
1

Cellogram: On the Fly Traction Force Microscopy

Tobias Lendenmann1,2,ç, Teseo Schneider2,ç, Jérémie Dumas2,3, Marco Tarini4, Costanza

Giampietro7, Apratim Bajpai5, Weiqiang Chen5, Julia Gerber1, Dimos Poulikakos1, Aldo

Ferrari1,6,7*, Daniele Panozzo2*

1 ETH Zurich, Laboratory of Thermodynamics in Emerging Technologies, 8092 Zurich,

Switzerland

2 New York University, Courant Institute of Mathematical Sciences, New York 10003, USA

3 nTopology, New York 10013, USA

4 Università degli Studi di Milano, Department of Computer Science, 20133 Milano, Italy

5 New York University, Department of Mechanical and Aerospace Engineering, New York

11201, USA

6 ETH Zurich, Institute for Mechanical Systems, 8092 Zürich, Switzerland

7 EMPA, Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf,

Switzerland

ç – Equal contribution

* - Corresponding authors

2

This document provides a detailed description of the algorithms used in the image

processing pipeline, which is composed of 4 steps: (1) markers detection, (2) inference of

reference graph topology, (3) computation of displacements, and (4) traction force

reconstruction. The 4 steps are illustrated in Supplementary Figure 1 and can be seen in

supplementary videos 1 and 2.

Supplementary Figure 1. The 4 pipeline stages, which automatically convert images of

reference-free TFM markers to traction forces.

1. Markers Detection

The algorithm input is a gray scale image acquired by fluorescence microscopy

(Supplementary Figure 2 (a)). It contains either quantum dots1 or micropillars2 as markers.

The first step of the algorithm analyzes the image to extract the 2D position of each marker.

First, a Gaussian filter with a user-defined sigma is applied to the image to reduce noise, i.e.

the image is convoluted with a 2D-Gaussian (Supplementary Figure 2 (b)). This image is then

binarized at the intensity level determined algorithmically3 to generate a mask with

candidate regions where the markers could potentially be located (Supplementary Figure 2

(c)). In parallel a Laplacian of Gaussian (LoG) filter is applied to the original image. Here, the

image is convoluted with a LoG kernel. The result is an image with low values in locations

where originally there was no gradient of intensity, i.e. the center of markers, and high

3

values where intensity gradients were strong (Supplementary Figure 2 (d)). The LoG image

then is subtracted from the Gaussian image to generate a new frame with sharper peaks at

the position of the markers. In this resulting image the local maxima are determined. A pixel

is considered a local maxima if it displays the highest intensity value among its eight

neighboring pixels (Supplementary Figure 2 (e)). If a pixel is a local maxima and is in the

candidate region of the mask, then the pixel's position is used to least square fit a 2D

Gaussian in its vicinity (Supplementary Figure 2 (f)4) in the original unfiltered image. The

fitted Gaussian has a single user-controlled parameter: sigma. Duplicate detections that can

arise from two maxima located close together, for which the Gaussians merge, are

eliminated after the fitting.

Supplementary Figure 2. Detection (a) Original image, (b) Gaussian filter (c) Mask generated

from thresholded image in (b) using Otsu-Threshold, (d) Laplacian of Gaussian (LoG), (e)

Detected local maxima in resulting image from LoG subtracted from Gaussian image. The

maxima detected in the mask and outside of the mask are in green and red, respectively. (f)

Least square fit of Gaussians at the detected local maxima

2. Inferring Graph Topology

The previous step generates a set of 2D position of the markers: the regular lattice

connectivity between them shall now be reconstructed. The challenge lies in the fact that

the grid is deformed by the traction forces, which are unknown. The only prior is that, before

the displacement induced by the cells, the markers were positioned over an unknown subset

4

of a regular triangular lattice of unknown size and orientation. Crucially, for every marker we

only use its position and do not require any additional information.

Differently from previous methods, our reconstruction shall be tolerant to occasional

errors in the detection of markers, correcting false negatives (markers missed by the

detection procedure) as well as false positives (markers “hallucinated” by the detection

procedure). For example, false negatives and positives may be induced by noise, or arise by

the misinterpreting two adjacent markers as a single one.

2.1. Formal Problem Definition

The input of this step is a set of detected 2D points D, each point represented by a pair of

coordinates. The output is a set of false positives, a set N of false negatives (new 2D 𝑃 ⊂ 𝐷

points which are inferred to exist although they were never directly observed), and a

permutation α of 2D points () into the position of a regular triangular grid. Once 𝐷 ∕ 𝑃 ∪ 𝑁

the permutation is known, the relaxed positions can be inferred by smoothing the grid

(Section 3) and the displacements are then defined by the difference.

