Supporting Information

Orthogonal Selectivity in C-H Olefination: Synthesis of Branched Vinylarene with Unactivated Aliphatic Substitution

Soumitra Agasti, ${ }^{[a]}$ Bhaskar Mondal, ${ }^{[b]}$ Tapas Kumar Achar, ${ }^{[a]}$ Soumya Kumar Sinha, ${ }^{[a]}$ Anjana Sarala Suseelan, ${ }^{[a]}$ Kalman J. Szabo,* ${ }^{[c]}$ Franziska Schoenebeck, ${ }^{[b]}$ and Debabrata Maiti ${ }^{*[a]}$
${ }^{[a]}$ Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
${ }^{[b]}$ Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany.
${ }^{[c]}$ Department of Organic Chemistry, Stockholm University, SE-10691, Stockholm, Sweden.

E-mail:

Debabrata Maiti: dmaiti@chem.iitb.ac.in
Franziska Schoenebeck: franziska.schoenebeck@rwth-aachen.de
Kalman J Szabo: kalman@organ.su.se

Table of Contents

Page Number

1 General information S3
2 Experimental section
2.1 Optimization details S4-S7
2.2 General procedure S7 - S8
2.3 Characterization data S8 - S41
2.4 Mechanistic investigation S41 - S55
2.5 Computational details S55 - S57
2.6 X-ray crystallographic data S58 - S60
2.7 References S60

3 NMR (1H and 13C spectra) S61 - S121

1. General information: Reagent information:

Unless otherwise stated, all the reactions were carried out in screw cap reaction tube with magnetic stirring under air atmosphere. All the palladium salts were purchased from Alfa Aesar and used directly for the reaction. Copper fluride and copper carbonate were brought from Sigma-Aldrich Co. ${ }^{\text {t }} \mathrm{BuOH}$ was brought from Spectrochem and used directly. α, β alkenyl carboxylic acids were purchased from either Sigma-Aldrich Co. or Alfa Aesar and used without further purification. Neocuproine was purchased from Sigma-Aldrich Co. Phenyl acetic acid derivatives were brought from Sigma-Aldrich Co. All the other reagents were purchased from commercial source and used as received. For column chromatography silica gel (60-120 mesh and 100-200 mesh) was supplied from SRL Co. During elution petrolium ether and ethyl acetate mixture was used. Thin layer chromatography was performed on EMD Chemicals Si 60 F254. TLC plates (silica gel $60 \mathrm{~F}_{254}$) were supplied from MERCK.

Analytical information:

${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR spectroscopy, Gas chromatography mass spectra (GCMS) or HRMS were used to characterize all the isolated compounds. Copies of the ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR spectra were attached in this supporting information. All NMR spectra were recorded on a BRUKER 400 MHz or BRUKER 500 MHz instrument. All ${ }^{1} \mathrm{H}$ NMR spectra are reported in parts per million (ppm) downfield of TMS and were measured relative to residual CHCl_{3} (7.26 ppm). All ${ }^{13} \mathrm{C}$ NMR spectra were reported in ppm relative to $\mathrm{CDCl}_{3}(77.23 \mathrm{ppm}$) and were obtained with proton decoupling. Coupling constants, J, are reported in Hertz. All GC analyses were performed on a Agilent 7890A GC system connected with a FID detector using a J \& W DB-1 column ($10 \mathrm{~m}, 0.1 \mathrm{~mm}$ I.D.). All GCMS analyses were done by Agilent 7890A GC system connected with 5975C inert XL EI/CI MSD (with triple axis detector).

2.Experimental section:

2.1 Optimization details

Initial reaction condition:

Branched olefinated product was obtained in 12% yield in the above mentioned condition. Then, optimization study was carried out by varying different parameters. Unless otherwise stated, 0.125 mmol of amide along with 0.25 mmol of 2-pentenoic acid were used for optimization purpose.
Table S1: Optimization of solvents

Entry	Solvent	Yield (\%)
1	DCE	12
2	1,4-dioxane	13
3	THF	13
4	Cyclohexane	21
5	Benzene	23
6	Isobutyl benzene	18
7	p-xylene	1
8	m-xylene	18
9	Mesitylene	14
10	TFT	17
11	${ }^{\text {t }} \mathrm{BuOH}$	44
12	$\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{OH}$	12
13	Isopropanol	7
14	HFIP	11
15	NMP	17

Table S2: Ligand optimization

Table S3 and S4: Oxidant optimization

Table S3

Entry	Oxidant	Yield (\%)
1	$\mathrm{CuF}_{2} \cdot \mathbf{x H}_{2} \mathrm{O}$	$\mathbf{7 2}$
2	CuBr^{2}	22
3	Cu	19

4	$\mathrm{Cu}_{2} \mathrm{O}$	17
5	CuSCN_{2}	8
6	CuCO_{3}	73
7	CuO	70
8	$\mathrm{Cu}(\mathrm{acac})_{2}$	45
9	$\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	57
10	AgOAc	8
11	Benzoquinone	16

Table S4

Entry	Oxidant	Yield (\%)
1	$\mathrm{CuF}_{2 .} \mathrm{xH}_{2} \mathrm{O}$ (1.5 equiv.)	70
2	$\mathrm{CuF}_{2 .} \mathrm{XH}_{2} \mathrm{O}$ (2.0 equiv.)	61
3	CuCO_{3} (1.5 equiv.)	62
4	CuCO_{3} (2.0 equiv.)	50
5	$\mathrm{CuF}_{2} \mathrm{xH}_{2} \mathrm{O}$ (1.0 equiv.) $+\mathrm{CuCO}_{3}$ (1.0 equiv.)	80
6	$\mathrm{CuF}_{2 .} \mathrm{XH}_{2} \mathrm{O}$ (0.5 equiv.) $+\mathrm{CuCO}_{3}$ (0.5 equiv.)	75
7	$\mathrm{CuF}_{2} \mathrm{xH}_{2} \mathrm{O}$ (0.5 equiv.) +CuO (0.5 equiv.)	66
8	CuCO_{3} (0.5 equiv.) +CuO (0.5 equiv.)	63

Table S5: Optimization: Amount of Solvent

Table S6: Optimization: Amount of α, β-alkenyl carboxylic acids

Entry	2-pentenoic acid amount (equiv.)	Yield (\%)
1	1.0	53
2	1.5	60
$\mathbf{3}$	2.0	85
4	2.5	82
5	3.0	81
6	4.0	75

Table S7: Effect of bi-dentate ligand in optimized condition

L9; 72\% yield

L10; 65\% yield

L12; 85\% yield

L13; 77\% yield

2.2. General procedure A : Branched selective olefination of phenyl acetic acid derivatives

In a clean, oven-dried screw cap reaction tube containing magnetic stir-bar, phenyl acetic acid derivative (0.1 mmol), $\mathrm{Pd}(\mathrm{OAc})_{2}(10 \mathrm{~mol} \%, 0.01 \mathrm{mmol})$, neocuproine (20 $\mathrm{mol} \%, 0.02 \mathrm{mmol}$), copper (II) carbonate basic (1 equiv, 0.1 mmol), copper (II) fluoride (1 equiv, 0.1 mmol) were weighed. α, β-unsaturated alkenyl carboxylic acid (2 equiv, 0.2 mmol) was transferred through micro pipette. Common laboratory syringe was used to introduce $t-\mathrm{BuOH}(2 \mathrm{~mL})$ into the reaction mixture. Then the tube was placed in a preheated oil bath at $130^{\circ} \mathrm{C}$ and the reaction were stirred (at 1000 rpm) vigorously for 24 h . After detaching the reaction, it was cooled to room temperature and filtered through celite pad using ethyl acetate (30 mL). Solvent was removed in rotatory evaporator. Desired compound was extracted using EtOAc-saturated NaHCO_{3} and combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Finally, it was concentrated in reduced pressure and was purified by column chromatography through silica gel (100-200 mesh
size) using PET-ether / ethyl acetate as eluent.

General procedure B: Sequential synthesis of bis-alkenylated products

Hetero-diolefination of branched olefinated derivatives was prepared by using literature method. ${ }^{1}$ In a clean, oven-dried screw cap reaction tube containing magnetic stir-bar, branched olefinated derivative (0.1 mmol), $\mathrm{Pd}(\mathrm{OAc})_{2}$ ($10 \mathrm{~mol} \%, 0.01 \mathrm{mmol}$), 2-amino phenol ($20 \mathrm{~mol} \%, 0.02 \mathrm{mmol}$), benzoquinone (1 equiv, 0.1 mmol) and sodium hydrogen carbonate (1 equiv, 0.1 mmol) were added. The cap was fitted with a rubber septum and the reaction tube was evacuated and back filled with oxygen three times. The corresponding olefin derivative (2 equiv, 0.2 mmol) was transferred through micro syringe and then 2 mL of DCE was added into the reaction mixture. Then the tube was placed in a preheated oil bath at $100^{\circ} \mathrm{C}$ and the reaction were stirred vigorously for 24 h. After detaching the reaction, it was cooled to room temperature and filtered through celite pad using ethyl acetate ($3 * 10 \mathrm{~mL}$). Solvent was removed in rotatory evaporator. Desired compound was extracted using ethyl actetae-saturated NaHCO_{3} and combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Finally, it was concentrated in reduced pressure and was purified by column chromatography through silica gel (100-200 mesh size) using PET-ether / ethyl acetate as eluent.

2.3. Characterization data Representative starting materials

Starting material for entry $\mathbf{3 i}, \mathbf{3 j}$ and $3 \mathbf{s}$

Rf: 0.5 (eluent:10\% EtOAc/90\% hexane)
Isolation: Silica gel column (eluent: 5\% EtOAc/95\% hexane)
Appearance: light yellow solid
Yield: 98\%
${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCI3) $\delta: 9.86$ (s, 1H), 8.75 (dd, J = 7.3, 1.7 Hz, 1H), 8.64 (dd, J = $4.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}$), 8.11 (dd, J = 8.3, 1.7 Hz, 1H), $7.54-7.46$ (m, 2H), $7.40-7.35(\mathrm{~m}, 2 \mathrm{H})$, 7.28 (dd, J = 5.0, $4.0 \mathrm{~Hz}, 3 \mathrm{H}$), 3.91 (s, 2H), 2.41 (s, 3H).
${ }^{13}$ C NMR (101 MHz, CDCI3) $\delta: 169.59,148.39,137.49,136.37,134.61,133.42,130.99$, $130.81,128.05,127.99,127.54,126.83,121.76,121.71,116.49,43.52$, and 19.94.

Starting material for entry 3m

Rf: 0.5 (eluent:10\% EtOAc/90\% hexane)
Isolation: Silica gel column (eluent: 5\% EtOAc/95\% hexane)
Appearance: yellow solid
Yield: 82\%
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 9.94(\mathrm{~s}, 1 \mathrm{H}), 8.77(\mathrm{dd}, \mathrm{J}=7.3,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.70(\mathrm{dd}, \mathrm{J}=$ $4.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}$), 8.11 (dd, J = 8.3, $1.5 \mathrm{~Hz}, 1 \mathrm{H}$), $7.54-7.44$ (m, 2H), 7.40 (dd, J = 8.3, $4.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.29$ (dd, J = 13.5, $6.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.24 (d, J = $7.6 \mathrm{~Hz}, 1 \mathrm{H}$), 7.15 (d, J = 7.4 Hz, 1H), 3.86 (s, 2H), 2.39 (s, 3H).
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta: 169.82,148.33,138.83,138.64,136.40,134.76,134.59$, $130.45,129.04,128.25,128.03,127.51,126.71,121.74,121.70,116.52,45.50$, and 21.59.

Starting material for entry $3 q$ and $3 r$

Rf: 0.45 (eluent:10\% EtOAc/90\% hexane)
Isolation: Silica gel column (eluent: 6\% EtOAc/94\% hexane)
Appearance: white solid
Yield: 76\%
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 9.95(\mathrm{~s}, 1 \mathrm{H}), 8.75(\mathrm{dd}, J=7.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.70(\mathrm{dd}, \mathrm{J}=$ $4.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}$), 8.12 (dd, $J=8.3,1.7 \mathrm{~Hz}, 1 \mathrm{H}$), $7.54-7.46$ (m, 2H), 7.41 (dd, $J=8.3$, $4.2 \mathrm{~Hz}, 1 \mathrm{H}$), $7.35-7.30(\mathrm{~m}, 1 \mathrm{H}), 7.05-6.98(\mathrm{~m}, 2 \mathrm{H}), 6.88$ (ddd, $J=8.3,2.6,0.8 \mathrm{~Hz}$, 1 H), 3.87 (s, 2H), 3.84 (s, 3H).
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) δ : 148.38, 136.45, 136.34, 134.62, 131.49, 130.23, 127.56, $122.09,121.81,121.75,116.58,115.08,113.44,55.49$, and 45.70 .

Starting material for entry 3aa

Rf: 0.5 (eluent:10\% EtOAc/90\% hexane)
Isolation: Silica gel column (eluent: 5\% EtOAc/95\% hexane)
Appearance: light brown crystalline solid
Yield: 96\%
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 9.92$ (s, 1H), 8.79 (dd, $J=7.4,1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 8.74 (dd, $J=$ 4.2, 1.7 Hz, 1H), 8.10 (dd, $J=8.3,1.6 \mathrm{~Hz}, 1 \mathrm{H}$), 7.48 (qd, $J=8.0,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-$ $7.34(\mathrm{~m}, 1 \mathrm{H}), 7.29(\mathrm{dt}, J=4.1,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.43-2.25(\mathrm{~m}, 1 \mathrm{H})$, $2.05-1.91(\mathrm{~m}, 1 \mathrm{H}), 1.01(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) δ : 172.33, 148.31, 140.01, 138.62, 136.43, 134.74, 129.01, $128.25,128.05,127.53,127.45,121.70,121.60,116.51,56.94,26.80$, and 12.61.
Literature report ${ }^{1}$

Starting material for entry 3ab

Rf: 0.5 (eluent:10\% EtOAc/90\% hexane)
Isolation: Silica gel column (eluent: 5\% EtOAc/95\% hexane)
Appearance: white solid
Yield: 72\%
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 9.93(\mathrm{~s}, 1 \mathrm{H}), 8.74(\mathrm{dd}, J=7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.52(\mathrm{dd}, \mathrm{J}=$ $4.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}$), 8.16 (dd, $J=12.7,5.3 \mathrm{~Hz}, 1 \mathrm{H}$), 8.05 (dd, $J=8.3,1.7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.89 (dd, $J=9.1,8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.62(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.41(\mathrm{~m}, 6 \mathrm{H}), 7.32(\mathrm{dd}, J=8.3,4.2$ Hz, 1H), 4.35 (s, 2H).
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta: 169.63,148.26,138.61,136.28,134.54,134.29,132.52$, $131.29,128.96,128.65,128.57,127.98,127.47,126.92,126.23,125.91,124.18$, 121.72, 121.64, 116.43, and 43.48.

Literature report ${ }^{1}$

Starting material for entry 3ad
Rf: 0.45 (eluent:10\% EtOAc/90\% hexane)
Isolation: Silica gel column (eluent: 6\% EtOAc/94\% hexane)
Appearance: white solid
Yield: 63\%
${ }^{1} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 9.97(\mathrm{~s}, 1 \mathrm{H}), 8.77(\mathrm{dd}, J=7.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.65-8.60(\mathrm{~m}$, $1 \mathrm{H}), 8.22(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.09(\mathrm{dd}, J=8.3,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{t}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.79$
(d, $J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.69$ (dd, $J=8.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.48$ (ddd, $J=10.3,8.3,4.8 \mathrm{~Hz}, 2 \mathrm{H}$), 7.37 (dd, $J=8.3,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{q}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{~s}$, 3 H), 1.76 (dd, $J=6.9,3.2 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) $\delta: 172.72,152.70,148.23,138.44,137.33,136.63,134.54$, $131.35,129.88,128.12,128.07,127.76,127.58,126.59,124.55,121.76,121.70$, 116.69, 114.15, 57.15, 48.54, and 18.87.

