_2O for 15 min followed by Ar flushing at 25

°C and (c) increasing reaction temperature.

Figure. S2. *In-situ* DRIFTS of APR over NiAl₂O₄: (a) exposed to the mixture of CH_3OH/H_2O for 15 min followed by Ar flushing at 25 °C and (b) increasing reaction temperature.

Figure S3. DRIFTS of CO-adsorption on Pt/γ-Al₂O₃, Pt/NiAl₂O₄, and NiAl₂O₄.

Figure S4. XRD patterns of the fresh Pt/NiAl₂O₄ and spent Pt/NiAl₂O₄.

Figure S5. TGA analysis for fresh Pt/NiAl₂O₄ and used Pt/NiAl₂O₄.

	Conv. of C	Mass time yield		Sel	ectivity		Yield
Samples	to gas	/µmol·min⁻¹·g⁻¹cat			/%		/%
	/%	H ₂	со	CH_4	CO ₂	H_2	H ₂
Pt/γ-Al ₂ O ₃	26.5	107.3	0.02	0.97	99.01	88.66	23.3
Pt/NiAl ₂ O ₄	>99.9	439.2	0.05	0.23	99.72	96.05	95.7
NiAl ₂ O ₄	0.2	1.7	0	0	100	100	0.3

Table S1. Catalytic performance for APR of methar	10l. <i>a</i>
---	---------------

^aReaction conditions: 1 g catalyst, 10wt% methanol/water, WHSV=2.94 h⁻¹, 2.9 MPa,

210 °C.

Table S2. Comparison of the performance of $Pt/NiAl_2O_4$ catalyst with other catalysts reported.

					Mass time H ₂		
T /°C/	Catalysts	Methanol	WHSV	Conv. ^a	yield	S_{H2}	Dof
P /MPa		concentration	/h-1	/%	$/\mu mol \cdot min^{-1} \cdot g^{-1} ca$	/%	Kel.
					t		
225/2.86	2D+/A1 O	1	0.8	04	11 7	00	1
265/5.53	5Ft/Al ₂ O ₃	1wt/0	0.8	94	11.7	99	1
225/2.81				81	9.7	97.6	
	0.5Pt/NaY	1wt%	0.8				2
265/5.51				98.8	12.3	96.9	
	13Ni1.3Ce						
230/3.2		5wt%	2	7.0	84.7	-	3
	$/\gamma$ -Al ₂ O ₃						
	1.15Pt0.35Ni/γ-						
275/20		1wt%	1.2	~60	-	-	4
	Al_2O_3						
190/2	2Pt/α-MoC			-	7776	-	
		n(CH ₃ OH)/	50 mL				
190/2	$2Pt/Al_2O_3$	$n(H_{*}O) = 1/3$	0.1 g cat	-	294	-	5
190/2	2Pt/TiO ₂	$1(11_2O) = 1/3$	0.1g cal	-	252	-	
	_						
210/2.9	$1Pt/Al_2O_3$	10wt%	2.94	26.5	107.3	88.7	This

210/2.9	1Pt/NiAl ₂ O ₄	10wt%	2.94	>99.9	439.2	96.1	work
---------	--------------------------------------	-------	------	-------	-------	------	------

^aConv.= Conversion of C to gas.

Table S3. Influence of temperature for APR of methanol.^a

		Conv. of C to	Mass time yield		Selectivi	ty
Pressure	Т.	gas	/µmol⋅min⁻¹⋅g⁻¹cat	/%		
/MPa	70	/%	H ₂	СО	CH ₄	CO ₂
	190	5.8	46.1	0.02	0.69	99.29
2.0	200	23.6	197.7	0.14	0.92	98.94
2.9	210	40.3	360.5	0.04	0.15	99.81
	215	42.07	352.63	0.07	0.47	99.46

^{*a*}Reaction conditions: W_{cat} =1 g, 10 wt% methanol/water, WHSV=5.88 h⁻¹.

Table S4. Influence of pressure for APR of methanol.^a

		Conv. of C to	Mass time yield		Selectivity	/
Т.	Pressure	gas	/µmol⋅min⁻¹⋅g⁻¹cat		/%	
70	/IVIF a	/%	H ₂	СО	CH4	CO ₂
	2.9	40.3	360.5	0.04	0.15	99.81
240	2.95	45.6	364.1	0.04	0.63	99.33
210	3.0	43.4	326.0	0.05	0.91	99.04
	3.1	44.7	344.7	0.06	0.94	99.00

3.2	46.0	358.9	0.02	0.46	99.52
3.5	50.4	391.2	0.06	0.67	99.27

^aReaction conditions: W_{cat}=1 g, 10 wt% methanol/water, WHSV=5.88 h⁻¹.

		Mass time yield		Selectivit	y
WHSV	Conv. of C to gas	/µmol·min ⁻¹ ·g ⁻¹ cat		/%	
/n-+	/% —	H_2	со	CH_4	CO ₂
1.97	> 99.9	194.8	0.04	0.65	99.31
2.94	>99.9	400.6	0.04	0.35	99.61
5.88	40.3	360.5	0.04	0.15	99.81
8.82	29.7	371.2	0.07	0.67	99.26
11.76	20.7	373.3	0.07	0.52	99.41

Table S5.	Influence of	WHSV fo	or APR	of methanol. ^{<i>a</i>}

^{*a*}Reaction conditions: W_{cat}=1 g, 10 wt% methanol/water, 2.9 MPa, 210 °C.

Table S6. BET specific surface area (S_{BET}), and Pt content for fresh Pt/NiAl₂O₄ and spent Pt/NiAl₂O₄.

C l	S _{BET}	Pt content
Samples	/m ² ·g ⁻¹	/wt% a
Fresh-Pt/NiAl ₂ O ₄	147	0.97
Spent-Pt/NiAl ₂ O ₄	140	0.93

^aMeasured by ICP-AES.

References:

- Cortright, R. D.; Davda, R. R.; Dumesic, J. A. Hydrogen from Catalytic Reforming of Biomass-Derived Hydrocarbons in Liquid Water. *Nature* 2002, *418*, 964-967.
- (2) Tang, Z.; Monroe, J.; Dong, J. H.; Nenoff, T.; Weinkauf, D. Platinum-Loaded NaY Zeolite for Aqueous-Phase Reforming of Methanol and Ethanol to Hydrogen. *Ind. Eng. Chem. Res.* 2009, *48*, 2728-2733.
- (3) Coronado, I.; Stekrova, M.; García Moreno, L.; Reinikainen, M.; Simell, P.; Karinen, R.; Lehtonen, J. Aqueous-Phase Reforming of Methanol over Nickel-Based Catalysts for Hydrogen Production. *Biomass Bioenerg.* 2017, *106*, 29-37.
- (4) de Vlieger, D. J. M.; Mojet, B. L.; Lefferts, L.; Seshan, K. Aqueous Phase Reforming of Ethylene Glycol-Role of Intermediates in Catalyst Performance. *J. Catal.* **2012**, *292*, 239-245.
- (5) Lin, L. L.; Zhou, W.; Gao, R.; Yao, S. Y.; Zhang, X.; Xu, W. Q.; Zheng, S.; Jiang, Z.; Yu, Q. L.; Li, Y.-W.; Shi, C.; Wen, X.-D.; Ma, D. Low-Temperature Hydrogen Production from Water and Methanol Using Pt/α-MoC Catalysts. *Nature* **2017**, *544*, 80-83.