Among all potential choices of N, P, α (for a given observation D), the one minimizing its

unlikelihood is defined as

𝑘1|𝑁| + 𝑘2|𝑃| + 𝐸(𝛼(𝐷/𝑃 ∪ 𝑁)), (1)
where |X| denotes the cardinality of the set X, k1 and k2 are fixed scalar parameters

weighting the penalty associated to different factors (determining how much false positives

and negatives impact the likelihood of a solution), and E(X) is an approximation of the

potential elastic energy which would be required to deform a regular pattern into the given

pattern X (on the ground that the least energetic configuration is the most plausible).

To define E, the elastic substrate is approximated as a network of Hookean linear springs

connecting each pair of direct neighbors on the lattice, resulting in:

5

𝐸(𝑋) =
|𝑋|

∑
𝑖 = 0

∑
𝑥𝑗 ∈ 𝑁𝑖

(|𝑥𝑖 ― 𝑥𝑗|2 ― 𝐿)2, (2)

where L is the step length of the regular lattice, and Ni is the set of neighbors of xi.

2.2. Problem Analysis

This formulation makes the complexity of the problem apparent: it is a combinatorial

optimization over a large space, with a strict set of constraints that must be enforced to

obtain valid solutions. As observed in1, an exhaustive search of the optimal solution via a

branch and bound algorithm would be practical only for tiny problem instances (up to

around 20 vertices).

We propose an algorithm to efficiently find a low energy solution. While the approach is

not guaranteed to find the optimal solution, in the large majority of cases, it indeed finds the

same solution obtained by an exhaustive search, while being orders of magnitudes faster

and scaling to tens of thousands of markers.

The proposed approach is incremental: an initial guess for permutation is initially

proposed, and then iteratively improved until convergence.

The key novelty of the algorithm is the use of two complementary representation for an

intermediate solution for α: a Mesh-based and a Lattice-based representation. The two

representations are equally capable of expressing any consistent permutations α into a

lattice, but crucially, each can also represent certain inconsistencies of different nature.

Switching from one to the other allows reducing these inconsistencies very efficiently.

Overview. The initial guess of αis expressed as a Mesh-based representation. This solution

is then converted back and forth between Lattice and Mesh representation, applying an

optimization step after every conversion. The optimization step improves the solution,

6

greedy applying a sequence of local operations (i.e. operations affecting only a small,

constant portion of the representation).

In both representations, a local operation lowers the number of inconsistencies and the

energy term for E in equation (2).

At the end of the process, residual inconsistencies in the final α are interpreted as false

positive and negatives, creating sets P and N respectively.

In summary, the algorithm can be written as:

 Variables: Mesh, Lattice
1. Mesh initial_guess (D);
2. loop:

a. local_operations(Mesh)
b. convert: Mesh  Lattice
c. local_operations(Lattice)
d. if converged then exit loop;
e. convert: Lattice  Mesh

3. (P,N) fix_residual_inconsistencies(Lattice);

Section 2.3

Section 2.4
Section 2.5
Section 2.6
Section 2.8
Section 2.7
Section 2.9

First, the two representations are described, and then the other parts of the algorithm are

described in more detail.

Supplementary Figure 3. An instance of the graph-topology problem consists of a set of 2D

points, like in this toy example (left most). In our system, a solution is represented in either

of two alternative representations: mesh-based, and lattice-based. Mesh-based

representation consists of a two-manifold, well-oriented and simple triangular mesh (middle

7

column), whose vertices are the given set of points. A lattice-based solution consists of a

regular honeycomb grid of cylindrical cells which can be assigned to one (or multiple)

vertices (rightmost column). Either representation is capable of expressing any permutation

into a lattice, like the one depicted on top (which is, in this case, the energy minimizer, and

therefore the optimum). Each representation is also subject to include inconsistencies of

different types. In the mesh representation, for example, internal vertices can have a valency

different from 6 (in the example on bottom: a valency-5 vertex is highlighted in red, and

valency-7 vertex in blue). In the lattice-based representation, there can be internal “holes” in

the regular grid, or multiple nodes assigned to the same grid cell, (bottom-right).

Mesh Representation. In this representation, the permutation into a lattice is represented

as a two-manifold, triangular, mesh whose vertices are D. In other words, a Mesh consists of

all points in D connected by a set of triangles; the sides of the triangles are termed edges.