Starting material for entry $\mathbf{3 x}$

Rf: 0.35 (eluent:10\% EtOAc/90\% hexane)
Isolation: Silica gel column (eluent: 8\% EtOAc/92\% hexane)
Appearance: grey solid
Yield: 53\%
${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO) $\delta: 10.15$ (s, 1H), $9.36(\mathrm{~s}, 1 \mathrm{H}), 8.89$ (dd, $\left.J=4.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}\right)$, 8.62 (d, $J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.41$ (dd, $J=8.3,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.66$ (dd, $J=7.0,6.1 \mathrm{~Hz}, 1 \mathrm{H})$, 7.63 (dd, $J=8.3,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{t}, J$ $=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13}$ C NMR (126 MHz, DMSO) $\delta: 170.69,156.69,149.34,138.48,137.07,134.95,130.85$, 128.27, 127.43, 126.20, 122.60, 122.32, 116.77, 115.78, 60.25, and 43.41.

Starting material for entry 3p and 3y

Rf: 0.5 (eluent:10\% EtOAc/90\% hexane)
Isolation: Silica gel column (eluent: 5\% EtOAc/95\% hexane)
Appearance: white solid
Yield: 60\%
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 9.93(\mathrm{~s}, 1 \mathrm{H}), 8.75-8.72(\mathrm{~m}, 2 \mathrm{H}), 8.14(\mathrm{dd}, \mathrm{J}=8.3,1.7$ $\mathrm{Hz}, 1 \mathrm{H}), 7.54-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.46-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.30(\mathrm{~m}, 3 \mathrm{H}), 3.87(\mathrm{~s}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 168.79,148.48,138.67,136.83,136.52,134.44,130.34$, $129.89,128.11,127.93,127.76,127.56,122.00,121.84,116.68$, and 44.99.
Literature report ${ }^{1}$

Starting material for entry 3ag and 3ah

Rf: 0.4 (eluent:10\% EtOAc/90\% hexane)
Isolation: Silica gel column (eluent: 6\% EtOAc/94\% hexane)
Appearance: white solid
Yield: 75\%
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 9.95(\mathrm{~s}, 1 \mathrm{H}), 8.75(\mathrm{dd}, J=7.4,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.69(\mathrm{dd}, \mathrm{J}=$ $4.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}$), 8.12 (dd, $J=8.3,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.40(\mathrm{dd}, J=8.3$, $4.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.97$ (dd, J = 6.0, $2.0 \mathrm{~Hz}, 2 \mathrm{H}$), $6.93-6.88$ (m, 1H), 3.92 (s, 3H), 3.89 (s, 3 H), 3.83 (s, 2H).
${ }^{13}$ C NMR (126 MHz, CDCl_{3}) $\delta: 170.00,149.60,148.65,148.35,138.69,136.50,134.58$, 128.10, 127.55, 127.38, 122.01, 121.83, 121.73, 116.65, 112.87, 111.89, 56.19, 56.13, and 45.18.

Starting material for entry 3ae
Rf: 0.6 (eluent:10\% EtOAc/hexane)
Isolation: Silica gel column (eluent: 5\% EtOAc/hexane)
Appearance: solid
Yield: 89\%
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.86(\mathrm{~s}, 1 \mathrm{H}), 8.74(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.62(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H})$, $8.01(\mathrm{t}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{dd}, J=8.0,4.1$ $\mathrm{Hz}, 1 \mathrm{H}), 7.14(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.88(\mathrm{q}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{dt}, J=11.0,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.48$ (dd, $J=13.7,9.7 \mathrm{~Hz}, 1 \mathrm{H}$), 2.26 (dd, $J=18.9,8.0 \mathrm{~Hz}, 2 \mathrm{H}$), $2.07-1.97$ (m, 2H), 1.64 (d, J=7.1 $\mathrm{Hz}, 4 \mathrm{H}$), 1.48 (ddd, $J=16.2,11.5,5.1 \mathrm{~Hz}, 1 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.28,172.79,148.02,138.87,138.29,136.17,134.38$, 129.37, 127.75, 127.69, 127.18, 121.46, 116.21, 77.49, 77.23, 76.97, 50.90, 50.88, 48.10, 44.87, 38.08, 35.09, 29.05, 29.03, 20.44, 18.57.

Starting material for entry 3af

Rf: 0.55 (eluent: 10\% EtOAc/hexane)
Isolation: Silica gel column (eluent: 8\% EtOAc/hexane)
Appearance: solid
Yield: 86\%
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.01(\mathrm{~s}, 1 \mathrm{H}), 8.79(\mathrm{t}, \mathrm{J}=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.77-8.70(\mathrm{~m}$, $1 \mathrm{H}), 8.11(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.50(\mathrm{~m}, 3 \mathrm{H}), 7.50-7.31(\mathrm{~m}, 8 \mathrm{H}), 3.98(\mathrm{q}, \mathrm{J}=6.8$ $\mathrm{Hz}, 1 \mathrm{H}), 1.74(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.05$ (s), $159.9\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{F C}=249.4 \mathrm{~Hz}\right.$), 142.6, 138.5, $136.4,135.6,134.4,131.2\left(\mathrm{~d},{ }^{4} J_{F C}=3.78 \mathrm{~Hz}\right), 129.0,128.5,128.1\left(\mathrm{~d},{ }^{3} J_{F C}=13.8 \mathrm{~Hz}\right)$, 127.7, 127.4, 123.8, $121.72(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}), 116.4,115.4\left(\mathrm{~d},{ }^{2} J_{F C}=23.9 \mathrm{~Hz}\right), 48.2,18.7$.

Olefinated product

(Scheme 2, entry 3a)

Rf: 0.55 (eluent:10\% EtOAc/90\% hexane)
Isolation: Silica gel column (eluent: 5\% EtOAc/95\% hexane)
Appearance: colorless liquid
Yield: 76\%
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 9.84(\mathrm{~s}, 1 \mathrm{H}), 8.75(\mathrm{dd}, J=7.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.65(\mathrm{dd}, \mathrm{J}=$ $4.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}$), 8.10 (dd, $J=8.3,1.6 \mathrm{~Hz}, 1 \mathrm{H}$), $7.53-7.45$ (m, 3H), 7.38 (dd, $J=8.3$, $4.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.19(\mathrm{~m}, 1 \mathrm{H}), 5.26(\mathrm{~d}, \mathrm{~J}=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.01(\mathrm{~s}$, $1 \mathrm{H}), 3.91(\mathrm{~s}, 2 \mathrm{H}), 2.38(\mathrm{q}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.06(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 170.23,150.74,148.25,144.25,138.67,136.33,134.68$, 131.81, 130.74, 129.18, 128.04, 127.62, 127.53, 127.35, 121.67, 121.65, 116.45, 114.07, 42.82, 31.46, and 12.45.

(Scheme 2, entry 3b)
Rf: 0.55 (eluent:10\% EtOAc/90\% hexane)
Isolation: Silica gel column (eluent: 5\% EtOAc/95\% hexane)
Appearance: colorless liquid
Yield: 83\%
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 9.85(\mathrm{~s}, 1 \mathrm{H}), 8.75(\mathrm{dd}, J=7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.66(\mathrm{dd}, J=$ $4.1,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.12(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.49-7.44$ (m, 2H), 7.40 (dd, $J=8.2,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.18(\mathrm{~m}, 1 \mathrm{H}), 5.25(\mathrm{~d}, \mathrm{~J}=1.4$ $\mathrm{Hz}, 1 \mathrm{H}), 5.01(\mathrm{~s}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 2 \mathrm{H}), 2.33(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.45(\mathrm{dq}, J=14.8,7.4 \mathrm{~Hz}$, $2 \mathrm{H}), 0.86$ (t, J = 7.3 Hz, 3H).
${ }^{13}$ C NMR (126 MHz, CDCl_{3}) $\delta: 170.31,149.25,148.16,144.17,136.53,134.64,131.82$, $130.78,129.25,128.33,128.10,127.62,127.34,121.70,121.66,116.67,115.22,42.84$, 40.78, 21.06, and 14.01.

HRMS (ESI): [M-H]+ calculated for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}: 331.1805$, found: 331.1806.

(Scheme 2, entry 3d)
Rf: 0.55 (eluent:10\% EtOAc/90\% hexane)
Isolation: Silica gel column (eluent: 5\% EtOAc/95\% hexane)
Appearance: colorless liquid
Yield: 78\%
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\mathrm{\delta}: 9.83(\mathrm{~s}, 1 \mathrm{H}), 8.74(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.66-8.62(\mathrm{~m}, 1 \mathrm{H})$, 8.10 (d, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}$), $7.50(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{dd}, J=$ $7.8,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.20(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{~s}, 1 \mathrm{H}), 5.00(\mathrm{~s}, 1 \mathrm{H})$,
3.91 (s, 2H), $2.35-2.31(\mathrm{~m}, 2 \mathrm{H}), 1.45-1.35(\mathrm{~m}, 2 \mathrm{H}), 1.16$ (dd, $J=14.1,6.6 \mathrm{~Hz}, 4 \mathrm{H})$, 0.77 (t, J = $6.6 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13}$ C NMR (126 MHz, CDCl_{3}) $\delta: 170.27,149.51,148.26,144.23,138.68,136.36,134.68$, $131.79,130.83,129.26,128.06,127.63,127.56,127.38,121.67,116.48,115.03,42.90$, 38.64, 31.78, 27.59, 22.63, and 14.17.

HRMS (ESI): [M-H]+ calculated for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}: 359.2118$, found: 359.2115 .

(Scheme 2, entry 3e)

Rf: 0.6 (eluent:10\% EtOAc/90\% hexane)
Isolation: Silica gel column (eluent: 4\% EtOAc/96\% hexane)
Appearance: colorless liquid
Yield: 81\%
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 9.85(\mathrm{~s}, 1 \mathrm{H}), 8.75(\mathrm{dd}, J=7.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.65(\mathrm{dd}, J=$ $4.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.12(\mathrm{dd}, \mathrm{J}=8.3,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.49(\mathrm{~m}, 1 \mathrm{H}), 7.46$ (ddd, $J=4.6$, $4.2,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{dd}, J=8.3,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.18(\mathrm{~m}$, $1 \mathrm{H}), 5.24(\mathrm{~d}, \mathrm{~J}=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.00-4.98(\mathrm{~m}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 2 \mathrm{H}), 2.36-2.30(\mathrm{~m}, 2 \mathrm{H})$, $1.38(\mathrm{dt}, J=15.4,7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.24-1.07(\mathrm{~m}, 6 \mathrm{H}), 0.77(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 170.32,149.52,148.16,144.22,138.52,134.60,131.77$, $130.85,129.25,128.33,128.09,127.87,127.62,127.38,121.71,121.66,116.67$, 115.01, 42.86, 38.70, 31.83, 29.29, 27.90, 22.76, and 14.22.

(Scheme 2, entry 3f)

Rf: 0.6 (eluent:10\% EtOAc/90\% hexane)
Isolation: Silica gel column (eluent: 4\% EtOAc/96\% hexane)
Appearance: colorless liquid
Yield: 82\%
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 9.85(\mathrm{~s}, 1 \mathrm{H}), 8.75(\mathrm{dd}, J=7.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.65(\mathrm{dd}, J=$ $4.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.12(\mathrm{dd}, J=8.3,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.49(\mathrm{~m}, 1 \mathrm{H}), 7.46$ (ddd, $J=4.6$, $4.2,1.5 \mathrm{~Hz}, 2 \mathrm{H}$), 7.39 (dd, $J=8.3,4.2 \mathrm{~Hz}, 1 \mathrm{H}$), $7.35-7.29$ (m, 2H), $7.21-7.18$ (m, $1 \mathrm{H}), 5.24(\mathrm{~d}, \mathrm{~J}=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.00-4.98(\mathrm{~m}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 2 \mathrm{H}), 2.36-2.30(\mathrm{~m}, 2 \mathrm{H})$, 1.38 (dt, $J=15.4,7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.24-1.05(\mathrm{~m}, 8 \mathrm{H}), 0.77(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 170.32,149.52,148.16,144.22,138.52,134.60,131.77$, 130.85, 129.25, 128.33, 128.09, 127.87, 127.62, 127.38, 121.71, 121.66, 116.67, 115.01, 42.86, 38.70, 31.83, 29.29, 27.90, 22.76, and 14.22.

(Scheme 2, entry 3g)
Rf: 0.6 (eluent:10\% EtOAc/90\% hexane)
Isolation: Silica gel column (eluent: 4\% EtOAc/96\% hexane)
Appearance: colorless liquid
Yield: 80\%
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 9.83(\mathrm{~s}, 1 \mathrm{H}), 8.75(\mathrm{dd}, J=7.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.64(\mathrm{dd}, \mathrm{J}=$ $4.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}$), 8.10 (dd, $J=8.3,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.48$ (ddd, $J=11.0,8.6,4.9 \mathrm{~Hz}, 4 \mathrm{H}$), $7.38(\mathrm{dd}, \mathrm{J}=8.3,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.18(\mathrm{~m}, 1 \mathrm{H}), 5.24(\mathrm{dd}, \mathrm{J}=$ $3.1,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.01-4.99(\mathrm{~m}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 2 \mathrm{H}), 2.35-2.31(\mathrm{~m}, 2 \mathrm{H}), 1.42-1.35(\mathrm{~m}$, 2 H), 1.20 (dt, $J=14.6,6.9 \mathrm{~Hz}, 4 \mathrm{H}$), $1.15-1.08$ ($\mathrm{m}, 6 \mathrm{H}$), 0.84 (dd, $J=9.3,5.1 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13}$ C NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 170.27,149.52,148.25,144.21,138.65,136.36,134.65$, $131.76,130.85,129.26,128.04,127.62,127.55,127.38,121.67,116.47,115.01,42.88$, 38.70, 32.01, 29.63, 29.57, 29.42, 27.95, 22.81, and 14.29.

HRMS (ESI): [M-H]+ calculated for $\mathrm{C}_{27} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}: 401.2587$, found: 401.2586 .

(Scheme 2, entry 3h)
Rf: 0.5 (eluent:10\% EtOAc/90\% hexane)
Isolation: Silica gel column (eluent: 5\% EtOAc/95\% hexane)
Appearance: white solid
Yield: 65\%
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 9.85(\mathrm{~s}, 1 \mathrm{H}), 8.75(\mathrm{dd}, J=7.4,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.62(\mathrm{dd}, \mathrm{J}=$ $4.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}$), 8.11 (dd, $J=8.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}$), $7.53-7.45(\mathrm{~m}, 3 \mathrm{H}), 7.39-7.36$ (m, 1H), $7.35-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.21(\mathrm{~m}, 1 \mathrm{H}), 7.20-7.15(\mathrm{~m}, 2 \mathrm{H}), 7.14-7.09(\mathrm{~m}, 1 \mathrm{H})$, $7.06-7.03(\mathrm{~m}, 2 \mathrm{H}), 5.34-5.31(\mathrm{~m}, 1 \mathrm{H}), 5.07-5.05(\mathrm{~m}, 1 \mathrm{H}), 3.91(\mathrm{~s}, 2 \mathrm{H}), 2.77-2.71$ (m, 2H), 2.68 (ddd, $J=8.1,6.0,5.1 \mathrm{~Hz}, 2 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) $\delta: 170.23,148.57,148.19,143.70,141.83,134.56,131.91$, $130.98,129.23,128.46,128.44,128.11,127.80,127.65,127.47,125.98,121.75$, 121.69, 115.73, 42.86, 40.12, and 34.24.

HRMS (ESI): $[\mathrm{M}-\mathrm{H}]^{+}$calculated for $\mathrm{C}_{27} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}: 393.1961$, found: 393.1959.

(Scheme 2, entry 3i)
Rf: 0.5 (eluent:10\% EtOAc/90\% hexane)
Isolation: Silica gel column (eluent: 5\% EtOAc/95\% hexane)
Appearance: liquid
Yield: 71\%
${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}) $\delta: 9.78(\mathrm{~s}, 1 \mathrm{H}), 8.73(\mathrm{dt}, J=8.1,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.60(\mathrm{dd}, \mathrm{J}=$ $4.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.10(\mathrm{dd}, J=8.3,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.51$ (dd, $J=10.3,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.46$ (dd, $J=8.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{dd}, J=8.3,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{~d}, J=$
$7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.05-5.02(\mathrm{~m}, 1 \mathrm{H}), 3.94$ (s, 2H), $2.40-2.32(\mathrm{~m}, 5 \mathrm{H}), 1.05(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ : $170.05,151.50,148.28,145.13,138.76,138.31,136.28$, 134.71, 130.35, 129.59, 128.06, 127.54, 127.34, 127.07, 121.66, 121.62, 116.48, 113.79, 40.27, 31.70, 20.53, and 12.49.

(Scheme 2, entry 3j)
Rf: 0.55 (eluent:10\% EtOAc/90\% hexane)
Isolation: Silica gel column (eluent: 4\% EtOAc/96\% hexane)
Appearance: liquid
Yield: 74\%
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 9.78(\mathrm{~s}, 1 \mathrm{H}), 8.74(\mathrm{dd}, J=7.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.59(\mathrm{dd}, \mathrm{J}=$ $4.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.09(\mathrm{dd}, \mathrm{J}=8.3,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.48(\mathrm{~m}, 1 \mathrm{H}), 7.47-7.44(\mathrm{~m}$, $1 \mathrm{H}), 7.36$ (dd, $J=8.3,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H})$, $7.10-7.06(\mathrm{~m}, 1 \mathrm{H}), 5.19(\mathrm{dd}, \mathrm{J}=3.1,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.05-5.02(\mathrm{~m}, 1 \mathrm{H}), 3.95(\mathrm{~s}, 2 \mathrm{H})$, $2.39(\mathrm{~s}, 3 \mathrm{H}), 2.34-2.28(\mathrm{~m}, 2 \mathrm{H}), 1.44-1.37(\mathrm{~m}, 2 \mathrm{H}), 1.24-1.12(\mathrm{~m}, 4 \mathrm{H}), 0.79-0.74$ ($\mathrm{m}, 3 \mathrm{H}$).
${ }^{13}$ C NMR (126 MHz, CDCl_{3}) $\delta: 170.05,150.22,148.25,145.05,138.73,138.31,136.27$, 134.67, 130.31, 129.58, 128.04, 127.53, 127.33, 127.13, 121.63, 121.61, 116.46, 114.75, 40.27, 38.88, 31.78, 27.60, 22.63, 20.52, and 14.15.

HRMS (ESI): $[\mathrm{M}-\mathrm{H}]^{+}$calculated for $\mathrm{C}_{25} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}: 373.2274$, found: 373.2273 .

(Scheme 2, entry 3k)
Rf: 0.5 (eluent:10\% EtOAc/90\% hexane)
Isolation: Silica gel column (eluent: 5\% EtOAc/95\% hexane)
Appearance: liquid
Yield: 70\%
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 10.18(\mathrm{~s}, 1 \mathrm{H}), 8.76(\mathrm{dd}, J=7.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.68(\mathrm{dd}, J=$ $4.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}$), 8.10 (dd, $J=8.3,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.47$ (ddd, $J=12.0,9.7,4.8 \mathrm{~Hz}, 2 \mathrm{H}$), 7.38 (dd, $J=8.3,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.92-6.86(\mathrm{~m}, 1 \mathrm{H}), 6.83(\mathrm{dd}, J$ $=7.7,1.1 \mathrm{~Hz}, 1 \mathrm{H}$), 5.24 (dd, $J=3.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.02-4.95(\mathrm{~m}, 1 \mathrm{H}), 3.93$ (s, 3H), $3.92(\mathrm{~s}, 2 \mathrm{H}), 2.39-2.33(\mathrm{~m}, 2 \mathrm{H}), 1.45-1.35(\mathrm{~m}, 2 \mathrm{H}), 1.25-1.18(\mathrm{~m}, 4 \mathrm{H}), 0.79(\mathrm{t}, \mathrm{J}=$ $7.1 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 170.53,157.85,149.17,148.07,146.02,138.83,136.32$, $135.25,128.09,128.02,127.64,121.54,121.51,121.23,121.03,116.57,114.99$, 109.06, 55.91, $38.73,37.50,31.81,27.58,22.69$, and 14.22.

HRMS (ESI): [M-H] ${ }^{+}$calculated for $\mathrm{C}_{25} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{2}$: 389.2224, found: 389.2223.

(Scheme 2, entry 3I)
Rf: 0.5 (eluent:10\% EtOAc/90\% hexane)
Isolation: Silica gel column (eluent: 5\% EtOAc/95\% hexane)
Appearance: liquid
Yield: 53\%
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 9.85(\mathrm{~s}, 1 \mathrm{H}), 8.75-8.67$ (m, 2H), 8.13 (dd, $\mathrm{J}=8.3,1.6$ $\mathrm{Hz}, 1 \mathrm{H}$), $7.54-7.46$ (m, 2H), 7.41 (dd, $J=8.3,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.17$ (ddd, $J=14.4,9.0,4.3$ $\mathrm{Hz}, 2 \mathrm{H}$), 6.99 (td, $J=8.4,2.7 \mathrm{~Hz}, 1 \mathrm{H}$), 5.26 (d, $J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.00-4.98$ (m, 1H), $3.88(\mathrm{~s}, 2 \mathrm{H}), 2.33-2.27(\mathrm{~m}, 2 \mathrm{H}), 1.40-1.35(\mathrm{~m}, 2 \mathrm{H}), 1.23-1.14(\mathrm{~m}, 4 \mathrm{H}), 0.78(\mathrm{t}, \mathrm{J}=$ $7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta: 169.08,161.91$ (d, $J=247.4 \mathrm{~Hz}$), 148.31, 146.62, 146.58, 138.66, 136.42, 134.81, 134.58, 132.99, 128.73, 128.64, 128.07, 127.59, 124.66, 124.63, 121.72 , 121.22, 119.88, 119.73, 116.70, 116.61, 115.61, 114.21, 113.98, 38.52, 36.02, $31.73,27.55,22.63$, and 14.17.

(Scheme 2, entry 3m)
Rf: 0.55 (eluent:10\% EtOAc/90\% hexane)
Isolation: Silica gel column (eluent: 4\% EtOAc/96\% hexane)
Appearance: liquid
Yield: 68\%
${ }^{1}{ }^{\mathbf{H}} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 9.86(\mathrm{~s}, 1 \mathrm{H}), 8.75(\mathrm{dd}, \mathrm{J}=7.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.68-8.64$ (m, 1H), 8.11 (dd, $J=8.3,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.39$ (dd, $J=8.3,4.2 \mathrm{~Hz}$, 1H), $7.29(\mathrm{~s}, 1 \mathrm{H}), 7.13-7.07(\mathrm{~m}, 2 \mathrm{H}), 5.23(\mathrm{t}, \mathrm{J}=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.01-4.97(\mathrm{~m}, 1 \mathrm{H}), 3.88$ $(\mathrm{s}, 2 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 2.34-2.29(\mathrm{~m}, 2 \mathrm{H}), 1.42-1.35(\mathrm{~m}, 2 \mathrm{H}), 1.23-1.14(\mathrm{~m}, 4 \mathrm{H}), 0.77$ (t, J = 7.1 Hz, 3H).
${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) $\delta: 170.38,149.45,148.24,141.25,138.73,137.22,136.34$, 134.73 , 131.61, 131.41, 129.13, 128.11, 128.06, 127.55, 121.66, 121.63, 116.49, 114.95, 42.84, 38.75, 31.79, 27.62, 22.63, 21.28, 14.17.

HRMS (ESI): [M-H]+ calculated for $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{NaO}$: 395.2094, found: 395.2089.

(Scheme 2, entry 3n)
Rf: 0.5 (eluent:10\% EtOAc/90\% hexane)
Isolation: Silica gel column (eluent: 5\% EtOAc/95\% hexane)
Appearance: liquid
Yield: 49\%
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 9.87(\mathrm{~s}, 1 \mathrm{H}), 8.73(\mathrm{dt}, J=8.7,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.69(\mathrm{dd}, \mathrm{J}=$ $4.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.16-8.11(\mathrm{~m}, 1 \mathrm{H}), 7.54-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.41(\mathrm{dd}, \mathrm{J}=8.3,4.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.18$ (dd, $J=9.6,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.15$ (dd, $J=8.5,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.00$ (td, $J=8.4,2.7$ $\mathrm{Hz}, 1 \mathrm{H}), 5.26(\mathrm{~d}, \mathrm{~J}=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.99(\mathrm{~s}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 2 \mathrm{H}), 2.33-2.28(\mathrm{~m}, 2 \mathrm{H}), 1.38$ (dd, $J=14.2,6.4 \mathrm{~Hz}, 2 \mathrm{H}$), $1.23-1.14(\mathrm{~m}, 4 \mathrm{H}), 0.78(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 169.47,161.95$ ($\mathrm{d}, \mathrm{J}=245.7 \mathrm{~Hz}$), 148.63, 148.30, $140.05,140.03,138.57,136.52,135.58,134.48,134.02,133.96,132.59,130.71$, $130.64,128.09,127.58,121.86,121.76,117.40,117.23,116.63,115.66,114.39$, 114.22, 42.72, 38.71, 31.75, 27.53, 22.64, and 14.17.

HRMS (ESI): $[\mathrm{M}-\mathrm{H}]^{+}$calculated for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{FN}_{2} \mathrm{O}: 377.2024$, found: 377.2022.

(Scheme 2, entry 30)
Rf: 0.5 (eluent:10\% EtOAc/90\% hexane)
Isolation: Silica gel column (eluent: 5\% EtOAc/95\% hexane)
Appearance: liquid
Yield: 57\%
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 9.87(\mathrm{~s}, 1 \mathrm{H}), 8.74-8.65(\mathrm{~m}, 2 \mathrm{H}), 8.13(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H})$, $7.54-7.46(\mathrm{~m}, 3 \mathrm{H}), 7.42$ (ddd, $J=8.2,4.1,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.12$ (dd, $J=8.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{~s}, 1 \mathrm{H}), 5.00(\mathrm{~s}, 1 \mathrm{H}), 3.87(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.31(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.37(\mathrm{dd}, J=14.1,7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.20(\mathrm{dd}, J=9.2,6.3 \mathrm{~Hz}, 4 \mathrm{H}), 0.78(\mathrm{dd}, J=$ $7.0,5.5 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) $\delta: 169.34,148.44,148.38,142.55,138.63,136.43,134.47$, 133.77 , 133.14, 130.67, 130.46, 128.06, 127.54, 127.50, 121.85, 121.78, 116.53, 115.68, 42.51, 38.53, 31.73, 27.51, 22.62, 14.17.

HRMS (ESI): $[\mathrm{M}-\mathrm{H}]^{+}$calculated for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{CIN}_{2} \mathrm{O}: 393.1728$, found: 393.1727.

(Scheme 2, entry 3p)

Rf: 0.5 (eluent:10\% EtOAc/90\% hexane)
Isolation: Silica gel column (eluent: 5\% EtOAc/95\% hexane)
Appearance: liquid
Yield: 60\%
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 9.86(\mathrm{~s}, 1 \mathrm{H}), 8.71(\mathrm{tt}, J=7.3,3.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.15-8.11$ (m , 1 H), 7.50 (ddd, $J=13.5,9.0,2.4 \mathrm{~Hz}, 3 \mathrm{H}$), 7.42 (dd, $J=8.3,4.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.27 (dd, $J=$ $7.6,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.14-7.11(\mathrm{~m}, 1 \mathrm{H}), 5.29-5.25(\mathrm{~m}, 1 \mathrm{H}), 5.00(\mathrm{~d}, \mathrm{~J}=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.86$ (s, 2H), $2.38-2.30(\mathrm{~m}, 2 \mathrm{H}), 1.05$ (t, J = 7.4 Hz, 3H).
${ }^{13}$ C NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 169.34,149.71,148.39,142.61,138.64,136.47,133.81$, 133.17, 130.61, 130.41, 128.33, 128.08, 127.56, 127.51, 121.86, 121.80, 116.57, 114.74, 42.46, 31.40, and 12.40.

HRMS (ESI): $[\mathrm{M}-\mathrm{H}]^{+}$calculated for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{CIN}_{2} \mathrm{O}: 351.1259$, found: 351.1256 .

(Scheme 2, entry 3q)
Rf: 0.5 (eluent:10\% EtOAc/90\% hexane)
Isolation: Silica gel column (eluent: 5\% EtOAc/95\% hexane)
Appearance: liquid
Yield: 65\%
${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl ${ }_{3}$) $\delta: 9.87(\mathrm{~s}, 1 \mathrm{H}), 8.74(\mathrm{dt}, J=7.1,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.66(\mathrm{dd}, J=$ $4.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}$), 8.11 (dd, $J=8.3,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.45$ (m, 2H), 7.39 (dd, J = 8.3, $4.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.86$ (dd, $J=8.5,2.7 \mathrm{~Hz}$, $1 \mathrm{H}), 5.24(\mathrm{dd}, \mathrm{J}=3.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.02-4.95(\mathrm{~m}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 2 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 2.31$ (t, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$), 1.42 (dt, $J=6.5,4.9 \mathrm{~Hz}, 2 \mathrm{H}), 0.86$ (dd, $J=8.6,6.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) δ : 170.07, 158.91, 148.86, 148.26, 138.72, 136.55, 136.35, 134.71, 133.06, 130.32, 128.05, 127.55, 121.70, 121.68, 116.49, 115.42, 115.37, 113.56, 55.55, 43.14, 41.03, 21.11, 14.05.

(Scheme 2, entry 3r)

Rf: 0.5 (eluent:10\% EtOAc/90\% hexane)
Isolation: Silica gel column (eluent: 5\% EtOAc/95\% hexane)
Appearance: brown sticky liquid
Yield: 59\%
${ }^{1} \mathrm{H}$ NMR (500 MHz, CDCI3) $\delta: 9.80(\mathrm{~s}, 1 \mathrm{H}), 8.77-8.71$ (m, 1H), 8.58 (dd, $J=4.2,1.5$
$\mathrm{Hz}, 1 \mathrm{H}$), 8.09 (dd, $J=8.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.49 (dt, $J=8.2,7.6 \mathrm{~Hz}, 2 \mathrm{H}$), 7.35 (dd, $J=8.3$, $4.2 \mathrm{~Hz}, 1 \mathrm{H}$), $7.25(\mathrm{~m}, 1 \mathrm{H}), 7.21$ (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.18-7.08(\mathrm{~m}, 4 \mathrm{H}), 7.04$ (d, J = 7.1 $\mathrm{Hz}, 2 \mathrm{H}$), 5.27 (d, J = $1.1 \mathrm{~Hz}, 1 \mathrm{H}$), $5.09(\mathrm{~s}, 1 \mathrm{H}), 3.94(\mathrm{~s}, 2 \mathrm{H}), 2.78-2.70(\mathrm{~m}, 2 \mathrm{H}), 2.70-$ 2.64 (m, 2H), 2.40 (s, 3H).
${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) $\delta: 169.94,149.32,148.32,144.52,141.85,138.70,138.42$, 136.30, 134.62, 130.42, 129.77, 128.45, 128.40, 128.04, 127.53, 127.43, 127.14, 125.94, 121.68, 116.48, 115.47, 40.38, 40.22, 34.27, and 20.57.