This structure is the ubiquitous way to represent piecewise linear surfaces, and has been

deeply studied for example in Geometry Processing (e.g. see5 for an overview). The meshes

are open and simple, meaning that they have a unique loop of boundary edges and vertices

(i.e. there are no internal “holes”). They are two-manifold, meaning that that every edge of

each triangle is either a boundary edge or is shared by exactly another triangle. The valency

of a vertex is defined as the number of triangles sharing that vertex. A mesh is called regular

when each boundary vertex has valency <6, and each other vertex has valency 6.

A regular mesh can be interpreted as a permutation αof its vertices D into a lattice, since it

encodes a regular lattice. A mesh which is not regular, conversely, does not correspond to

any such permutation. The inconsistencies of a Mesh representation are, therefore, vertices

breaking the above requirement on the valency (termed “irregular” vertices).

8

Lattice Representation. Our lattice, or matrix, is a 2D regular grid of hexagonal cells

(honeycomb tiling). Each element of D is hosted in one cell. A cell can be empty, or host one

or more elements. In the lattice, non-empty cells always form a contiguous subset of the

grid, and all cells on the boundary of the grid are empty.

Ideally, each non-empty cell hosts only a single element of D. Also, empty cells are all

found in one continuous set around the lattice (i.e. there is no island of empty cells

completely surrounded by non-empty cells). A lattice with these properties can be trivially

converted to a valid permutation α. The inconsistencies of a lattice representation are,

therefore, cells hosting more than one element of D (these elements are called “colliding”),

or empty cells that are not connected to the boundary of the grid by a sequence of empty

cells (these cells are called “holes”).

2.3. Step 1: Mesh Initialization

The algorithm is initialized by computing the 2D Delaunay triangulation6 of the set of

vertices D. This process is fast and guarantees to produce a two-manifold, simple mesh. In

undeformed areas, this mesh reproduces the connectivity and the shape of a regular grid

and it is thus a correct solution. However, in distorted regions, irregular vertices are

introduced. The next steps address these inconsistencies.

2.4. Step 2: Mesh Local Operations

An edge-flip6 is a standard local operation commonly used in the context of mesh

optimization and simplification. In the represented context, edge-flips are used to improve

the quality of the mesh, striving to obtain a regular connectivity on the entire mesh and a

decreased energy.

9

Supplementary Figure 4. An example of an edge-flip operation: in this mesh, flipping the

edge B-C decreases the valency of vertices B and C by one, and increases the valency of

vertices A and B by one.

Specifically, the effect of an edge-flip is scored by two numbers . is the induced (𝑒𝑎,𝑒𝑏) 𝑒𝑎

increase in the number of regular vertices (or decrease if negative): as an edge-flip increases

the valency of two vertices by one, and increases the valency of other two vertices by one

(Supplementary Figure 4) it can either increase, decrease or leave unaffected the total

number of irregular vertices on the mesh. is the induced decrease is on energy E: only the 𝑒𝑏

edge being flipped changes its length and thus its contribution to the energy E (Equation (2)).

An edge-flip is beneficial either when , or when and All potential edge-𝑒𝑎 > 0 𝑒𝑎 = 0 𝑒𝑏 > 0

flips (there is exactly one per edge) are tested, and the ones that are beneficial are

performed. In a second pass, the algorithm tests all the possible pairs of consecutive edge

flips affecting a common vertex that have a combined (summed) beneficial effect.

Edge-flip operations which would reduce an internal vertex valency below 3, are always

disallowed as it would compromise the two-manifoldness of the mesh. While this step is

effective at solving many locally inconsistent configurations, it might fail at identifying the

long sequences of flips that may be necessary in images with large displacements. The mesh

is therefore converted to a lattice representation, to continue the optimization.

2.5. Step 3: Mesh to Lattice Conversion

10

Starting from an empty lattice, the mesh is explored, copying the indices of the

encountered vertices into the lattice cells, one by one. The mesh is visited with a “flood-fill”

approach, i.e. from a “seed” triangle and iteratively proceeding by expanding the visit to

neighboring triangles, until the entire mesh is visited.

Crucially, the parts of the mesh which are more regular are explored first; in this way, the

less ambiguous parts of the mesh, which can be interpreted with higher confidence, serve as

a guidance to settle the more ambiguous parts.

In practice the problematic parts of the mesh are surrounded by the visit (thus isolated)

and then conquered from the exterior inwards.

A precise description of the employed algorithm is given below. In the following, we define

the “equilateral factor” of a triangle with sides lengths , with , as the real 𝑎,𝑏,𝑐 𝑎 > 𝑏 > 𝑐

number A perfectly equilateral triangle has factor 1, a completely ((𝑐 + 𝑏)/𝑎 ― 1).

degenerate triangle has factor 0, and any intermediate case has values in between.

Identifying the Seed Triangle. Every triangle of the mesh is labelled as either reliable or

not reliable. A reliable triangle fulfills three conditions: (i) it is not on the mesh boundary, (ii)

its three vertices are regular (valency 6), and (iii) its shape is sufficiently equilateral

(equilateral factor larger than 0.85). The seed is selected as the furthest reliable triangle

(under hop distance) from any unreliable triangle; in other words, the triangle which is

surrounded by the maximal number of reliable triangles.

The three vertex indices of the seed triangle are copied into a group of three reciprocally

adjacent grid cells.

Enumerating and Prioritizing the Expansion Moves. An expansion move potentially

enlarges the set of visited triangles by one element, traversing one mesh edge adjacent to an

already visited triangle.

11

There is one expansion move for each internal mesh edge. At any given time, an expansion

move is available if at least one of the triangles shared by the corresponding edge has been

visited (note that this includes edges with visited triangles on both sides). During the fill, all

available moves are kept in a set, and prioritized, from highest to lowest confidence,

according to summed equilateral factors of the two triangles sharing the edge. The set of

available expansion moves is kept in a priority queue and is initialized with the three edges

of the seed triangle.

Iteratively, the element with the highest priority is extracted from the set of potential

moves, removed from the set, and the move executed. After the move, up to two new

available expansion moves are added to the set to reflect the expansion of the set of visited

triangles (and evaluate their priority). Traversed edges are flagged as such and never added

to the set of available moves a second time. The procedure terminates when the set is

empty (i.e. when each internal mesh edges has been traversed exactly once).

Supplementary Figure 5. An example of the execution of an expansion-move. Executing the

move crossing the edge DJ and visiting triangle DJB (left-most diagram), would have the

effect of filling the grayed square of the lattice with the vertex labelled as B (right-most

diagram). If that square is already filled by a vertex other than B, or if vertex B is already

allocated anywhere else on the lattice, then this move would cause an inconsistency. In this

case, an edge-flip of one of the other two edges of DJB is attempted first: flipping the BD

edge causes the grayed square to be filled with vertex C instead of B (mid-left diagram);

flipping the JB edge causes it to be filled with vertex M instead of B (mid-right diagram). If

either edge-flip avoids the conflict, then it is performed before the move executed.

12

Executing an Expansion Move. An expansion move consists of expanding the visit from

the visited triangle , over edge , into the (potentially not yet visited) triangle . Let be 𝑡𝐴 𝑒0 𝑡𝐵 𝑣𝑖

the vertex of opposite to edge . Executing the move consists of copying into a given 𝑡𝐵 𝑒0 𝑣𝑖

cell of the grid with index (see Supplementary Figure 5). The cell index is fully 𝑐𝑖 𝑐𝑖

determined by the cell position on the grid, of the vertices of . Note that, due to previous 𝑡𝐴

expansion moves, it is possible that cell is already occupied by a vertex; likewise, and 𝑐𝑖

independently, it is possible that vertex is already allocated in a grid cell. 𝑣𝑖

Therefore, three cases can arise:

Expand, when vertex is not currently allocated anywhere in the grid, and cell is 𝑣𝑖 𝑐𝑖

currently vacant;

Confirm, when vertex is already present in cell (i.e. cell already contains vertex); 𝑣𝑖 𝑐𝑖 𝑐𝑖 𝑣𝑖

Contradiction, when vertex is already allocated in some other cell position different 𝑣𝑖

from , or cell is already occupied by some vertex different from , or both.𝑐𝑖 𝑐𝑖 𝑣𝑖

In the Expand case, cell is filled with vertex . In the Confirm case, nothing needs to be 𝑐𝑖 𝑣𝑖

done; when that case arises, it means that the current expansion moves is consistent with

the lattice layout as inferred from the already visited triangles. This can happen, for example,

because vertex was previously reached from a different direction, possibly along a 𝑣𝑖

completely different triangle paths from the seed.