DEPT-135 NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ : (aromatic C-H): 148.12, 136.10, 129.57, 128.25, 128.20, 127.33, 127.24, 126.94, 125.74, 121.47, 116.28; (C=CH2): 115.27; $\left(\mathrm{CH}_{2}\right): 40.18$, 40.02, 34.08; and $\left(\mathrm{CH}_{3}\right) 20.37$.

HRMS (ESI): [M-Na] ${ }^{+}$calculated for $\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{NaO}$: 429.1937, found: 429.1938.

(Scheme 2, entry 3s)
Rf: 0.5 (eluent:10\% EtOAc/90\% hexane)
Isolation: Silica gel column (eluent: 5\% EtOAc/95\% hexane)
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 9.82(\mathrm{~s}, 1 \mathrm{H}), 8.72(\mathrm{dd}, J=7.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.69(\mathrm{dt}, J=$ $4.3,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.12(\mathrm{dd}, \mathrm{J}=8.3,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.47(\mathrm{~m}, 1 \mathrm{H}), 7.43-7.37(\mathrm{~m}$, 2H), $7.32-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.19(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{~d}, \mathrm{~J}=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.01(\mathrm{~s}, 1 \mathrm{H})$, $3.86(\mathrm{~s}, 2 \mathrm{H}), 2.34-2.27(\mathrm{~m}, 2 \mathrm{H}), 1.44-1.34(\mathrm{~m}, 2 \mathrm{H}), 1.23-1.14(\mathrm{~m}, 4 \mathrm{H}), 0.78(\mathrm{t}, \mathrm{J}=$ $7.0 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) $\delta: 169.64,148.37,145.84,138.59,136.43,134.49,133.08$, $132.16,130.44,129.07,128.64,128.05,127.65,127.53,121.83,121.77,116.50$, 115.74, 42.15, 38.34, 31.71, 27.49, 22.60, 14.15.

HRMS (ESI): $[\mathrm{M}-\mathrm{H}]^{+}$calculated for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{CIN}_{2} \mathrm{O}: 393.1728$, found: 393.1729.

(Scheme 2, entry 3t)
Rf: 0.55 (eluent:10\% EtOAc/90\% hexane)
Isolation: Silica gel column (eluent: 4\% EtOAc/96\% hexane)
Appearance: liquid
Yield: 70\%
${ }^{1} \mathrm{H}$ NMR (500 MHz, CDCl_{3}) $\delta: 9.83(\mathrm{~s}, 1 \mathrm{H}), 8.74(\mathrm{dt}, J=9.0,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.67-8.63$ (m, 1H), 8.10 (dd, $J=8.3,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.38(\mathrm{dd}, J=8.3,4.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.35(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{~s}, 1 \mathrm{H}), 5.22(\mathrm{t}, J=4.8 \mathrm{~Hz}$, 1 H), $4.98(\mathrm{~d}, \mathrm{~J}=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 2 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 2.35-2.29(\mathrm{~m}, 2 \mathrm{H}), 1.40$ (ddd, $J=15.4,9.3,5.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.21-1.14(\mathrm{~m}, 4 \mathrm{H}), 0.78(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 170.54,149.62,148.24,144.06,138.67,136.94,136.33$, 134.71, 130.69, 129.79, 128.72, 128.37, 128.03, 127.55, 121.65, 121.60, 116.44, 114.73, 42.51, 38.62, 31.80, 29.91, 27.57, 22.64, 21.34, and 14.18.

(Scheme 2, entry 3u)
Rf: 0.3 (eluent:10\% EtOAc/90\% hexane)
Isolation: Silica gel column (eluent: 5\% EtOAc/95\% hexane)
Appearance: semi solid
Yield: 73\%
${ }^{1} \mathbf{H}$ NMR (500 MHz, CDCl3) $\delta: 9.85$ (s, 1H), $8.77-8.74$ (m, 1 H), 8.66 (dd, $J=4.1,1.4 \mathrm{~Hz}$, $1 \mathrm{H}), 8.12(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.36(\mathrm{~m}, 2 \mathrm{H}), 6.88$ (dd, $J=8.5,2.8 \mathrm{~Hz}$, $1 \mathrm{H}), 6.74(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.00(\mathrm{~d}, J=0.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~d}, J=2.8$ $\mathrm{Hz}, 5 \mathrm{H}$), $2.35-2.29(\mathrm{~m}, 2 \mathrm{H}), 1.41-1.38(\mathrm{~m}, 1 \mathrm{H}), 1.20-1.13(\mathrm{~m}, 4 \mathrm{H}), 0.76(\mathrm{t}, \mathrm{J}=5.9 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 170.68,158.67,149.38,148.09,145.43,134.54,133.59$, 131.87, 130.75, 128.02, 127.57, 123.93, 121.60, 121.58, 114.86, 114.69, 112.96, 77.16, 55.48, 42.02, 38.42, 31.71, 29.84, 27.51, 22.56, 14.11.

HRMS (ESI): [M-H] ${ }^{+}$calculated for $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{2}$: 388.2010, found: 388.2005.

(Scheme 2, entry 3v)
Rf: 0.5 (eluent:10\% EtOAc/90\% hexane)
Isolation: Silica gel column (eluent: 5\% EtOAc/95\% hexane)
Appearance: liquid
Yield: 55\%
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 9.82(\mathrm{~s}, 1 \mathrm{H}), 8.73(\mathrm{dd}, J=7.3,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.67(\mathrm{dd}, J=$ $4.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.12$ (dd, $J=8.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.38(\mathrm{~m}$, 2H), $7.06-7.00(\mathrm{~m}, 1 \mathrm{H}), 6.92(\mathrm{dd}, J=9.5,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{~d}, \mathrm{~J}=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.01$
(s, 1H), 3.87 (s, 2H), $2.33-2.28(\mathrm{~m}, 2 \mathrm{H}), 1.41(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.36(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, 1H), $1.23-1.12(\mathrm{~m}, 4 \mathrm{H}), 0.77(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) $\delta: 170.01,161.94(\mathrm{~d}, \mathrm{~J}=246.9 \mathrm{~Hz})$, 148.77, 148.54, $148.33,146.24,146.18,138.60,136.42,134.51,132.49,132.42,128.50,128.05$, 127.64, 127.53, 127.44, 122.10, 121.79, 121.74, 116.67, 116.47, 116.00, 115.83, $115.57,115.43,115.26,114.57,114.41,42.03,38.32,31.71,27.51,22.59$, and 14.14 .

(Scheme 3, entry 3w)
Rf: 0.5 (eluent:10\% EtOAc/90\% hexane)
Isolation: Silica gel column (eluent: 5\% EtOAc/95\% hexane)
Appearance: white solid
Yield: 54\%
${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}) $\delta: 9.88(\mathrm{~s}, 1 \mathrm{H}), 8.77(\mathrm{dd}, J=7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.55(\mathrm{dd}, \mathrm{J}=$ $4.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 8.09 (dd, $J=8.3,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.61$ (dd, $J=7.9,1.1 \mathrm{~Hz}, 1 \mathrm{H}$), $7.52-$ 7.43 (m, 2H), 7.35 (dd, $J=8.3,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.30$ (td, $J=7.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.20$ (m, 3H), 7.16 (ddd, $J=7.6,4.0,1.7 \mathrm{~Hz}, 4 \mathrm{H}), 5.50(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.19$ (s, 1H), 3.92 (dd, J = 8.0, 7.0 Hz, 1H), 2.91-2.84 (m, 2H), 2.76 (dd, J = 9.9, 5.7 Hz, 2H), 2.44-2.30 ($\mathrm{m}, 1 \mathrm{H}$), $1.93-1.81(\mathrm{~m}, 1 \mathrm{H}), 0.98(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 172.59,149.18,148.20,143.23,141.93,138.61,137.16$, 136.34, 134.91, 129.05, 128.55, 128.04, 127.95, 127.56, 127.35, 126.85, 126.09, 121.66, 121.49, 116.45, 115.98, 51.82, 40.91, 34.43, 27.33, and 12.91.

(Scheme 2, entry 3x)
Rf: 0.4 (eluent:10\% EtOAc/90\% hexane)
Isolation: Silica gel column (eluent: 6\% EtOAc/94\% hexane)
Appearance: liquid
Yield: 43\%
${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}) $\delta: 9.87(\mathrm{~s}, 1 \mathrm{H}), 8.74(\mathrm{dd}, \mathrm{J}=7.1,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.68-8.64$ (m, 1H), $8.10(\mathrm{dd}, J=8.3,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.38(\mathrm{dd}, J=8.3,4.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.26$ (s, 1H), 6.78 (dd, $J=8.3,2.7 \mathrm{~Hz}, 1 \mathrm{H}$), 6.70 (d, $J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.19$ (d, $J=$ $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.99-4.94(\mathrm{~m}, 1 \mathrm{H}), 3.82(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.31-2.22(\mathrm{~m}, 2 \mathrm{H}), 1.36(\mathrm{tt}$, $J=20.3,10.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.19-1.07(\mathrm{~m}, 4 \mathrm{H}), 0.74(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (126 MHz, CDCl_{3}) δ : 171.23, 155.29, 149.26, 148.37, 145.65, 138.67, 136.39, $134.49,132.12,128.06,127.52,123.41,121.85,121.70,116.64,116.12,114.87$, 114.83, 63.90, 42.09, 38.41, 31.76, 27.58, 22.60, and 14.15.

HRMS (ESI): [M-H] ${ }^{+}$calculated for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{2}$: 375.2067, found: 375.2071.
X-ray: CCDC 1841319

(Scheme 2, entry 3y)
Rf: 0.45 (eluent:10\% EtOAc/90\% hexane)
Isolation: Silica gel column (eluent: 6\% EtOAc/94\% hexane)
Appearance: brown sticky liquid
Yield: 49\%
${ }^{1} \mathrm{H}$ NMR (500 MHz, $\left.\mathrm{CDCl}_{3}\right) ~ \delta: ~ 9.87(\mathrm{~s}, 1 \mathrm{H}), 8.73(\mathrm{dd}, J=7.1,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.68(\mathrm{dd}, J=$ $4.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.12(\mathrm{dt}, J=11.2,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.54-7.48(\mathrm{~m}, 3 \mathrm{H}), 7.41$ (dd, $J=8.3$, $4.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.29$ (dd, $J=8.2,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.19$ (dd, $J=10.0,4.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.15-7.11$ (m, 2H), $7.06-7.04(\mathrm{~m}, 2 \mathrm{H}), 5.34(\mathrm{~d}, \mathrm{~J}=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{~s}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 2 \mathrm{H}), 2.75-$ $2.70(\mathrm{~m}, 2 \mathrm{H}), 2.69-2.63(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) $\delta: 169.24,148.43,147.51,142.05,141.55,138.63,136.45$, $134.46,133.91,133.35,130.83,130.43,128.50,128.46,128.08,127.60,127.56$, 126.09, 121.89, 121.81, 116.58, 116.44, 42.50, 39.96, and 34.16.

(Scheme 2, entry 3z)
Rf: 0.55 (eluent:10\% EtOAc/90\% hexane)
Isolation: Silica gel column (eluent: 4\% EtOAc/96\% hexane)
Appearance: solid
Yield: 58\%
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 9.81(\mathrm{~s}, 1 \mathrm{H}), 8.74(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.66(\mathrm{~d}, J=2.9 \mathrm{~Hz}$, $1 \mathrm{H}), 8.10(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.56-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.44(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{dd}, J=$ 8.2, $4.2 \mathrm{~Hz}, 1 \mathrm{H}$), $7.28(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 5.38(\mathrm{~s}, 1 \mathrm{H}), 5.17(\mathrm{~s}, 1 \mathrm{H}), 4.19(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.48-2.35(\mathrm{~m}, 2 \mathrm{H}), 1.62(\mathrm{~d}, J=$ $6.9 \mathrm{~Hz}, 5 \mathrm{H}$), 1.52 (dt, $J=15.2,7.6 \mathrm{~Hz}, 2 \mathrm{H}$), 1.29 (ddd, $J=18.1,12.7,5.1 \mathrm{~Hz}, 5 \mathrm{H}$), 0.85 (t, J = 7.0 Hz, 3H).
${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) δ : 173.40, 149.99, 148.05, 143.30, 138.54, 136.43, 134.90, $129.05,128.05,127.87,127.59,127.26,126.87,121.64,121.44,116.41,115.12,44.11$, 39.21, 31.84, 27.63, 22.72, 19.34, and 14.25.

HRMS (ESI): [M-Na] ${ }^{+}$calculated for $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{NaO}$: 395.2094, found: 395.2087.

(Scheme 2, entry 3aa)
Rf: 0.55 (eluent:10\% EtOAc/90\% hexane)
Isolation: Silica gel column (eluent: 4\% EtOAc/96\% hexane)
Appearance: solid
Yield: 59\%
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 9.87(\mathrm{~s}, 1 \mathrm{H}), 8.77(\mathrm{dd}, J=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.71$ (dd, $J=$ $4.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.10(\mathrm{dd}, \mathrm{J}=8.3,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.61-7.58(\mathrm{~m}, 1 \mathrm{H}), 7.51-7.43(\mathrm{~m}$, 2 H), 7.39 (dd, $J=8.2,4.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.28 (td, $J=7.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{td}, J=7.5,1.2$ Hz, 1H), 7.12 (dd, J = 7.6, 1.2 Hz, 1H), 5.42 (d, J = 1.4 Hz, 1H), $5.14(\mathrm{~s}, 1 \mathrm{H}), 3.92$ (t, J = $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.44-2.33(\mathrm{~m}, 3 \mathrm{H}), 1.91-1.81(\mathrm{~m}, 1 \mathrm{H}), 1.57-1.48(\mathrm{~m}, 2 \mathrm{H}), 1.38-1.27$ ($\mathrm{m}, 4 \mathrm{H}$), $1.02-0.95(\mathrm{~m}, 3 \mathrm{H}), 0.85(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (126 MHz, CDCl_{3}) δ : 172.73, 150.05, 148.10, 143.74, 138.64, 137.03, 136.37, $134.95,129.01,128.05,127.74,127.56,127.23,126.72,121.66,121.46,116.46$, 115.30, 51.75, 39.29, 31.86, 27.60, 27.26, 22.74, 14.25, 12.88.

(Scheme 2, entry 3ab)
Rf: 0.5 (eluent:10\% EtOAc/90\% hexane)
Isolation: Silica gel column (eluent: 5\% EtOAc/95\% hexane)
Appearance: liquid
Yield: 47\%
${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}) $\delta: 9.82(\mathrm{~s}, 1 \mathrm{H}), 8.73(\mathrm{dt}, J=4.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.48-8.43$ $(\mathrm{m}, 1 \mathrm{H}), 8.14(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.04(\mathrm{dd}, J=8.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{dd}, J=10.7,8.5$
$\mathrm{Hz}, 2 \mathrm{H}), 7.54-7.37(\mathrm{~m}, 5 \mathrm{H}), 7.30(\mathrm{dd}, \mathrm{J}=8.3,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.36(\mathrm{~d}, \mathrm{~J}=1.6 \mathrm{~Hz}, 1 \mathrm{H})$, $5.27-5.24(\mathrm{~m}, 1 \mathrm{H}), 4.40(\mathrm{~s}, 2 \mathrm{H}), 2.47-2.42(\mathrm{~m}, 2 \mathrm{H}), 1.47(\mathrm{dt}, \mathrm{J}=11.2,7.5 \mathrm{~Hz}, 2 \mathrm{H})$, $1.31-1.17(\mathrm{~m}, 4 \mathrm{H}), 0.80(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 170.38,150.20,147.89,142.68,136.53,136.51,136.43$, 134.52, 133.16, 133.01, 128.73, 128.00, 127.97, 127.57, 127.28, 127.14, 127.01, 125.77, 124.65, 121.62, 121.53, 115.45, 39.91, 38.98, 31.85, 27.60, 22.67, and 14.19.

HRMS (ESI): $[\mathrm{M}-\mathrm{H}]^{+}$calculated for $\mathrm{C}_{28} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}: 409.2274$, found: 409.2275.

(Scheme 2, entry 3ac)
Rf: 0.55 (eluent:10\% EtOAc/90\% hexane)
Isolation: Silica gel column (eluent: 4\% EtOAc/96\% hexane)
Appearance: solid
Yield: 54\%
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 9.79(\mathrm{~s}, 1 \mathrm{H}), 8.75(\mathrm{dt}, J=8.7,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.61(\mathrm{dd}, \mathrm{J}=$ $4.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.08$ (dd, $J=8.3,1.6 \mathrm{~Hz}, 1 \mathrm{H}$), 7.49 (dd, $J=10.3,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-$ $7.41(\mathrm{~m}, 2 \mathrm{H}), 7.36(\mathrm{dd}, J=8.3,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{dd}, J=8.0,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=$ $1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.34(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{q}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H})$, 2.45 (d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), 2.40 (td, $J=7.3,3.5 \mathrm{~Hz}, 2 \mathrm{H}$), 1.86 (dp, $J=13.5,6.8 \mathrm{~Hz}, 1 \mathrm{H}$), 1.61 (d, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.53-1.44(\mathrm{~m}, 2 \mathrm{H}), 1.33-1.21(\mathrm{~m}, 4 \mathrm{H}), 0.91(\mathrm{~d}, J=6.6 \mathrm{~Hz}$, $6 \mathrm{H}), 0.83(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (101 MHz, CDCl_{3}) $\delta: 173.74,150.21,148.05,143.05,140.27,138.69,136.28$, $135.64,135.01,129.79,128.69,128.04,127.56,127.01,121.61,121.35,116.27$, $114.85,45.22,43.91,39.22,31.81,30.40,27.64,22.70,22.58,19.26$, and 14.20.
HRMS (ESI): $[\mathrm{M}-\mathrm{H}]^{+}$calculated for $\mathrm{C}_{29} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{O}: 429.2900$, found: 429.2900.

(Scheme 2, entry 3ad)
Rf: 0.55 (eluent:10\% EtOAc/90\% hexane)
Isolation: Silica gel column (eluent: 5\% EtOAc/95\% hexane)
Yield: 53\%
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 9.86(\mathrm{~s}, 1 \mathrm{H}), 8.73(\mathrm{dd}, \mathrm{J}=7.5,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.60(\mathrm{dd}, \mathrm{J}=$ $4.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.07(\mathrm{dd}, J=8.3,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.97(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.75(\mathrm{~d}, J=$ $9.0 \mathrm{~Hz}, 1 \mathrm{H}$), $7.52-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.36$ (dd, $J=8.3,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{t}, \mathrm{J}=4.5 \mathrm{~Hz}, 2 \mathrm{H})$, $5.49(\mathrm{~d}, \mathrm{~J}=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.29(\mathrm{~s}, 1 \mathrm{H}), 4.26(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{~s}, 3 \mathrm{H}), 2.57-2.43$ (m, 2H), 1.71 (d, J = 7.0 Hz, 3H), 1.56 (dd, J = 15.2, $7.6 \mathrm{~Hz}, 2 \mathrm{H}$), $1.38-1.27$ (m, 4H), 0.85 (t, J = $7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (126 MHz, CDCl_{3}) $\delta: 173.27,152.86,150,148.16,143.44,138.60,136.41$, 136.03, 134.87, 130.90, 129.25, 128.12, 128.06, 127.55, 126.59, 123.34, 121.71, 121.56, 116.61, 116.41, 115.89, 113.95, 57.24, 44.04, 39.20, 31.82, 27.65, 22.75, 19.81, and 14.28 .

DEPT-135 (126 MHz, CDCl_{3}) δ : (aromatic C-H): 147.93, 136.18, 127.89, 127.32, 126.36, 123.11, 121.48, 121.33, 116.17; $\left(\mathrm{C}=\mathrm{CH}_{2}\right)$: 115.65; (aromatic $\left.\mathrm{C}-\mathrm{H}\right)$: 113.72; (OCH_{3}): 57.00; (sp3-C-H): 43.80; $\left(\mathrm{CH}_{2}\right): 38.97,31.59,27.42$; 22.51; $\left(\mathrm{CH}-\mathrm{CH}_{3}\right): 19.58$; and $\left(\mathrm{CH}_{2}-\mathrm{CH}_{3}\right)$: 14.05 .

(Scheme 2, entry 3ae)
Rf: 0.15 (eluent: 10\% EtOAc/hexane)
Isolation: Silica gel column (eluent: 8\% EtOAc/hexane)
Appearance: liquid
Yield: 62\%
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.78(\mathrm{~s}, 1 \mathrm{H}), 8.74(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 8.65(\mathrm{~d}, J=3.6 \mathrm{~Hz}$, 2 H), 8.09 (dd, $J=8.3,1.4 \mathrm{~Hz}, 2 \mathrm{H}$), $7.49-7.42$ (m, 5H), 7.38 (dd, $J=8.3,4.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.09 (d, J = $8.7 \mathrm{~Hz}, 2 \mathrm{H}$), 6.94 (s, 1H), 5.84 (s, 2H), 5.80 (s, 2H), 5.36 (s, 2H), 5.14 (s, 2 H), 4.14 (q, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.13$ (dd, $J=13.8,3.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.22(\mathrm{q}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H})$, $1.59(\mathrm{t}, J=7.4 \mathrm{~Hz}, 7 \mathrm{H}), 1.34-1.28(\mathrm{~m}, 21 \mathrm{H}), 0.87(\mathrm{dd}, J=9.5,4.8 \mathrm{~Hz}, 12 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 220.49$, 220.47, 173.51, 171.86, 152.55, 149.94, 148.03, $143.38,138.66,138.59,138.56,136.36,134.93,129.46,129.43,128.42,128.37$, $128.05,127.58,127.37,127.34,121.64,121.43,120.80,116.36,115.09,115.04,51.22$, $51.15,43.85,39.18,39.15,38.40,38.38,35.41,32.47,32.13,31.80,31.49,29.90$, 29.56, 29.42, 29.41, 27.75, 27.63, 22.89, 22.71, 22.61, 20.74, 19.30, 14.31, 14.21, 14.13, 1.22.

HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{31} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{O}_{2}$: 469.2850, found: 469.2849.

(Scheme 2, entry 3af)
Rf: 0.3 (eluent: 10\% EtOAc/hexane)
Isolation: Silica gel column (eluent: 5\% EtOAc/hexane)
Appearance: liquid
Yield: 59\%
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.89(\mathrm{~s}, 1 \mathrm{H}), 8.80-8.67(\mathrm{~m}, 2 \mathrm{H}), 8.12(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.57-7.51(\mathrm{~m}, 3 \mathrm{H}), 7.51-7.46(\mathrm{~m}, 1 \mathrm{H}), 7.42(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.39-7.35(\mathrm{~m}, 2 \mathrm{H})$, 7.22 (d, J = $7.9 \mathrm{~Hz}, 1 \mathrm{H}$), 5.42 (s, 1H), 5.21 (s, 1H), 4.19 (d, J = $6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.42$ (d, J = $6.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.68-1.62(\mathrm{~m}, 4 \mathrm{H}), 1.58-1.49(\mathrm{~m}, 3 \mathrm{H}), 1.29(\mathrm{~s}, 5 \mathrm{H}), 0.89-0.83(\mathrm{~m}, 4 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.6,159.2\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{F C}=248.46 \mathrm{~Hz}\right), 149.0,148.2,139.9$, $139.8,139.4,138.6,138.5,136.5,136.4,135.7,134.8,134.7,131.0\left(\mathrm{~d},{ }^{3} J_{F C}=4.0 \mathrm{~Hz}\right)$, $129.2\left(\mathrm{~d},{ }^{4} J_{F C}=3.0 \mathrm{~Hz}\right), 128.6,127.8,127.6,127.6,121.7,121.6,116.5,115.8,115.59$, $114.8\left(\mathrm{~d},{ }^{2} J_{F C}=24.2 \mathrm{~Hz}\right), 44.1,39.2,31.8,29.9,27.6,22.7,19.4,14.2$.
HRMS (ESI): $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{31} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{OFNa}$: 489.2313, found: 489.2309.

(Scheme 2, entry 3ag)
Rf: 0.45 (eluent:10\% EtOAc/90\% hexane)
Isolation: Silica gel column (eluent: 5\% EtOAc/95\% hexane)
Appearance: liquid
Yield: 78\%
${ }^{1} \mathrm{H}$ NMR (500 MHz, CDCl_{3}) $\delta: 9.89(\mathrm{~s}, 1 \mathrm{H}), 8.73(\mathrm{dt}, J=8.4,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.66(\mathrm{dd}, \mathrm{J}=$ $4.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}$), 8.11 (dd, $J=8.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.48$ (ddd, $J=10.1,8.2,4.7 \mathrm{~Hz}, 2 \mathrm{H}$), 7.39 (dd, $J=8.3,4.2 \mathrm{~Hz}, 1 \mathrm{H}$), 6.95 (d, $J=13.8 \mathrm{~Hz}, 1 \mathrm{H}$), 6.71 (s, 1H), 5.24 (d, J = 1.5 $\mathrm{Hz}, 1 \mathrm{H}$), 5.01 (d, J = $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.91$ ($\mathrm{s}, 3 \mathrm{H}$), $3.90(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{~s}, 2 \mathrm{H}), 2.35-2.29(\mathrm{~m}$, 2H), 1.43 - 1.36 (m, 2H), 1.22 - 1.13 (m, 4H), 0.78 (t, J = 7.0 Hz, 3H).
${ }^{13}$ C NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 170.53,149.25,148.35,148.30,148.08,138.73,136.70$, $136.36,134.68,128.07,127.53,123.83,121.70,116.48,115.17,113.41,112.21,56.20$, 56.19, 42.59, 38.80, 31.79, 27.62, 22.65, and 14.18.

HRMS (ESI): [M-H] ${ }^{+}$calculated for $\mathrm{C}_{26} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{3}$: 419.2329, found: 419.2328.

(Scheme 2, entry 3ah)

Rf: 0.4 (eluent:10\% EtOAc/90\% hexane)
Isolation: Silica gel column (eluent: 6\% EtOAc/94\% hexane)
Appearance: yellow liquid
Yield: 63\%
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 9.90(\mathrm{~s}, 1 \mathrm{H}), 8.75(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.63(\mathrm{~d}, J=2.9 \mathrm{~Hz}$, 1 H), $8.16-8.03(\mathrm{~m}, 1 \mathrm{H}), 7.50(\mathrm{dt}, J=16.1,7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{dd}, J=8.0,4.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.15 (dt, J = 29.6, 7.0 Hz, 3H), 7.06 (d, J = 7.3 Hz, 2H), 6.98 (s, 1H), 6.69 (s, 1H), 5.33 (s, 1H), 5.07 (s, 1H), 3.92 (s, 3H), 3.89 (s, 3H), 3.83 (s, 2H), 2.74 (d, J = $8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 2.69 (d, J = $8.4 \mathrm{~Hz}, 2 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) δ : 170.43, 148.47, 148.34, 148.31, 148.14, 141.80, 138.71, $136.38,136.16,134.65,128.49,128.45,128.08,127.54,126.02,123.95,121.72$, $116.52,115.92,113.51,112.17,56.20,42.60,40.17$, and 34.31 .

(Scheme 3, entry 4a)

Rf: 0.6 (eluent:10\% EtOAc/90\% hexane)
Isolation: Silica gel column (eluent: 5\% EtOAc/hexane)
Appearance: liquid
Yield: 56\%

Synthesized by following General rocedure A

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.69(\mathrm{~s}, 1 \mathrm{H}), 8.70(\mathrm{dd}, J=7.4,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.57(\mathrm{dd}, J=$ $4.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.09(\mathrm{dd}, \mathrm{J}=8.3,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.49-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.36$ (dd, $J=8.3$, $4.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.15-5.14(2 \mathrm{H}), 4.98$ (2H), $3.93(\mathrm{~s}, 2 \mathrm{H}), 2.33-2.25(\mathrm{~m}, 4 \mathrm{H}), 1.41-1.34(\mathrm{~m}, 4 \mathrm{H}), 1.15-1.12(\mathrm{~m}, 4 \mathrm{H}), 0.74$ (t, J = 7.1 Hz, 6H).
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 170.6,149.9,148.1,145.2,136.2,134.6,128.5,128.0$, $127.9,127.5,127.0,121.5,121.4,116.2,114.8,40.2,38.4,31.7,27.5,22.6,14.0$.

(Scheme 3, entry 4b)

Rf: 0.6 (eluent:10\% EtOAc/90\% hexane)
Isolation: Silica gel column (eluent: 5\% EtOAc/hexane)
Appearance: liquid
Yield: 52\%
Synthesized by following General rocedure A
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.69(\mathrm{~s}, 1 \mathrm{H}), 8.70(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.57(\mathrm{dd}, J=4.1$, $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.09(\mathrm{dd}, J=8.3,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.49-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.36(\mathrm{dd}, J=8.3,4.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.29(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.15-5.14(2 \mathrm{H}), 4.98$ (s, $2 \mathrm{H}), 3.94(\mathrm{~s}, 2 \mathrm{H}), 2.30-2.27(\mathrm{~m}, 4 \mathrm{H}), 1.37(\mathrm{dd}, \mathrm{J}=15.2,7.5 \mathrm{~Hz}, 4 \mathrm{H}), 1.17-1.11$ (m, 8H), 1.06 (td, $J=8.6,4.6 \mathrm{~Hz}, 2 \mathrm{H}), 0.75$ (dd, $J=11.7,4.7 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) $\delta 170.6,149.9,148.1,145.2,138.6,136.2,134.6,128.5$, $128.0,127.9,127.5,127.0,121.5,121.4,116.2,114.8,40.2,38.5,38.4,31.8,31.7$, 27.8, 27.5, 22.7, 22.6, 14.2, 14.1.

HRMS (ESI): [M-Na] ${ }^{+}$calculated for $\mathrm{C}_{32} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{NaO}: 491.3033$, found: 491.3030.

(Scheme 3, entry 4c)
Rf: 0.65 (eluent:10\% EtOAc/90\% hexane)
Isolation: Silica gel column (eluent:3\% EtOAc/hexane)
Appearance: liquid
Yield: 61\% Synthesized by following General rocedure A
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.69(\mathrm{~s}, 1 \mathrm{H}), 8.70(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.57(\mathrm{dd}, J=4.1$, $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.09(\mathrm{dd}, J=8.3,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.36$ (dd, $J=8.2,4.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.29(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.14(\mathrm{~s}, 2 \mathrm{H}), 4.98(\mathrm{~s}, 2 \mathrm{H})$, 3.94 (s, 2H), $2.30-2.25$ ($\mathrm{m}, 4 \mathrm{H}$), 1.37 (dd, $J=14.9,7.6 \mathrm{~Hz}, 6 \mathrm{H}), 1.15-1.09$ (m, 10 H), 0.88 (s, 2H), 0.83 (d, J = $7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.74(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.6,149.9,149.8,148.1,145.2,138.6,136.2,134.6$, $128.5,128.1,128.0,127.5,127.0,121.5,121.4,116.2,114.8,40.2,38.5,38.4,31.9$, 31.7, 29.6, 29.5, 29.3, 27.9, 27.5, 22.7, 22.5, 14.2, 14.1.