Vice-versa, the third case happens because the starting mesh is not fully regular. Executing

the move would create an inconsistency. At this point, it is checked whether the conflict can

be avoided by means of edge flips performed on the mesh. There are two potential edge

flips, corresponding to 2 edges of that are not . If either edge flip is viable, it would 𝑡𝐵 𝑒0

result in a different vertex indices and in place of (see Supplementary Figure 5), and 𝑣𝑖′ 𝑣𝑖′′ 𝑣𝑖

13

therefore in a different case. The edge-flip is performed if it is viable and results in the

removal of the contradiction (if the extremely rare case when both edge-flips qualify, the

one resulting in the highest summed equilateral factors of the two affected triangles is

selected). Note that the edge flips are performed, in this phase, regardless of their local

effect on the valency of the vertices or the energy.

After the expansion move, assuming no contradiction arose or that it could be resolved,

the two external edges of are added to the set of potential moves, unless these edges 𝑡𝐵

have been already processed.

Rationale. Importantly, triangles can be assigned to the grid by independently assigning

their three vertices to grid cells, before that triangle is explicitly visited. This happens for

example when the boundary of the visit meets with itself after that the flood-fill encircled a

problematic region (e.g. a region containing irregular vertices) from the two different sides.

Eventually, these triangles will be explicitly visited also. When that happens, the visit can

only either confirm or contradict the previously found grid layout. In case of contradiction,

the grid values are not overwritten, because earlier moves are, by design, considered more

reliable than later moves. Instead, the existing grid values are used to correct the mesh

connectivity (by means of flips). In conclusion, the flip operations which are performed in

this phase are driven by the global grid structure of the mesh, rather than by its local

configurations, differently from the local optimization on the mesh (Section 2.4). In this

sense, this flip identification strategy is drastically more “long sighted” and capable of

avoiding local minima.

2.6. Step 4: Lattice Greedy Optimization

14

A Lattice admits three local operations: (1) permutation of a small subset of the vertex

indexes stored in the cells, (2) hole filling and (3) conflicts resolution. A set of local

operations is tested, and all the ones with a positive effect on the global energy are

performed (Equation (1))

Operation 1: Greedy Permutations. Given a set of n vertices assigned to cells 𝑣0… 𝑣𝑛 ― 1 𝑐0

, a cycle permutation is the reassignment of each vertex to (% being the … 𝑐𝑛 ― 1 𝑣𝑖 𝑐(𝑖 + 1)%𝑛

modulo operator). A cycle permutation is beneficial if it results in an overall decrease of the

energy. A brute force approach, where each set of 2, 3, and 4 adjacent cells are tested for all

potential cycles is used. Cycles of size 2 (that is, swaps between pairs of cells) are also tested

between any pairs of cells separated by a single cell. In total, 48 cycles are tentatively tried

around each non empty grid cells, in a fixed pattern. The resulting algorithm is linear with

the number of cells and fast, because testing for the effect of a cycle requires to sum up only

a limited number of addendum to the energy in Equation (2).

Operation 2: Hole Filling. A Lattice “hole” is defined as an empty grid cell that is not

connected to the lattice boundary by a path of empty cells.

Each disconnected empty cell is a hole and is evaluated for removal. In order to remove a

hole, first, the vertex from a neighboring non-empty cell must move to fill its position, thus

shifting the hole to that cell; then, the process has to be repeated until the hole ends up

neighboring one boundary empty cell, or the moving vertex is a conflicting vertex (i.e. was

one of the two vertices allocated in the same cell). In the latter case, that “conflict”

inconsistency is also removed. Each movement of a vertex into the empty position comes

with an associated increase (rarely, a decrease) of the energy E. In other terms, in order to

fix a hole, a path from that position to a either a connected empty cell, or to a conflicting

vertex needs to be found.

15

The problem can be cast as a minimum cost path, which is solved using the Dijkstra

algorithm (seeded at the cell presenting the hole, and targeted at any eligible destination of

the path). The cost of every step is defined as the increase (rarely, the decrease) of the

energy for the corresponding swap. Additionally, the cost of the final step is further

decreased (possibly down to a negative number) by the value (Equation (1)), to reflect the 𝑘0

decrease of the number of holes. In case that the final destination of the graph is a

conflicting vertex, the cost is also decreased by the additional value , to reflect the 𝑘1

decrease of the number of conflicts.

When the minimum cost path is identified, it is applied it if and only if its total cost sum up

to a negative number. Otherwise, the total likelihood of the found solution would decrease

(in other words, a more likely justification for the hole is to assume that an existing point

was undetected). To optimize, we abort the Dijkstra search over paths which results in a

total cost larger than .(𝑘0 + 𝑘1)

Operation 3: Conflict Resolution. For conflicts inconsistencies, the situation is

conceptually similar. A conflict is a situation where two vertex indices are located in the

same lattice cell. It can be solved by, first, moving either vertex index to a neighboring cell,

thus shifting the position of the conflict to that cell, and repeating this step until an empty

cell is reached. If the final empty cell is also labelled as disconnected from the boundary (i.e.

it is a hole), this has the additional side effect of simultaneously fixing that hole. Again, the

problem is cast as a minimal cost path search, solved via the Dijkstra algorithm. This time,

the path starts from the conflicted cell and terminates into any empty cell, either connected

or disconnected to the boundary. The cost associated to the move terminating the path is

16

decreased by or by , to reflect the fixing of either one or two inconsistencies. 𝑘1 𝑘0 + 𝑘1

Similarly, to the previous case, the resulting fix is considered profitable if the found path has

a negative total cost (otherwise, it is concluded that the inconsistency would be more

parsimoniously explained by assuming the conflicting vertex to result from a false positive in

the point detection).

2.7. Step 5: Lattice to Mesh Conversion

This step is implemented as a variant to Step 4, that is, the mesh is visited again using a

flood-fill seeded at an appropriate starting location. The only difference is that this time, the

lattice is not initialized as empty, but kept unmodified at its current values. Consequently,

the only two possible outcomes for expansion moves are “confirm” or “contradiction” (and

never “expand”) and the only sought effect is to perform edge flips in the latter case.

Rationale. The objective is to modify the current mesh configuration to make it more

similar to the current lattice configuration, but only by means of valid local mesh operations

(the lattice is only used to guide these operations); this ensures that the mesh

representation is kept consistent. The aim is not to obtain a mesh configuration perfectly

mirroring the one represented by lattice, because inconsistencies which are potentially left

in the lattice (“collisions” and “holes”) cannot be represented in the mesh representation.

2.8. Step 6: Convergence Detection

The algorithm stops when an entire iteration (2 conversions and 2 sets of local operations)

are not changing the lattice representation. In our experience, this never takes more than 4

iterations.

17

2.9. Step 7: Removal of Lattice Inconsistencies

For every set of points in D allocated to the same cell, one is selected to occupy that cell,

and the others are considered false positives and added to P. Similarly, every set of isolated

empty cells (i.e. separated from the boundary by non-empty cells) are considered false

negatives and added to N. Their position is computed as the average position of their

neighbors (the averaging is repeated until convergence, for islands of two cells of more).

3. Displacement Computation

At this stage, the markers in the input image have been detected, and the connectivity

between them computed. The next step is to reconstruct the marker displacements from the

rest configuration, to the configuration captured in the image. This is achieved with a

relaxation process that warps the markers in the image into a regular grid: the displacements

are then computed by taking the difference between the initial and relaxed positions. The

relaxation process is modeled using the graph Laplacian

,𝑳𝑖𝑗 = { ― ∑
𝑗𝑳𝑖𝑗 𝑖 == 𝑗

1 𝑖 𝑖𝑠 𝑎 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 𝑜𝑓 𝑗
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

which, for a perfectly regular mesh, satisfies
,𝑳𝒙 = 𝟎

where x are the coordinates of the vertices in the mesh. The vertices are split into two

groups - the inner vertices, which need to be relaxed to their original position, and the

boundary vertices which are fixed. The Laplacian L is split accordingly.

𝑥 = [𝑥𝑖
𝑥𝑏] 𝐿 = [𝐿𝑖𝑖 𝐿𝑖𝑏

𝐿𝑏𝑖 𝐿𝑏𝑏]
The system of equations is reduced to

[𝐿𝑖𝑖 𝐿𝑖𝑏][𝑥𝑖
𝑥𝑏] = 0

and solving

18

𝑥𝑖 = ― 𝐿 ―1
𝑖𝑖 𝐿𝑖𝑏𝑥𝑏

yields the relaxed positions of the inner vertices. With the boundary vertices fixed, this has

the effect of simultaneously moving all the vertices to the barycenter of their on-ring

neighborhood, thus creating a regular hexagonal grid.

4. Force Reconstruction

The displacements computed in the previous step are already a good proxy for the traction

forces. The conversion of the markers' displacements into traction forces depends on the

type of image. For pillars, the forces are discretely applied to each pillar and can be

reconstructed directly from the displacements. For quantum dots, the forces are applied

continuously on the substrate, and thus their reconstruction requires a finite element

method.

4.1. Pillars

For pillars, the forces can be directly computed from the displacement field u obtained in

the previous steps as

,𝐹 =
3𝐸𝐼
𝐿3 𝑢

where E is the Young's modulus, I is the moment of inertia, and L is the length of the

pillars2. Results of this procedure are shown in Figure 3 in the main paper.

4.2. Quantum Dots

For quantum dots, we have to solve a volumetric deformation problem, which given the

target displacements of the vertices on the surface, finds the traction forces inducing such

displacement.

19

Volumetric Meshing. To set up our physical simulation problem, it is necessary to first

discretize the substrate, decomposing it into a mesh composed of tetrahedra. The

tetrahedral mesh is adaptive, with a higher density in the regions corresponding to the

higher displacement.

The meshing proceeds in 4 steps.

Step 1. A background 2D mesh is created as the Delaunay triangulation of the displaced

markers, plus a few additional points on an extended bounding box whose size is user-

controlled. In the following, we will distinguish the inner box (the substrate) from the outer

box (substrate + padding).

Step 2. A sizing field is computed in 2D to indicate the target edge length of the mesh to

be used in the simulation. First, the “source” of the sizing field is determined as the mesh

triangles whose vertices have a displacement larger than a user-given threshold (set as

percentage of the max displacement across all dots - 18% by default in our application). The

target size for the source region is then set as a user-defined percentage of the median

distance between adjacent quantum dots - 30% by default in our app. If no marker falls

within this threshold, the whole inner-box is set to be the "source", and the target size is set

to the median distance between adjacent dots. The sizing field is then propagated from the

source region to the rest of the background mesh so that the ratio between adjacent

vertices follow a user-given ratio (a gradation of 1.2 is used by default).

Step 3. A dense tetrahedral mesh of the outer box is computed in 3D using TetGen7. Let

 be the maximum target size of the 2D sizing field computed above. The 2D sizing field is 𝑠𝑚𝑎𝑥

extended through the dense 3D volume so that it is equal to the original field on the top (the

surface), and equal to on the bottom.𝑠𝑚𝑎𝑥

20

Step 4. The dense tetrahedral mesh is remeshed with mmg8 to follow the 3D sizing field.

Finite Element Method. We propose two approaches, one for creating a quick preview of

the forces using a linear elastic material model, and a second one for accurate

reconstruction using a Neo-Hookean material model. For both modes the material

parameters are obtained through material testing (Supplementary Figure 61) and assume no

additional external forces, which is a realistic approximation for most experimental setups.

We solve for the displacement u

and on the boundary,―𝑑𝑖𝑣(𝜎(𝑢)) = 0 𝑢 = 𝑔
where is the stress tensor and are the boundary conditions. Note that the form of 𝜎(𝑢) 𝑔

 depends on the material model: for linear elasticity 𝜎(𝑢)

𝜎(𝑢) = 2 𝜇𝜖(𝑢) + 𝜆 Tr(𝜖(𝑢))𝐼,
with), for Neo-Hookean𝜖(𝑢) =

1
2(∇𝑢𝑇 + ∇𝑢

𝜎(𝑢) = 𝜇(𝐹 ― 𝐹 ―𝑇) + 𝜆ln (det 𝐹)𝐹 ―𝑇,
with .𝐹(𝑢) = ∇𝑢 + 𝐼

In both cases, the same boundary conditions are specified. For the bottom side is zero, 𝑔 𝑔

while for the top side it corresponds to the displacement field reconstructed in Section 3.

Note that, since a planar displacement field is measured in the xy-direction, we leave the z-

direction free to move to account for buckling effects. Since the displacement field is defined

only on the vertices of the detected points, radial basis function is used for interpolation

with Gaussian kernel9, 10 to extend it to the whole plane. Finally, to obtain the traction forces

from the solution of the partial differential equation, we multiply the stress with the face 𝜎

normal. We use isoparametric linear Lagrangian elements in both cases. Results of this

procedure are shown in Figure 2 in the main paper.

21

5. Material Characterization

In a previous publication the mechanical properties of the material was thoroughly

characterized1. Fitting of the hyperelastic Ogden model11 achieved a very close recreation of

the uniaxial and biaxial material tests. Here, for the sake of implementation and

computation speed a linear model and Neo-Hookean model were fitted to the test data. The

data was least-square fitted for both uniaxial and biaxial simultaneously. Given the

incompressible properties of the silicone used, Poisson ratio was fixed at 0.49 and the only

free parameter was the Young's modulus E. The Neo-Hookean model shows a very good fit

and deviates only slightly from the Ogden model for large stretches (Supplementary Figure

6). The best overall fit for the linear model was achieved at a lower stiffness of

, in which case the uniaxial did not match well (Supplementary Figure 6 (a)). 𝐸 = 10.05𝑘𝑃𝑎

Using the same stiffness as for the Neo-Hooke, the uniaxial fit was better, but the biaxial fit

quite off (Supplementary Figure 6 (b)). Hence, for accuracy the Neo-Hookean model is

chosen, whereas for speed the linear model can be used.

22

Supplementary Figure 6. Material model fitting. (a) Uniaxial test data and fitted curves. (b)

Equibiaxial test data and fitted curves.

23

Supplementary Figure 7. Mechanical response of YFP paxillin-expressing REF-52 cells to

increasing environmental temperature. (a) Representative example of cellular traction maps

(left panels) and corresponding inverted fluorescent images (YFP-paxillin, right panels). Scale

bar is 10 µm. (b) Corresponding evolution of traction, strain energy and area relative to the

values measured at 37°C. Population analysis reporting the displacement (c) and strain

energy/area (d) relative to the values measured at 37°C. A red or blue line defines the

average value. The shaded area corresponds to the standard error of the mean. n = number

of individual measures, n’ = number of independent experiments.

24

Supplementary Figure 8. Focal adhesion and actin filaments remodelling in YFP paxillin-

expressing REF-52 cells exposed to increasing environmental temperature. Representative

examples reporting the distribution of actin filaments (red), phosphorylated paxillin (green)

and nuclei (blue) in cells exposed to temperatures up to 40°C (middle row) and 45°C (bottom

row) as compared to control cells maintained at 37°C (upper row).

25

Supplementary Figure 9. Correlation of traction forces. (a, b) Two examples of entanglement

between highly correlated pillars actuated by HeLa cells. Force components in the x (U1x and

U2x) and y (U1y and U2y) are reported over a total time of 160 min. (d-g) Binned scatter plot

of pairwise force correlation between pillars (as function of the length between the pair) at

displaced by HeLa cells in the G1 (d) or S/G2 (e) cell cycle phase, respectively. Corresponding

binned scatter plots for MDCK cells in the G1 (f) or S/G2 (g) phase.

26

Supplementary Figure 10. Actin filaments in MDCK cells. (a) Boxplot reporting the

calibration of actin stress fiber length in fixed samples. The bars extend from the 25th to the

75th percentile. A line in the box represents the mean value while the box height

corresponds to its standard deviation. Individual measures are reported as open red circles.

(b) Corresponding frequency distribution (in percentage) of measured values.

27

6. Supplementary References

(1) Bergert, M.; Lendenmann, T.; Zündel, M.; Ehret, A. E.; Panozzo, D.; Richner, P.;

Kim, D. K.; Kress, S. J.; Norris, D. J.; Sorkine-Hornung, O. J. N. c. 2016, 7, 12814.

(2) Tan, J. L.; Tien, J.; Pirone, D. M.; Gray, D. S.; Bhadriraju, K.; Chen, C. S. J. P. o. t. N.

A. o. S. 2003, 100, (4), 1484-1489.

(3) Otsu, N. J. I. t. o. s., man,; cybernetics. 1979, 9, (1), 62-66.

(4) Cheezum, M. K.; Walker, W. F.; Guilford, W. H. J. B. j. 2001, 81, (4), 2378-2388.

(5) Botsch, M.; Kobbelt, L.; Pauly, M.; Alliez, P.; Lévy, B., Polygon mesh processing.

AK Peters/CRC Press: 2010.

(6) Shewchuk, J.; Dey, T. K.; Cheng, S.-W., Delaunay mesh generation. Chapman and

Hall/CRC: 2016.

(7) Si, H. J. A. T. o. M. S. 2015, 41, (2), 11.

(8) Dapogny, C.; Dobrzynski, C.; Frey, P. J. J. o. c. p. 2014, 262, 358-378.

(9) Pazouki, M.; Schaback, R. J. J. o. C.; Mathematics, A. 2011, 236, (4), 575-588.

(10) Fornberg, B.; Larsson, E.; Flyer, N. J. S. J. o. S. C. 2011, 33, (2), 869-892.

(11) Ogden, R. W. J. P. o. t. R. S. o. L. A. M.; Sciences, P. 1972, 326, (1567), 565-584.