HRMS (ESI): $[\mathrm{M}-\mathrm{K}]^{+}$calculated for $\mathrm{C}_{34} \mathrm{H}_{44} \mathrm{KN}_{2} \mathrm{O}: 535.3085$, found: 535.3084 .

(Scheme 3, entry 6a)
Rf: 0.35 (eluent: 10\% EtOAc/hexane)
Isolation: Silica gel column (eluent: 5\% EtOAc/hexane)
Appearance: liquid
Yield: 53\%

Synthesized by following General rocedure B

${ }^{1} \mathrm{H}$ NMR (500 MHz, CDCl_{3}) б $9.63(\mathrm{~s}, 1 \mathrm{H}), 8.74-8.62(\mathrm{~m}, 3 \mathrm{H}), 8.55-8.46(\mathrm{~m}, 3 \mathrm{H})$, 8.08 (dd, $J=8.3,1.5 \mathrm{~Hz}, 3 \mathrm{H}), 7.52-7.44(\mathrm{~m}, 5 \mathrm{H}), 7.35-7.29(\mathrm{~m}, 4 \mathrm{H}), 7.17-7.12(\mathrm{~m}$, $3 \mathrm{H}), 6.87-6.76(\mathrm{~m}, 3 \mathrm{H}), 6.06$ (dd, $\mathrm{J}=14.9,7.5 \mathrm{~Hz}, 2 \mathrm{H}$), 5.21 (s, 1H), 4.98 (s, 2H), 3.96 (s, 2H), 3.47 (d, J = 6.0 Hz, 4H), $2.33-2.27(\mathrm{~m}, 5 \mathrm{H}), 1.37$ (ddd, $J=25.0,15.7,7.0 \mathrm{~Hz}$, 18 H), 1.17 (dt, $J=9.3,7.2 \mathrm{~Hz}, 11 \mathrm{H}), 0.74(\mathrm{t}, J=7.0 \mathrm{~Hz}, 8 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.5,149.7,148.0,145.2,138.50-138.3$ (m), 136.16, $134.45,130.78,129.2-129.1(\mathrm{~m}), 128.74,127.8,127.6-127.5(\mathrm{~m}), 125.9,121.5,116.4$, $115.1,40.0,38.8,32.1,31.7,29.9,29.6,27.5,26.0,22.9,22.6,14.3,14.1$.

(Scheme 3, entry 6b)
Rf: 0.4 (eluent: 10\% EtOAc/hexane)
Isolation: Silica gel column (eluent: 5\% EtOAc/hexane)

Appearance: liquid

Yield: 49\%
Synthesized by following General rocedure B
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.78(\mathrm{~s}, 1 \mathrm{H}), 8.70(\mathrm{dd}, J=7.1,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.64(\mathrm{dd}, J=4.1$, $1.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.13-8.08(\mathrm{~m}, 1 \mathrm{H}), 8.05(\mathrm{~s}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{dd}, J=6.3,4.5 \mathrm{~Hz}$, 1 H), $7.40-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.24(\mathrm{~d}, J=0.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.38(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{~s}, 1 \mathrm{H}), 5.00$ $(\mathrm{s}, 1 \mathrm{H}), 4.16(\mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.08(\mathrm{~s}, 2 \mathrm{H}), 2.34-2.28(\mathrm{~m}, 2 \mathrm{H}), 1.49-1.11(\mathrm{~m}, 17 \mathrm{H}), 0.93-$ $0.86(\mathrm{~m}, 2 \mathrm{H}), 0.76(\mathrm{t}, \mathrm{J}=5.7 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ठ 169.16, 166.80, 149.40, 148.23, 145.63, 142.44, 138.61, 136.37, 135.62, 134.51, 131.10, 130.82, 128.01, 127.71, 127.53, 126.19, 121.73, 121.67, 121.58, 116.63, 115.38, 60.68, 38.68, 31.74, 27.49, 22.62, 14.37, 14.15.

HRMS (ESI): [M+K] calculated for $\mathrm{C}_{29} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~K}: 495.2045$, found: 495.2044.

(Scheme 3, entry 6c)
Rf: 0.40 (eluent:10\% EtOAc/90\% hexane)
Isolation: Silica gel column (eluent: 5\% EtOAc/hexane)
Appearance: liquid
Yield: 69\%

Synthesized by following General rocedure A

${ }^{1} \mathrm{H}$ NMR (500 MHz, CDCl $_{3}$) $\delta 9.76(\mathrm{~s}, 1 \mathrm{H}), 8.70(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.64(\mathrm{~d}, J=2.8$ $\mathrm{Hz}, 1 \mathrm{H}), 8.09$ (dd, $J=21.1,11.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.57$ (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.45$ (m, $2 \mathrm{H}), 7.38(\mathrm{dd}, J=8.2,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H})$, $6.38(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.32(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{~s}, 1 \mathrm{H}), 5.06(\mathrm{t}, \mathrm{J}=6.3 \mathrm{~Hz}$, $1 \mathrm{H}), 5.00(\mathrm{~s}, 1 \mathrm{H}), 4.60(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.07(\mathrm{~s}, 2 \mathrm{H}), 2.29(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.08$ - 2.01 (m, 4H), 1.71 (s, 3H), 1.64 (s, 3H), 1.56 (s, 3H), 1.44 (dd, $J=15.1,7.5 \mathrm{~Hz}$, 2 H), $0.85(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.9,166.7,149.1,148.2,145.5,142.6,142.5,138.6$, 136.3, 135.6, 134.5, 132.3, 131.1, 130.8, 127.9, 127.6, 127.5, 126.1, 123.7, 121.6, 121.5, 119.3, 116.6, 115.5, 61.3, 40.7, 39.4, 32.3, 26.7, 25.8, 23.6, 20.9, 17.8, 13.9.

HRMS (ESI): $[\mathrm{M}-\mathrm{H}]^{+}$calculated for $\mathrm{C}_{35} \mathrm{H}_{41} \mathrm{~N}_{2} \mathrm{O}_{3}: 537.3112$, found: 537.3112 .

(Scheme 3, entry 6d)
Rf: 0.35 (eluent:10\% EtOAc/90\% hexane)
Isolation: Silica gel column (eluent: 5\% EtOAc/hexane)
Appearance: white solid
Yield: 54\%

Synthesized by following General rocedure A

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.76$ (s, 1H), 8.70 (dd, J = 6.8, 2.2 Hz, 1H), 8.63 (dd, J $=4.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.17-8.08(\mathrm{~m}, 2 \mathrm{H}), 7.59(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.45(\mathrm{~m}, 2 \mathrm{H})$, $7.40-7.36(\mathrm{~m}, 1 \mathrm{H}), 7.35-7.26(\mathrm{~m}, 6 \mathrm{H}), 7.23(\mathrm{dd}, J=7.6,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.43(\mathrm{~d}, J=$ $15.7 \mathrm{~Hz}, 1 \mathrm{H}$), $5.24(\mathrm{~d}, \mathrm{~J}=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{~s}, 2 \mathrm{H}), 5.01(\mathrm{~s}, 1 \mathrm{H}), 4.07(\mathrm{~s}, 2 \mathrm{H}), 2.31$ (dd, $J=13.3,5.8 \mathrm{~Hz}, 2 \mathrm{H}$), $1.44-1.37$ (m, 2H), $1.20-1.16$ (m, 2H), 0.88 (dd, $J=8.6$, $4.9 \mathrm{~Hz}, 2 \mathrm{H}), 0.76(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.95,166.49,149.34,148.17,145.61,143.01$, 138.58, 136.30, 136.17, 135.47, 134.50, 131.15, 130.88, 128.62, 128.23, 128.21, 127.97, 127.66, 127.50, 126.13, 121.62, 121.06, 116.57, 115.36, 77.16, 66.37, 39.39, 38.63, 31.69, 29.85, 27.44, 22.57, 14.09

(Scheme 3, entry 6e)
Rf: 0.15 (eluent:10\% EtOAc/hexane)
Isolation: Silica gel column (eluent: 10\% EtOAc/hexane)
Appearance: liquid
Yield: 65\%
Synthesized by following General rocedure A
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.78$ (s, 1H), 8.71 (dd, $J=6.9,2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 8.64 (dd, $J=3.9$, $1.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.11$ (dd, $J=8.3,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.07(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H})$,
$7.49(\mathrm{~s}, 1 \mathrm{H}), 7.47(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.22(\mathrm{~m}, 1 \mathrm{H}), 6.38(\mathrm{~d}, \mathrm{~J}=15.7$ $\mathrm{Hz}, 1 \mathrm{H}), 5.23(\mathrm{~d}, \mathrm{~J}=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.01(\mathrm{~s}, 1 \mathrm{H}), 4.16(\mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.08(\mathrm{~s}, 2 \mathrm{H}), 2.34-2.28$ (m, 2H), $1.39(\mathrm{dt}, J=7.4,5.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.31(\mathrm{dd}, J=6.8,3.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.27-1.20(\mathrm{~m}, 6 \mathrm{H}), 0.76$ (t, J = 7.0 Hz, 3H).
${ }^{13} \mathbf{C}$ NMR (126 MHz, $\mathbf{C D C l}_{3}$) $\delta 169.1,166.8,152.5,149.4,148.2,145.6,142.4,138.6$, $136.3,135.6,134.5,131.1,130.8,128.0,127.7,127.5,126.2,121.7,121.7,121.6$, $116.6,115.4,77.2,60.7,39.4,38.7,31.7,31.5,29.9,27.5,22.6,14.4,14.1$.

(Scheme 3, entry 6f)
Rf: 0.5 (eluent:10\% EtOAc/90\% hexane)
Isolation: Silica gel column (eluent: 5\% EtOAc/hexane)
Appearance: liquid
Yield: 46\%

Synthesized by following General rocedure A

${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}) б 9.77 ($\mathrm{s}, 1 \mathrm{H}$), 8.70 (td, $\left.J=6.7,2.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.68-8.62$ (m, 1H), 8.11 (dd, $J=8.3,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.61-7.58(\mathrm{~m}, 1 \mathrm{H})$, 7.47 (dd, $J=8.5,6.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.40-7.36(\mathrm{~m}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.23$ (dd, $J=7.6,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.34(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{~s}, 1 \mathrm{H}), 5.00(\mathrm{~s}, 1 \mathrm{H}), 4.67$ (dd, J $=7.6,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{~s}, 2 \mathrm{H}), 2.32(\mathrm{dd}, \mathrm{J}=16.2,8.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.75-1.67(\mathrm{~m}, 3 \mathrm{H})$, $1.47(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.39(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.18-1.05(\mathrm{~m}, 6 \mathrm{H}), 0.88(\mathrm{~s}, 5 \mathrm{H})$, 0.77 (t, J = 6.9 Hz, 3H), $0.69(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 168.8$, 166.2, 149.4, 148.2, 145.6, 141.9, 138.6, 136.3, $135.6,134.5,130.9,130.7,127.9,127.6,127.5,126.0,122.1,121.6,116.6,115.3$, 81.2, 48.9, 47.0, 45.1, 39.4, 38.9, 38.7, 33.8, 31.8, 29.8, 29.2, 27.8, 27.4, 22.7, 20.1, 19.9, 14.1, 11.4.

HRMS (ESI): $[M-K]^{+}$calculated for $\mathrm{C}_{38} \mathrm{H}_{46} \mathrm{KN}_{2} \mathrm{O}_{3}: 617.3140$, found: 617.3144 .

(Scheme 3, entry 6g)

Rf: 0.5 (eluent:10\% EtOAc/90\% hexane)
Isolation: Silica gel column (eluent: 5\% EtOAc/hexane)
Appearance: liquid
Yield: 73\%

Synthesized by following General rocedure A

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.82(\mathrm{~s}, 1 \mathrm{H}), 8.70(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.62(\mathrm{~d}, \mathrm{~J}=2.8$ $\mathrm{Hz}, 1 \mathrm{H}), 8.30(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.09(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H})$, $7.51-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.28(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{~d}, J=15.7$ $\mathrm{Hz}, 1 \mathrm{H}), 5.27(\mathrm{~s}, 1 \mathrm{H}), 5.05(\mathrm{~s}, 1 \mathrm{H}), 4.13(\mathrm{~s}, 2 \mathrm{H}), 2.51(\mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.33(\mathrm{t}, \mathrm{J}=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H}), 1.85(\mathrm{~s}, 3 \mathrm{H}), 1.81(\mathrm{~s}, 3 \mathrm{H}), 1.58-1.43(\mathrm{~m}, 8 \mathrm{H}), 1.43-1.33$ (m, 6H), 1.26 (s, 3H), 1.21 (s, 3H), $1.15-1.11$ (m, 3H), $0.89-0.83(\mathrm{~m}, 20 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.9,165.2,149.4,149.1,148.1,145.6,143.7,140.5$, $138.5,136.2,135.3,134.5,131.4,131.0,127.9,127.7,127.4,126.9,126.1,125.2$, $122.9,121.6,121.5,120.6,117.3,116.5,115.6,75.1,40.8,39.5,37.6,37.5,37.5$, $37.4,32.93,32.92,32.87,32.85,28.1,24.96,24.95,24.6,22.9,22.8,20.9,20.7$, 19.9, 19.8, 13.9, 12.9, 12.1, 11.9.

HRMS (ESI): $[\mathrm{M}-\mathrm{H}]^{+}$calculated for $\mathrm{C}_{54} \mathrm{H}_{73} \mathrm{~N}_{2} \mathrm{O}_{4}$: 813.5565, found: 813.5551.

(Scheme 4, entry C2)
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta 8.67$ (ddd, $J=8.9,6.2,1.3 \mathrm{~Hz}, 1 \mathrm{H}$), 8.42 (dd, $J=8.4,1.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.56$ (dd, $J=8.3,4.7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.51 (d, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.43$ (dd, $J=8.1,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.16$ (d, J = 7.4 Hz, 1H), 6.81 (d, J = 7.1 Hz, 1H), 6.75 (t, J = $7.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.92 (s, 1H), $2.30(\mathrm{~s}, 2 \mathrm{H})$, 1.95 (s, 1H).
${ }^{13}$ C NMR (126 MHz, CD ${ }_{3}$ CN) $\delta 175.01,150.63,148.33,145.25,144.10,139.62,134.86$, 133.84, 130.47, 129.33, 127.50, 125.14, 123.19, 122.42, 119.87, 49.09, 21.19.

C3: complex formation with pyridine
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.92-8.88(\mathrm{~m}, 1 \mathrm{H}), 8.71(\mathrm{t}, \mathrm{J}=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.23(\mathrm{dd}, J=$ $8.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.96(\mathrm{tt}, J=7.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{dd}, J=4.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{t}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.51 (ddd, $J=7.7,4.9,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.31$ (m, 1H), $7.30-7.26$ (m, $1 \mathrm{H}), 6.81(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.20(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{~s}$, 1H), 2.42 (s, 2H).
${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) $\delta 174.86,153.26,149.62,147.65,145.15,144.37,139.81$, $138.47,138.40,133.60,132.80,129.41,127.08,126.16,124.50,124.32,120.75$, 118.79, 48.67, 21.73.

2.4. Mechanistic investigation

Labelling Experiment: determination of product distribution (3d/d $\mathbf{d}_{4}-3 \mathrm{~d}$):

$0.1 \mathrm{mmol}(d 5-1: 1=1: 1)$

0.2 mmol

Procedure: In a clean, oven-dried screw cap reaction tube containing magnetic stir-bar, 2-phenyl-N-(quinolin-8-yl)acetamide (0.05 mmol), d5-1 (0.05 mmol), $\mathrm{Pd}(\mathrm{OAc})_{2}(10 \mathrm{~mol} \%$, 0.01 mmol), neocuproine ($20 \mathrm{~mol} \%, 0.02 \mathrm{mmol}$), copper (II) carbonate basic (1 equiv, 0.1 mmol), copper (II) fluoride (1 equiv, 0.1 mmol) were weighed. Then, α, β-unsaturated octenoic acid (2 equiv, 0.2 mmol) was transferred through micro pipette. Common laboratory syringe was used to introduce $t-\mathrm{BuOH}(2 \mathrm{~mL})$ into the reaction mixture. Finally, the tube was placed in a preheated oil bath at $130^{\circ} \mathrm{C}$ and the reaction was stirred (at 850 rpm) vigorously for 24 h . After detaching the reaction, it was cooled to room temperature and filtered through celite pad using ethyl acetate (30 mL). Excess solvent was removed in rotatory evaporator and desired compound was purified by column chromatography through silica gel (100-200 mesh size) using PET-ether / ethyl acetate as eluent.

${ }^{1}$ H NMR of deuterated starting material:

Value for $\mathbf{b}_{\mathbf{d}} \mathbf{+} \mathbf{b}_{\mathbf{h}}=1.12$
Value for $\mathbf{a}_{\mathbf{h}}=0.95$ (ideal case)
One proton integration for deuterated compound $=(1.12-0.95)=0.17$ (ideal case)
But, actual contribution is $45 \%-\mathrm{d}\left(\mathbf{a}_{\mathrm{d}}\right)$
So, one proton integration for deuterated compound $=0.17^{*}(100 / 45)=0.37$
One proton integration for deuterated compound $=(1-0.37)=0.63$
As a result, $\mathrm{P}_{\mathrm{H}} / \mathrm{P}_{\mathrm{D}}=0.63 / 0.37=1.7$

Kinetic experiment:

Kinetic study was performed by monitoring the reaction of 2-phenyl-N-(quinolin-8yl)acetamide with 2-hexenoic acid. Standard reaction protocol was followed for all the reactions. Amount of product in each reaction was measured by gas chromatography using n-decane as internal standard.

Reagent	SET-1	SET-2	SET-3	SET-4
Amide	0.05 mmol	0.1 mmol	0.2 mmol	0.25 mmol
Olefin	0.2 mmol	0.2 mmol	0.2 mmol	0.2 mmol
Pd $(\mathrm{OAc})_{2}$	$10 \mathrm{~mol} \%$	$10 \mathrm{~mol} \%$	$10 \mathrm{~mol} \%$	$10 \mathrm{~mol} \%$
Neocuproine $^{\mathrm{CuF}_{2} \& \mathrm{CuCO}_{3}}$	$20 \mathrm{~mol} \%$	$20 \mathrm{~mol} \%$	$20 \mathrm{~mol} \%$	$20 \mathrm{~mol} \%$
t - $\mathrm{BuOH}^{2} \mathrm{OH}$	1 equiv.	1 equiv.	1 equiv.	1 equiv.
	2 mL	2 mL	2 mL	2 mL

- 25 mM amide ■ 50 mM amide $\boldsymbol{\Delta} 100 \mathrm{mM}$ amide $\nabla 125 \mathrm{mM}$ amide

Figure S1. Product concentration (mM) vs time (h) plot

Figure S2. Initial amide concentration (mM) vs rate of product formation (mM/h) plot

Figure S3. Logarithm plot of initial amide concentration vs rate of product formation
Fig 3 shows the logarithmic plot of initial concentration against the rate of the reaction, furnishing a straight line with a slope of 1.15 . So, order with respect to amide coupling partner is ~ 1.

Reagent	SET-5	SET-6	SET-7
Amide	0.1 mmol	0.1 mmol	0.1 mmol
Olefin	0.15 mmol	0.3 mmol	0.4 mmol
$\operatorname{Pd}(\mathrm{OAc})_{2}$	$10 \mathrm{~mol} \%$	$10 \mathrm{~mol} \%$	$10 \mathrm{~mol} \%$
Neocuproine $^{\mathrm{CuF}_{2} \& \mathrm{CuCO}_{3}}$	$20 \mathrm{~mol} \%$	$20 \mathrm{~mol} \%$	$20 \mathrm{~mol} \%$
t - BuOH	1 equiv.	1 equiv.	1 equiv.
	2 mL	2 mL	2 mL

Figure S4. Product concentration (mM) vs time (h) plot

Figure S5. Initial olefin concentration (mM) vs rate of product formation (mM/h) plot

Figure S6. Logarithm plot of initial amide concentration vs rate of product formation Logarithmic plot of initial concentration against the rate of the reaction furnishing a straight line with a slope of $1.32(\sim 1)$. So, the reaction is first order with respect to olefin coupling partner.

Kinetic isotope effect: Kinetic isotope effect study was performed by monitoring the reaction of 2-phenyl-N-(quinolin-8-yl)acetamide derivative (non-deuterated and deuterated) with 2-hexenoic acid. All the reactions were performed under the standard reaction condition. Amount of product formation in each reaction was measured by ${ }^{1} \mathrm{H}$ NMR spectroscopy using 1,3,5-trimethoxy benzene as internal standard.

SET-8:

Reagent	Amount
Amide	0.05 mmol

Olefin	0.2 mmol
$\mathrm{Pd}(\mathrm{OAc})_{2}$	$10 \mathrm{~mol} \%$
$\mathrm{Neocuproine}^{20 \mathrm{~mol} \%}$	
$\mathrm{CuF}_{2} \& \mathrm{CuCO}_{3}$	1 equiv
t-BuOH	2 mL

Initial rate for SET-8 $\left(R_{D}\right)=k_{D}\left[\right.$ amide] ${ }^{x}$ [olefin] ${ }^{y}$. \qquad (f) $\left[k_{D}=\right.$ rate constant $]$ Following the reaction kinetics for the SET-8 we got the following plot:

Figure S7. Concentration (mM) vs time (h) plot for run 4

$$
\begin{gather*}
\left(\mathrm{R}_{\mathrm{D}}\right)=\mathrm{k}_{\mathrm{D}}[\text { amide }]^{\mathrm{x}}[\text { olefin }]^{\mathrm{y}} \\
\text { or, } 2.368=\mathrm{k}_{\mathrm{D}}[0.05]^{\mathrm{x}}[0.2]^{\mathrm{y}} \ldots \ldots . . .(\mathrm{g}) \\
\text { From SET-1 we get, }\left(\mathrm{R}_{H}\right)=\mathrm{k}_{H}[\text { amide }]^{\mathrm{x}}[\text { olefin }]^{\mathrm{y}} \tag{h}\\
\text { or, } 3.36=\mathrm{k}_{H}[0.05]^{\mathrm{x}}[0.2]^{\mathrm{y}} \ldots \ldots \ldots . .(\mathrm{h}) \\
\text { Comparing eq. }(\mathrm{g}) \text { and (h) } \\
\mathrm{k}_{H} / \mathrm{k}_{D}=3.36 / 2.368 \\
\text { or, } \mathrm{k}_{H} / \mathrm{k}_{\mathrm{D}}=1.42
\end{gather*}
$$

So, kinetic isotope effect value is 1.4

Intermediate synthesis (C1):

A clean, oven-dried screw cap reaction tube with previously placed magnetic stir-bar was charged with 2-phenyl-N-(quinolin-8-yl)acetamide (1 mmol, 262mg). In this tube,
palladium acetate ($1 \mathrm{mmol}, 1$ equiv) was added into the reaction tube. Then 4 mL dry acetonitrile was transfered to this reaction mixture by common laboratory syringe syringe. The reaction mixture was vigorously stirred (800 rpm on Heidolph MR HeiStandard stirrer) for 5 h in a preheated oil bath of $65^{\circ} \mathrm{C}$. Insoluble part of the reaction mixture was filtered out by using acetonitrile. Finally, the clean solution was evaporated and again diluted with minimum amount of acetonitrile. The complex was recrystallized from acetonitrile (85% yield). ESI-MS and NMR of the metal complex was recorded in acetonitrile.
Characterization data for the above complex matched with the previously reported literature data. ${ }^{2}$
Follow the section 2.7 for the preparation of $\mathbf{C 2}$

Catalytic competence:

In a clean, oven-dried screw cap reaction tube containing magnetic stir-bar, o-tolyl acetamide of 8 -amino quinoline (0.09 mmol), aryl palladium complex ($10 \mathrm{~mol} \%, 0.01$ mmol), neocuproine ($20 \mathrm{~mol} \%, 0.02 \mathrm{mmol}$), copper (II) carbonate basic (1 equiv, 0.1 mmol), copper (II) fluoride (1 equiv, 0.1 mmol) were weighed. Then, 2-octenoic acid (2 equiv, 0.2 mmol) was transferred through micro pipette. Solvent was introduced in the reaction medium by common laboratory syringe. Then the tube was placed in a preheated oil bath at $130^{\circ} \mathrm{C}$ and the reaction were stirred (at 850 rpm) vigorously for 24 h . After detaching the reaction, it was cooled to room temperature and filtered through celite pad using ethyl acetate (30 mL). Excess solvent was removed in rotatory evaporator and the desired compound was extracted using EtOAc-saturated NaHCO_{3} and combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Finally, it was concentrated in reduced pressure and was purified by column chromatography through silica gel (100-200 mesh size) using PET-ether / ethyl acetate as eluent.

${ }^{1} \mathrm{H}$ NMR study:

In a clean oven-dried vial (20 mL volume), 0.025 mmol of aryl-palladium complex (C1) was added. Then, 2-pentenoic acid ($0.025 \mathrm{mmol}, 1$ equiv) was added into the reaction tube followed by 2 mL of CDCl_{3} was transferred into the reaction mixture by common laboratory syringe syringe. The reaction mixture was vigorously stirred (600 rpm on Heidolph MR Hei-Standard stirrer) for 24 h in room temperature. In a regular
interval, $200 \mu \mathrm{~L}$ of reaction mixture was taken out from the medium and diluted with additional solvent. This solution was utilized for recording the NMR spectra.

Cu and ligand complex formation study:

For this study, all the experiments were performed following the general procedure described in section 2.2. For all other cases except standard condition, reaction has been performed without amide and olefin. Other notable deviations from standard condition were listed below:

1. Copper salts were not utilized.
2. Palladium-catalyst was not used in the case.

Figure S8. Cu-ligand complexation studies

Cu and ligand complex formation study by UV-vis spectroscopy:

For this study, all the experiments were performed following the general procedure described in section 2.2. For all the cases, reaction has been performed without amide and olefin. $20 \mu \mathrm{~L}$ of reaction mixture was taken out from the medium and diluted with $980 \mu \mathrm{~L}$ additional solvent. This solution was utilized for recording the spectra.

Figure S9. UV-Vis study
IR study: Following the above described procedure, reaction was monitored in a regular time interval. For the IR study, we used acetonitrile solvent instead of deuterated chloroform. From the reaction medium, $5 \mu \mathrm{~L}$ of solution was used for recording IR spectra.

Figure S10. IR study

Synthesis of Cu-neocuproine complex:

$\left[\mathrm{Cu}(\text { neocuproine })_{2} \mathrm{Cl}\right]$ complex was synthesized in gm scale by following literature reported procedure. ${ }^{3}$

Decarboxylation Study:

Condition 1: In a clean, oven-dried screw cap reaction tube containing magnetic stir-bar, 5-phenyl-2-pentenoic acid (0.05 mmol), palladium acetate ($10 \mathrm{~mol} \%, 0.01$ mmol), neocuproine ($20 \mathrm{~mol} \%, 0.02 \mathrm{mmol}$), copper (II) carbonate basic (1 equiv, 0.1 mmol), copper (II) fluoride (1 equiv, 0.1 mmol) were weighed. Then, 1 mL of ${ }^{\mathrm{t}} \mathrm{BuOH}$ solvent was introduced in the reaction medium and it was placed in a preheated oil bath $\left(130{ }^{\circ} \mathrm{C}\right)$ for vigorous stirring (850 rpm). After 24 h , the reaction was cooled to room temperature and filtered through celite pad using minimum amount of ethyl acetate. After removing excess solvent, it was used directly for GC-MS analysis.

GC-MS spectra

Condition 2: In a clean, oven-dried screw cap reaction tube containing magnetic stir-bar, 5 -phenyl-2-pentenoic acid (0.05 mmol), palladium acetate ($10 \mathrm{~mol} \%, 0.01$ $\mathrm{mmol})$, [Cu(neocuproine) $\left.)_{2} \mathrm{Cl}\right](20 \mathrm{~mol} \%, 0.02 \mathrm{mmol})$ were weighed. Subsequently, 1 mL of ${ }^{\mathrm{t}} \mathrm{BuOH}$ solvent was added in the reaction tube and it was placed in a heated oil bath $\left(130{ }^{\circ} \mathrm{C}\right)$ for vigorous stirring (850 rpm). After 24 h , the reaction was cooled to room temperature and filtered through celite pad using minimum amount of ethyl acetate. After removing excess solvent, it was used directly for GC-MS analysis.

GC-MS spectra

Role of Copper salts in the reaction:

Reaction without $\mathrm{Cu}(\mathrm{II})$-salts: In a clean, oven-dried screw cap reaction tube containing magnetic stir-bar, phenyl acetamide of 8 -amino quinoline (0.1 mmol), palladium acetate ($10 \mathrm{~mol} \%, 0.01 \mathrm{mmol}$), neocuproine ($20 \mathrm{~mol} \%, 0.02 \mathrm{mmol}$) were weighed. Then, 2-octenoic acid (2 equiv, 0.2 mmol) was transferred through micro pipette. Solvent was introduced in the reaction medium by common laboratory syringe. Then the tube was placed in a preheated oil bath at $130^{\circ} \mathrm{C}$ and the reaction were stirred (at 850 rpm) vigorously for 24 h . After detaching the reaction, it was cooled to room temperature and filtered through celite pad using ethyl acetate (5 mL). Excess solvent was removed in rotatory evaporator and the reaction mixture was directly used for GC analysis.
Reaction with $\mathrm{Cu}(\mathrm{I})$-salt: In an oven-dried screw cap reaction tube containing magnetic stir-bar, phenyl acetamide of 8 -amino quinoline (0.1 mmol), palladium
acetate ($10 \mathrm{~mol} \%, 0.01 \mathrm{mmol}$), neocuproine ($20 \mathrm{~mol} \%, 0.02 \mathrm{mmol}$), Cul (2 equiv, 0.2 mmol) were weighed. Then, 2 -octenoic acid (2 equiv, 0.2 mmol) was transferred through micro pipette. Solvent was introduced in the reaction medium by common laboratory syringe. Then the tube was placed in a preheated oil bath at $130^{\circ} \mathrm{C}$ and the reaction were stirred (at 850 rpm) vigorously for 24 h . After detaching the reaction, it was cooled to room temperature and filtered through celite pad using minimum amount of ethyl acetate (30 mL). Excess solvent was removed in rotatory evaporator and the reaction mixture was directly used for GC analysis.

Feasibility of olefination reaction with terminal and internal olefin:

Above experiment was performed following the general procedure described in section 2.2. Yield of the olefinated product was 64%. Characterization data for the isolated compound was matched with the literature reported data. ${ }^{4}$

Above experiment was performed following the general procedure described in section 2.2. Reaction mixture was analyzed by proton NMR and GC-MS.

Radical quenching experiments with TEMPO

In a clean, oven-dried screw cap reaction tube containing magnetic stir-bar, phenyl acetic acid derivative $1 \mathrm{a}(0.1 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(10 \mathrm{~mol} \%, 0.01 \mathrm{mmol})$, neocuproine (20 $\mathrm{mol} \%, 0.02 \mathrm{mmol}$), copper (II) carbonate basic (1 equiv, 0.1 mmol), copper (II) fluoride (1 equiv, 0.1 mmol) and TEMPO (0.15 mmol) were weighed. 2 equiv of trans-2-octenoic acid (0.2 mmol) was transferred through micro pipette. Common laboratory syringe was used to introduce $t-\mathrm{BuOH}(2 \mathrm{~mL})$ into the reaction mixture. Then the tube was placed in a preheated oil bath at $130^{\circ} \mathrm{C}$ and the reaction was stirred (at 1000 rpm) vigorously for 24 h . Upon completion of the reaction, it was cooled to room temperature and filtered through celite pad using ethyl acetate (30 mL). Solvent was removed under reduced pressure. Then the reaction mixture was extracted with EtOAc (10 mL x 3) and saturated NaHCO_{3}. The combined organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Then the solvent was evaporated under reduced pressure. The crude product was then purified by column chromatography through silica gel (100-200 mesh size) using PET-
ether / ethyl acetate as eluent to afford olefinated product 3d in 31\% yield.

2.5. Computational Details:

All calculations were performed using Gaussian 16 suite of the quantum chemical program. ${ }^{5}$ Geometry optimizations were performed at the density functional theory (DFT) level employing ω B97xD functional in conjunction with 6-31G(d) basis set for the main group elements ($\mathrm{H}, \mathrm{C}, \mathrm{N}, \mathrm{O}$) and Lanl2DZ basis set and associated pseudopotential for Pd and Cu . Analytical frequency calculations were performed on the optimized geometries to verify the local minima with no imaginary frequency and first-order saddle points with one imaginary frequency. For the transition state structures, intrinsic reaction coordinate (IRC) calculations were performed to confirm whether the located transition state connects the appropriate minima. More accurate energy calculations were performed employing M06L functional, for which the main group elements (H,C,N,O) were described using 6-311++G(d,p) basis set and Pd and Cu were described with Stuttgart/Dresden SDD basis set and associated pseudopotential. Single point energy calculations were performed accounting implicit solvation effect with tert-butanol solvent invoked through the conductor-like polarizable continuum model (CPCM). The M06L functional has been reported to give good agreement with experiment for the Pd-catalyzed reactions. ${ }^{6}$

Terminal vs. Internal Olefin

The ester analogues can undergo 1,2-migratory insertion followed by β-hydride elimination and reductive elimination to form linear olefination products. Our computational results with ethyl 2-propenoate, a terminal olefin substrate, show that the 1,2 -migratory insertion step is rate-determining with a free energy barrier of $\Delta \mathrm{G}^{\ddagger}=$ $18.5 \mathrm{kcal} / \mathrm{mol}$ (Figure S 14). The overall reaction possesses a substantial net thermodynamic driving force of $\Delta \mathrm{G}_{\mathrm{rxn}}=-10.2 \mathrm{kcal} / \mathrm{mol}(\mathrm{B} \rightarrow \mathbf{I 6})$. On the other hand, a negligible net driving force ($\Delta \mathrm{G}_{\mathrm{rxn}}=-0.9 \mathrm{kcal} / \mathrm{mol}$) is observed for ethyl 2-hexenoate, an internal olefin substrate (Figure S15). We reason that electron-donating alkyl ($\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}$) substitution in the olefinic moiety for internal esters weaken the Pd^{0} olefin coordination in the final reductive elimination process, making the overall process thermodynamically unfavorable. Additionally, an energy decomposition analysis (EDA, Figure S16) for the 1,2-migratory insertion step shows that the olefin distortion $\left(\mathbf{E}_{\text {dist(olefin) }}\right)$ is the governing energy-component that dictates the differential reactivity between the terminal and internal olefin. The internal olefin has to undergo greater distortion compared to the terminal one, which makes it inert toward the olefination process. This explains why no product was obtained from the internal ester substrate.

Figure S11. Gibbs Free energy profile ($\Delta \Delta \mathrm{G}$ values in $\mathrm{kcal} / \mathrm{mol}$) for the formation for linear olefinated product using a terminal olefin.

Figure S12. Gibbs Free energy profile ($\Delta \Delta \mathrm{G}$ values in $\mathrm{kcal} / \mathrm{mol}$) for the formation for linear olefinated product using an internal olefin.

1,2-migratory insertion step

Internal olefin

Figure S13. Distortion-interaction analysis on the 1,2 migratory insertion step for the terminal and internal olefin.

Promotional Effect of Cu-Complex on the 1,2-migratory insertion step

Figure S14. Distortion-interaction analysis on the 1,2 migratory insertion step for the unsaturated carboxylic acid to understand the promotional effect of Cu^{\prime} (neocuproine) complex.

2.6. X-ray crystallographic data

Synthesis of C2: To the stirring solution of $\mathrm{Pd}(\mathrm{OPiv})_{2}(100 \mathrm{mg})$ in $\mathrm{CH}_{3} \mathrm{CN}+\mathrm{MeOH}$ (1:1) mixture, amide derivatives in $\mathrm{CH}_{3} \mathrm{CN}(95 \mathrm{mg})$ was added dropwise. The reaction mixture was stirred at $60^{\circ} \mathrm{C}$ for 4 h . Orange red supernatant was filtered, dried and further recrystallysed from $\mathrm{CH}_{3} \mathrm{CN}$ to afford the desired complex (yield: 82\%).

Synthesis of C3: To the solution of $\mathrm{Pd}(\mathrm{OAc})_{2}(75 \mathrm{mg})$ in $\mathrm{CH}_{3} \mathrm{CN}$, amide derivative (97 mg) in $\mathrm{CH}_{3} \mathrm{CN}$ was added dropwise with stirring. Reaction mixture was heated at $60^{\circ} \mathrm{C}$ for 30 min followed by addition of an equivalent of pyridine. After 4 h , the yellow supernatant was cooled to room temperature, filtered, dried and further recrystallized from $\mathrm{CH}_{3} \mathrm{CN}$ to afford the desired complex (yield 92%).

Figure S15. X-ray structure of C2

Figure S16. X-ray structure of C3

Crystal Data of C2 (CCDC 1883945) and C3 (CCDC 1884315)

Identification code	$\mathbf{C 2}$	$\mathbf{C} 2$
Formula	$\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{OPd}$	$\mathrm{C}_{9.20} \mathrm{~N}_{1.20} \mathrm{O}_{0.40} \mathrm{Pd}_{0.40}$
Formula weight $(\mathrm{g} / \mathrm{mol})$	421.77	176.26
Temperature $/ \mathrm{K}$	150 K	150 K
Crystal system	Hexagonal	Triclinic
Space group	P 65	$\mathrm{P}-1$
a / \AA	$22.1057(8)$	$9.6348(3)$
b / \AA	$22.1057(8)$	$10.7198(3)$
c / \AA	$6.7305(3)$	$11.5837(3)$
$\alpha /{ }^{\circ}$	90	$105.639(2)$
$\beta /{ }^{\circ}$	90	$103.125(2)$
$\gamma /{ }^{\circ}$	120	$104.695(3)$
Volume $/ \AA^{3}$	$2848.3(2)$	$1056.87(6)$
Z	6	5
$\mathrm{P}_{\text {calcg }} \mathrm{g} / \mathrm{cm}^{3}$	1.475	1.385
μ / mm^{-1}	0.988	0.892
$\mathrm{~F}(000)$	1272	426
Crystal size $/ \mathrm{mm}^{3}$	$0.205 \times 0.048 \times 0.033$	$0.118 \times 0.094 \times 0.09$
Radiation	MoK $\alpha(\lambda=0.71073)$	$\mathrm{MoK} \alpha(\lambda=0.71073)$
2θ range for data	2.82 to 24.99	2.93 to 25.00
collection $/{ }^{3}$		

Index ranges	$\begin{aligned} & -26<=\mathrm{h}<=26,-26<=\mathrm{k}<=26,- \\ & 8<=1<=8 \end{aligned}$	$\begin{aligned} & -11<=\mathrm{h}<=11,-12<=\mathrm{k}<=12,- \\ & 13<=1<=11 \end{aligned}$
Reflections collected / unique	$18452 / 3222[\mathrm{R}(\mathrm{int})=0.0964]$	8831/3701 [R(int) $=0.0630]$
Data / restraints / parameters	3180/55/228	3701/ 0/253
Goodness-of-fit on F^{2}	1.051	1.224
Final R indices [$\mathrm{I}>2 \sigma(\mathrm{I})$]	$\mathrm{R} 1=0.0425, \mathrm{wR} 2=0.0810$	$\mathrm{R} 1=0.0426, \mathrm{wR} 2=0.1244$
R indices (all data)	$\mathrm{R} 1=0.0526, \mathrm{wR} 2=0.0878$	$\mathrm{R} 1=0.0505, \mathrm{wR} 2=0.1391$
Largest diff. peak and hole/ e \AA^{-3}	0.550 and -0.346	1.136 and -1.134

2.7 References

(1) Deb, A.; Bag, S.; Kancherla, R.; Maiti, D. Palladium-Catalyzed Aryl C-H Olefination with Unactivated, Aliphatic Alkenes. J. Am. Chem. Soc. 2014, 136, 13602-13605.
(2) Deb, A.; Hazra, A.; Peng, Q.; Paton, R. S.; Maiti, D. Detailed Mechanistic Studies on Palladium-Catalyzed Selective C-H Olefination with Aliphatic Alkenes: A Significant Influence of Proton Shuttling. J. Am. Chem. Soc. 2017, 139, 763-775.
(3) Pallenberg, A. J.; Koenig, K. S.; Barnhart, D. M. Synthesis and characterization of some copper (I) phenanthroline complexes. Inorg. Chem. 1995, 34, 2833-2840.
(4) Hu, Q.; Liu, X.; Wang, G.; Wang, F.; Li, Q.; Zhang, W. Ag1Pd1 NanoparticlesReduced Graphene Oxide as a Highly Efficient and Recyclable Catalyst for Direct Aryl C-H Olefination. Chem. Eur. J. 2017, 23, 17659 - 17662.
(5) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian 16, Revision A.03; Gaussian, Inc., Wallingford, CT, 2016.
(6) Sperger, T.; Sanhueza, I. A.; Kalvet, I.; Schoenebeck, F. Computational Studies of Synthetically Relevant Homogeneous Organometallic Catalysis Involving Ni, Pd, Ir, and Rh: An Overview of Commonly Employed DFT Methods and Mechanistic Insights. Chem. Rev. 2015, 115, 9532-9586.

NMR Spectra

(Starting materials and olefinated products)

Starting material for entry $3 \mathrm{i}, 3 \mathrm{j}$ and 3 s :

${ }^{13}$ C NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}\right)$

$\stackrel{\square}{0}$	
$\stackrel{8}{\square}$	
${ }^{\circ}$	

$\left[\begin{array}{l}77.55 \\ 77.23 \\ 76.91\end{array}\right.$
76.61 -

| 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 |
| :--- |

Starting material for entry 3ag and 3ah:

Starting material for entry 3w and 3aa:

${ }^{13}$ C NMR (101 MHz, CDCA)

$\stackrel{\circ}{\stackrel{\circ}{\infty}} \stackrel{\bar{i}}{\stackrel{\circ}{i}}$

Starting material for entry 3m:

Starting material for entry 3q:

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCA}$)

$\stackrel{\infty}{\sim} \stackrel{\sim}{-} \dot{\sim}$

Starting material for entry $\mathbf{3 o}$ and $\mathbf{3 p}$:

${ }^{13}$ C NMR (126 MHz CDQ1

$\begin{array}{llllllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10\end{array}$
Starting material for entry 3 x :

Starting material for entry 3ab:

Starting material for entry 3ad:

Starting material for entry 3ae

Starting materials for entry 3af

$\stackrel{o}{\stackrel{\infty}{+}}$
$\stackrel{\circ}{\stackrel{\infty}{\circ}}$

| 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |
| :--- |

Olefinated product: Scheme 2, entry 3a:

Scheme 2, entry 3b:

Scheme 2, entry 3d:

${ }^{13}$ C NMR ($126 \mathrm{MHz}, \mathrm{CD} 9 \mathrm{I}$
A

[^0]Scheme 2, entry 3e:

Scheme 2, entry 3f:

[^1]Scheme 2, entry 3g:

		1		1		1		I		1		I	1		,	1	1	1
190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

Scheme 2, entry 3h:

Scheme 2, entry 3i:

$1|1| 11$
응
$\stackrel{\infty}{\infty}$

$\stackrel{\text { む. }}{\text { j }}$

${ }^{13}$ C NMR ($126 \mathrm{MHz}, \mathrm{CDO} 1$

Scheme 2, entry 3j:

190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

Scheme 2, entry 3k:

${ }^{13}$ C NMR (101 MHz, CDQ1

$\begin{array}{llllllllllllllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10\end{array}$

Scheme 2, entry 31:

Scheme 2, entry 3m:
'H NMR ($\mathbf{5 0 0} \mathbf{M H z}$, CDQ91

$\begin{array}{lllllllllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10\end{array}$

Scheme 2, entry 3n:

${ }^{13} \mathrm{C}$ NMR（ $\left.126 \mathrm{MHz}, \mathrm{CDÇ}\right)$
MR（126 MHz，CDÇ）

00	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10
										（ppm）							30	20	

Scheme 2, entry 3o:

Scheme 2, entry 3p:

${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDC} \underset{5}{ }$)

Scheme 2, entry 3q:

1	1		1			1	,		1	1	1	1	1	I			1	
190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

Scheme 2, entry 3r:

Scheme 2, entry 3s:

${ }^{13} \mathrm{C}$ NMR（ $\left.126 \mathrm{MHz}, \mathrm{CDCl}\right)$

$$
\begin{aligned}
& \text { になス゚゚ロ }
\end{aligned}
$$

Scheme 2，entry 3t：

Scheme 2, entry 3u:

[^2]Scheme 2, entry 3v:
${ }^{1}$ H NMR ($\left.\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}\right)$
ल
O

${ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathbf{C D C 1}\right)$

Scheme 2, entry 3w:

Scheme 2, entry 3x:

	,	1					1					1	1				,	,
190	180	170	160	150	140	130	120	110	$\begin{gathered} 100 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	90	80	70	60	50	40	30	20	10

Scheme 2, entry 3y:

Scheme 2, entry 3z:

Scheme 2, entry 3aa:

${ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDC} 1\right)$

${ }^{13} \mathrm{C}$ NMR $(\mathbf{1 2 6 ~ M H z}, \mathrm{CDC} 1)$

${ }^{13}$ C NMR（ $\left.101 \mathrm{MHz}, \mathrm{CDC}\right)$

\＆ノつロО 77.55 $\begin{array}{r}16.92 \\ \hdashline 8\end{array}$

Scheme 2，entry 3ad：

め

Scheme 2, entry 3ae

Scheme 2, entry 3af

Scheme 2, entry 3ag:

										1								
190	180	170	160	150	140	130	120	110	$\begin{aligned} & 100 \\ & \mathrm{f} 1(\mathrm{ppm}) \end{aligned}$	90	80	70	60	50	40	30	20	10

Scheme 2, entry 3ah:

Scheme 3, entry 4a

Scheme 3, entry 4b

Scheme 3, entry 4c

Scheme 3, entry 6a

200	190	180	170	160	150	140	130	120	110	$\begin{gathered} 100 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	90	80	70	60	50	40	30	20	10	0

Scheme 3, entry 6b
(

Scheme 3, entry 6c

							$\stackrel{T}{\mathrm{~T}} \underset{\sim}{\square}$					$\begin{aligned} & \frac{1}{o} \\ & \underset{\sim}{2} \end{aligned}$			N্H No					
	9.5	9.0	8.5	8.0	7.5	7.0	6.5	6.	5.5		4.5	4.0	3.5	3.0	25	20	5			0
										f1 (ppm)										

Scheme 3, entry 6d

[^3]Scheme 3, entry 6e

Scheme 3, entry 6 f

Scheme 3, entry 6g

Scheme 4, Complex C2

Complex C3

[^0]:

[^1]:

[^2]: $\begin{array}{llllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

[^3]:

