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This document provides a detailed description of the algorithms used in the image 

processing pipeline, which is composed of 4 steps: (1) markers detection, (2) inference of 

reference graph topology, (3) computation of displacements, and (4) traction force 

reconstruction. The 4 steps are illustrated in Supplementary Figure 1 and can be seen in 

supplementary videos 1 and 2.

Supplementary Figure 1. The 4 pipeline stages, which automatically convert images of 

reference-free TFM markers to traction forces.

1. Markers Detection

The algorithm input is a gray scale image acquired by fluorescence microscopy 

(Supplementary Figure 2 (a)). It contains either quantum dots1 or micropillars2 as markers. 

The first step of the algorithm analyzes the image to extract the 2D position of each marker. 

First, a Gaussian filter with a user-defined sigma is applied to the image to reduce noise, i.e. 

the image is convoluted with a 2D-Gaussian (Supplementary Figure 2 (b)). This image is then 

binarized at the intensity level determined algorithmically3 to generate a mask with 

candidate regions where the markers could potentially be located (Supplementary Figure 2 

(c)). In parallel a Laplacian of Gaussian (LoG) filter is applied to the original image. Here, the 

image is convoluted with a LoG kernel. The result is an image with low values in locations 

where originally there was no gradient of intensity, i.e. the center of markers, and high 
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values where intensity gradients were strong (Supplementary Figure 2 (d)). The LoG image 

then is subtracted from the Gaussian image to generate a new frame with sharper peaks at 

the position of the markers. In this resulting image the local maxima are determined. A pixel 

is considered a local maxima if it displays the highest intensity value among its eight 

neighboring pixels (Supplementary Figure 2 (e)). If a pixel is a local maxima and is in the 

candidate region of the mask, then the pixel's position is used to least square fit a 2D 

Gaussian in its vicinity (Supplementary Figure 2 (f)4) in the original unfiltered image. The 

fitted Gaussian has a single user-controlled parameter: sigma. Duplicate detections that can 

arise from two maxima located close together, for which the Gaussians merge, are 

eliminated after the fitting.

Supplementary Figure 2. Detection (a) Original image, (b) Gaussian filter (c) Mask generated 

from thresholded image in (b) using Otsu-Threshold, (d) Laplacian of Gaussian (LoG), (e) 

Detected local maxima in resulting image from LoG subtracted from Gaussian image. The 

maxima detected in the mask and outside of the mask are in green and red, respectively. (f) 

Least square fit of Gaussians at the detected local maxima

2. Inferring Graph Topology

The previous step generates a set of 2D position of the markers: the regular lattice 

connectivity between them shall now be reconstructed. The challenge lies in the fact that 

the grid is deformed by the traction forces, which are unknown. The only prior is that, before 

the displacement induced by the cells, the markers were positioned over an unknown subset 
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of a regular triangular lattice of unknown size and orientation. Crucially, for every marker we 

only use its position and do not require any additional information.

Differently from previous methods, our reconstruction shall be tolerant to occasional 

errors in the detection of markers, correcting false negatives (markers missed by the 

detection procedure) as well as false positives (markers “hallucinated” by the detection 

procedure). For example, false negatives and positives may be induced by noise, or arise by 

the misinterpreting two adjacent markers as a single one.

2.1. Formal Problem Definition

The input of this step is a set of detected 2D points D, each point represented by a pair of 

coordinates. The output is a set  of false positives, a set N of false negatives (new 2D 𝑃 ⊂ 𝐷

points which are inferred to exist although they were never directly observed), and a 

permutation α of 2D points ( ) into the position of a regular triangular grid. Once 𝐷 ∕ 𝑃 ∪ 𝑁

the permutation is known, the relaxed positions can be inferred by smoothing the grid 

(Section 3) and the displacements are then defined by the difference.

Among all potential choices of N, P, α (for a given observation D), the one minimizing its 

unlikelihood is defined as

𝑘1|𝑁| + 𝑘2|𝑃| + 𝐸(𝛼(𝐷/𝑃 ∪ 𝑁)), (1)
where |X| denotes the cardinality of the set X, k1 and k2 are fixed scalar parameters 

weighting the penalty associated to different factors (determining how much false positives 

and negatives impact the likelihood of a solution), and E(X) is an approximation of the 

potential elastic energy which would be required to deform a regular pattern into the given 

pattern X (on the ground that the least energetic configuration is the most plausible). 

To define E, the elastic substrate is approximated as a network of Hookean linear springs 

connecting each pair of direct neighbors on the lattice, resulting in:
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𝐸(𝑋) =  
|𝑋|

∑
𝑖 = 0

∑
𝑥𝑗 ∈ 𝑁𝑖

(|𝑥𝑖 ― 𝑥𝑗|2 ― 𝐿)2, (2)

where L is the step length of the regular lattice, and Ni is the set of neighbors of xi.

2.2. Problem Analysis

This formulation makes the complexity of the problem apparent: it is a combinatorial 

optimization over a large space, with a strict set of constraints that must be enforced to 

obtain valid solutions. As observed in1, an exhaustive search of the optimal solution via a 

branch and bound algorithm would be practical only for tiny problem instances (up to 

around 20 vertices).

We propose an algorithm to efficiently find a low energy solution. While the approach is 

not guaranteed to find the optimal solution, in the large majority of cases, it indeed finds the 

same solution obtained by an exhaustive search, while being orders of magnitudes faster 

and scaling to tens of thousands of markers.

The proposed approach is incremental: an initial guess for permutation is initially 

proposed, and then iteratively improved until convergence. 

The key novelty of the algorithm is the use of two complementary representation for an 

intermediate solution for α: a Mesh-based and a Lattice-based representation. The two 

representations are equally capable of expressing any consistent permutations α into a 

lattice, but crucially, each can also represent certain inconsistencies of different nature. 

Switching from one to the other allows reducing these inconsistencies very efficiently.

Overview. The initial guess of αis expressed as a Mesh-based representation. This solution 

is then converted back and forth between Lattice and Mesh representation, applying an 

optimization step after every conversion. The optimization step improves the solution, 
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greedy applying a sequence of local operations (i.e. operations affecting only a small, 

constant portion of the representation).

In both representations, a local operation lowers the number of inconsistencies and the 

energy term for E in equation (2). 

At the end of the process, residual inconsistencies in the final α are interpreted as false 

positive and negatives, creating sets P and N respectively.

In summary, the algorithm can be written as:

 Variables: Mesh, Lattice
1. Mesh initial_guess ( D );
2. loop:

a. local_operations( Mesh )
b. convert: Mesh  Lattice
c. local_operations( Lattice )
d. if converged then exit loop;
e. convert: Lattice  Mesh

3. ( P,N ) fix_residual_inconsistencies( Lattice ); 

Section 2.3

Section 2.4
Section 2.5
Section 2.6
Section 2.8
Section 2.7
Section 2.9

First, the two representations are described, and then the other parts of the algorithm are 

described in more detail.

Supplementary Figure 3. An instance of the graph-topology problem consists of a set of 2D 

points, like in this toy example (left most). In our system, a solution is represented in either 

of two alternative representations: mesh-based, and lattice-based. Mesh-based 

representation consists of a two-manifold, well-oriented and simple triangular mesh (middle 
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column), whose vertices are the given set of points. A lattice-based solution consists of a 

regular honeycomb grid of cylindrical cells which can be assigned to one (or multiple) 

vertices (rightmost column). Either representation is capable of expressing any permutation 

into a lattice, like the one depicted on top (which is, in this case, the energy minimizer, and 

therefore the optimum). Each representation is also subject to include inconsistencies of 

different types. In the mesh representation, for example, internal vertices can have a valency 

different from 6 (in the example on bottom: a valency-5 vertex is highlighted in red, and 

valency-7 vertex in blue). In the lattice-based representation, there can be internal “holes” in 

the regular grid, or multiple nodes assigned to the same grid cell, (bottom-right). 

Mesh Representation. In this representation, the permutation into a lattice is represented 

as a two-manifold, triangular, mesh whose vertices are D. In other words, a Mesh consists of 

all points in D connected by a set of triangles; the sides of the triangles are termed edges. 

This structure is the ubiquitous way to represent piecewise linear surfaces, and has been 

deeply studied for example in Geometry Processing (e.g. see5 for an overview). The meshes 

are open and simple, meaning that they have a unique loop of boundary edges and vertices 

(i.e. there are no internal “holes”). They are two-manifold, meaning that that every edge of 

each triangle is either a boundary edge or is shared by exactly another triangle. The valency 

of a vertex is defined as the number of triangles sharing that vertex. A mesh is called regular 

when each boundary vertex has valency <6, and each other vertex has valency 6.

A regular mesh can be interpreted as a permutation αof its vertices D into a lattice, since it 

encodes a regular lattice. A mesh which is not regular, conversely, does not correspond to 

any such permutation. The inconsistencies of a Mesh representation are, therefore, vertices 

breaking the above requirement on the valency (termed “irregular” vertices).
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Lattice Representation. Our lattice, or matrix, is a 2D regular grid of hexagonal cells 

(honeycomb tiling). Each element of D is hosted in one cell. A cell can be empty, or host one 

or more elements. In the lattice, non-empty cells always form a contiguous subset of the 

grid, and all cells on the boundary of the grid are empty. 

Ideally, each non-empty cell hosts only a single element of D. Also, empty cells are all 

found in one continuous set around the lattice (i.e. there is no island of empty cells 

completely surrounded by non-empty cells). A lattice with these properties can be trivially 

converted to a valid permutation α. The inconsistencies of a lattice representation are, 

therefore, cells hosting more than one element of D (these elements are called “colliding”), 

or empty cells that are not connected to the boundary of the grid by a sequence of empty 

cells (these cells are called “holes”).

2.3. Step 1: Mesh Initialization

The algorithm is initialized by computing the 2D Delaunay triangulation6 of the set of 

vertices D. This process is fast and guarantees to produce a two-manifold, simple mesh. In 

undeformed areas, this mesh reproduces the connectivity and the shape of a regular grid 

and it is thus a correct solution. However, in distorted regions, irregular vertices are 

introduced. The next steps address these inconsistencies.

2.4. Step 2: Mesh Local Operations

An edge-flip6 is a standard local operation commonly used in the context of mesh 

optimization and simplification. In the represented context, edge-flips are used to improve 

the quality of the mesh, striving to obtain a regular connectivity on the entire mesh and a 

decreased energy. 



9

Supplementary Figure 4. An example of an edge-flip operation: in this mesh, flipping the 

edge B-C decreases the valency of vertices B and C by one, and increases the valency of 

vertices A and B by one.

Specifically, the effect of an edge-flip is scored by two numbers .  is the induced (𝑒𝑎,𝑒𝑏) 𝑒𝑎

increase in the number of regular vertices (or decrease if negative): as an edge-flip increases 

the valency of two vertices by one, and increases the valency of other two vertices by one 

(Supplementary Figure 4) it can either increase, decrease or leave unaffected the total 

number of irregular vertices on the mesh.  is the induced decrease is on energy E: only the 𝑒𝑏

edge being flipped changes its length and thus its contribution to the energy E (Equation (2)). 

An edge-flip is beneficial either when , or when  and  All potential edge-𝑒𝑎 > 0 𝑒𝑎 = 0 𝑒𝑏 > 0

flips (there is exactly one per edge) are tested, and the ones that are beneficial are 

performed. In a second pass, the algorithm tests all the possible pairs of consecutive edge 

flips affecting a common vertex that have a combined (summed) beneficial effect.

Edge-flip operations which would reduce an internal vertex valency below 3, are always 

disallowed as it would compromise the two-manifoldness of the mesh. While this step is 

effective at solving many locally inconsistent configurations, it might fail at identifying the 

long sequences of flips that may be necessary in images with large displacements. The mesh 

is therefore converted to a lattice representation, to continue the optimization.

2.5. Step 3: Mesh to Lattice Conversion
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Starting from an empty lattice, the mesh is explored, copying the indices of the 

encountered vertices into the lattice cells, one by one. The mesh is visited with a “flood-fill” 

approach, i.e. from a “seed” triangle and iteratively proceeding by expanding the visit to 

neighboring triangles, until the entire mesh is visited. 

Crucially, the parts of the mesh which are more regular are explored first; in this way, the 

less ambiguous parts of the mesh, which can be interpreted with higher confidence, serve as 

a guidance to settle the more ambiguous parts.

In practice the problematic parts of the mesh are surrounded by the visit (thus isolated) 

and then conquered from the exterior inwards.

A precise description of the employed algorithm is given below. In the following, we define 

the “equilateral factor” of a triangle with sides lengths , with , as the real 𝑎,𝑏,𝑐 𝑎 > 𝑏 > 𝑐

number  A perfectly equilateral triangle has factor 1, a completely ((𝑐 + 𝑏)/𝑎 ― 1).

degenerate triangle has factor 0, and any intermediate case has values in between.

Identifying the Seed Triangle. Every triangle of the mesh is labelled as either reliable or 

not reliable. A reliable triangle fulfills three conditions: (i) it is not on the mesh boundary, (ii) 

its three vertices are regular (valency 6), and (iii) its shape is sufficiently equilateral 

(equilateral factor larger than 0.85). The seed is selected as the furthest reliable triangle 

(under hop distance) from any unreliable triangle; in other words, the triangle which is 

surrounded by the maximal number of reliable triangles.

The three vertex indices of the seed triangle are copied into a group of three reciprocally 

adjacent grid cells.

Enumerating and Prioritizing the Expansion Moves. An expansion move potentially 

enlarges the set of visited triangles by one element, traversing one mesh edge adjacent to an 

already visited triangle. 
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There is one expansion move for each internal mesh edge. At any given time, an expansion 

move is available if at least one of the triangles shared by the corresponding edge has been 

visited (note that this includes edges with visited triangles on both sides). During the fill, all 

available moves are kept in a set, and prioritized, from highest to lowest confidence, 

according to summed equilateral factors of the two triangles sharing the edge. The set of 

available expansion moves is kept in a priority queue and is initialized with the three edges 

of the seed triangle. 

Iteratively, the element with the highest priority is extracted from the set of potential 

moves, removed from the set, and the move executed. After the move, up to two new 

available expansion moves are added to the set to reflect the expansion of the set of visited 

triangles (and evaluate their priority). Traversed edges are flagged as such and never added 

to the set of available moves a second time. The procedure terminates when the set is 

empty (i.e. when each internal mesh edges has been traversed exactly once).

Supplementary Figure 5. An example of the execution of an expansion-move. Executing the 

move crossing the edge DJ and visiting triangle DJB (left-most diagram), would have the 

effect of filling the grayed square of the lattice with the vertex labelled as B (right-most 

diagram). If that square is already filled by a vertex other than B, or if vertex B is already 

allocated anywhere else on the lattice, then this move would cause an inconsistency. In this 

case, an edge-flip of one of the other two edges of DJB is attempted first: flipping the BD 

edge causes the grayed square to be filled with vertex C instead of B (mid-left diagram); 

flipping the JB edge causes it to be filled with vertex M instead of B (mid-right diagram). If 

either edge-flip avoids the conflict, then it is performed before the move executed. 
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Executing an Expansion Move. An expansion move consists of expanding the visit from 

the visited triangle , over edge , into the (potentially not yet visited) triangle . Let  be 𝑡𝐴 𝑒0 𝑡𝐵 𝑣𝑖

the vertex of  opposite to edge . Executing the move consists of copying  into a given 𝑡𝐵 𝑒0 𝑣𝑖

cell of the grid with index  (see Supplementary Figure 5). The cell index  is fully 𝑐𝑖 𝑐𝑖

determined by the cell position on the grid, of the vertices of . Note that, due to previous 𝑡𝐴

expansion moves, it is possible that cell  is already occupied by a vertex; likewise, and 𝑐𝑖

independently, it is possible that vertex  is already allocated in a grid cell. 𝑣𝑖

Therefore, three cases can arise:

Expand, when vertex  is not currently allocated anywhere in the grid, and cell  is 𝑣𝑖 𝑐𝑖

currently vacant;

Confirm, when vertex  is already present in cell  (i.e. cell  already contains vertex ); 𝑣𝑖 𝑐𝑖 𝑐𝑖 𝑣𝑖

Contradiction, when vertex  is already allocated in some other cell position different 𝑣𝑖

from , or cell is already occupied by some vertex different from , or both.𝑐𝑖 𝑐𝑖 𝑣𝑖

In the Expand case, cell  is filled with vertex . In the Confirm case, nothing needs to be 𝑐𝑖 𝑣𝑖

done; when that case arises, it means that the current expansion moves is consistent with 

the lattice layout as inferred from the already visited triangles. This can happen, for example, 

because vertex  was previously reached from a different direction, possibly along a 𝑣𝑖

completely different triangle paths from the seed. 

Vice-versa, the third case happens because the starting mesh is not fully regular. Executing 

the move would create an inconsistency. At this point, it is checked whether the conflict can 

be avoided by means of edge flips performed on the mesh. There are two potential edge 

flips, corresponding to 2 edges of  that are not . If either edge flip is viable, it would 𝑡𝐵 𝑒0

result in a different vertex indices  and  in place of  (see Supplementary Figure 5), and 𝑣𝑖′ 𝑣𝑖′′ 𝑣𝑖
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therefore in a different case. The edge-flip is performed if it is viable and results in the 

removal of the contradiction (if the extremely rare case when both edge-flips qualify, the 

one resulting in the highest summed equilateral factors of the two affected triangles is 

selected). Note that the edge flips are performed, in this phase, regardless of their local 

effect on the valency of the vertices or the energy.

After the expansion move, assuming no contradiction arose or that it could be resolved, 

the two external edges of  are added to the set of potential moves, unless these edges 𝑡𝐵

have been already processed.

Rationale. Importantly, triangles can be assigned to the grid by independently assigning 

their three vertices to grid cells, before that triangle is explicitly visited. This happens for 

example when the boundary of the visit meets with itself after that the flood-fill encircled a 

problematic region (e.g. a region containing irregular vertices) from the two different sides. 

Eventually, these triangles will be explicitly visited also. When that happens, the visit can 

only either confirm or contradict the previously found grid layout. In case of contradiction, 

the grid values are not overwritten, because earlier moves are, by design, considered more 

reliable than later moves. Instead, the existing grid values are used to correct the mesh 

connectivity (by means of flips). In conclusion, the flip operations which are performed in 

this phase are driven by the global grid structure of the mesh, rather than by its local 

configurations, differently from the local optimization on the mesh (Section 2.4). In this 

sense, this flip identification strategy is drastically more “long sighted” and capable of 

avoiding local minima.

2.6. Step 4: Lattice Greedy Optimization
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A Lattice admits three local operations: (1) permutation of a small subset of the vertex 

indexes stored in the cells, (2) hole filling and (3) conflicts resolution. A set of local 

operations is tested, and all the ones with a positive effect on the global energy are 

performed (Equation (1))

Operation 1: Greedy Permutations. Given a set of n vertices  assigned to cells 𝑣0… 𝑣𝑛 ― 1 𝑐0

, a cycle permutation is the reassignment of each vertex  to  (% being the … 𝑐𝑛 ― 1 𝑣𝑖 𝑐(𝑖 + 1)%𝑛

modulo operator). A cycle permutation is beneficial if it results in an overall decrease of the 

energy. A brute force approach, where each set of 2, 3, and 4 adjacent cells are tested for all 

potential cycles is used. Cycles of size 2 (that is, swaps between pairs of cells) are also tested 

between any pairs of cells separated by a single cell. In total, 48 cycles are tentatively tried 

around each non empty grid cells, in a fixed pattern. The resulting algorithm is linear with 

the number of cells and fast, because testing for the effect of a cycle requires to sum up only 

a limited number of addendum to the energy in Equation (2).

Operation 2: Hole Filling. A Lattice “hole” is defined as an empty grid cell that is not 

connected to the lattice boundary by a path of empty cells.

Each disconnected empty cell is a hole and is evaluated for removal. In order to remove a 

hole, first, the vertex from a neighboring non-empty cell must move to fill its position, thus 

shifting the hole to that cell; then, the process has to be repeated until the hole ends up 

neighboring one boundary empty cell, or the moving vertex is a conflicting vertex (i.e. was 

one of the two vertices allocated in the same cell). In the latter case, that “conflict” 

inconsistency is also removed. Each movement of a vertex into the empty position comes 

with an associated increase (rarely, a decrease) of the energy E. In other terms, in order to 

fix a hole, a path from that position to a either a connected empty cell, or to a conflicting 

vertex needs to be found. 
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The problem can be cast as a minimum cost path, which is solved using the Dijkstra 

algorithm (seeded at the cell presenting the hole, and targeted at any eligible destination of 

the path). The cost of every step is defined as the increase (rarely, the decrease) of the 

energy for the corresponding swap. Additionally, the cost of the final step is further 

decreased (possibly down to a negative number) by the value  (Equation (1)), to reflect the 𝑘0

decrease of the number of holes. In case that the final destination of the graph is a 

conflicting vertex, the cost is also decreased by the additional value , to reflect the 𝑘1

decrease of the number of conflicts.

When the minimum cost path is identified, it is applied it if and only if its total cost sum up 

to a negative number. Otherwise, the total likelihood of the found solution would decrease 

(in other words, a more likely justification for the hole is to assume that an existing point 

was undetected). To optimize, we abort the Dijkstra search over paths which results in a 

total cost larger than .(𝑘0 + 𝑘1)

Operation 3: Conflict Resolution. For conflicts inconsistencies, the situation is 

conceptually similar. A conflict is a situation where two vertex indices are located in the 

same lattice cell. It can be solved by, first, moving either vertex index to a neighboring cell, 

thus shifting the position of the conflict to that cell, and repeating this step until an empty 

cell is reached. If the final empty cell is also labelled as disconnected from the boundary (i.e. 

it is a hole), this has the additional side effect of simultaneously fixing that hole. Again, the 

problem is cast as a minimal cost path search, solved via the Dijkstra algorithm. This time, 

the path starts from the conflicted cell and terminates into any empty cell, either connected 

or disconnected to the boundary. The cost associated to the move terminating the path is 
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decreased by  or by , to reflect the fixing of either one or two inconsistencies. 𝑘1 𝑘0 + 𝑘1

Similarly, to the previous case, the resulting fix is considered profitable if the found path has 

a negative total cost (otherwise, it is concluded that the inconsistency would be more 

parsimoniously explained by assuming the conflicting vertex to result from a false positive in 

the point detection). 

2.7. Step 5: Lattice to Mesh Conversion

This step is implemented as a variant to Step 4, that is, the mesh is visited again using a 

flood-fill seeded at an appropriate starting location. The only difference is that this time, the 

lattice is not initialized as empty, but kept unmodified at its current values. Consequently, 

the only two possible outcomes for expansion moves are “confirm” or “contradiction” (and 

never “expand”) and the only sought effect is to perform edge flips in the latter case. 

Rationale. The objective is to modify the current mesh configuration to make it more 

similar to the current lattice configuration, but only by means of valid local mesh operations 

(the lattice is only used to guide these operations); this ensures that the mesh 

representation is kept consistent. The aim is not to obtain a mesh configuration perfectly 

mirroring the one represented by lattice, because inconsistencies which are potentially left 

in the lattice (“collisions” and “holes”) cannot be represented in the mesh representation.

2.8. Step 6: Convergence Detection

The algorithm stops when an entire iteration (2 conversions and 2 sets of local operations) 

are not changing the lattice representation. In our experience, this never takes more than 4 

iterations. 
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2.9. Step 7: Removal of Lattice Inconsistencies

For every set of points in D allocated to the same cell, one is selected to occupy that cell, 

and the others are considered false positives and added to P. Similarly, every set of isolated 

empty cells (i.e. separated from the boundary by non-empty cells) are considered false 

negatives and added to N. Their position is computed as the average position of their 

neighbors (the averaging is repeated until convergence, for islands of two cells of more).

3. Displacement Computation

At this stage, the markers in the input image have been detected, and the connectivity 

between them computed. The next step is to reconstruct the marker displacements from the 

rest configuration, to the configuration captured in the image. This is achieved with a 

relaxation process that warps the markers in the image into a regular grid: the displacements 

are then computed by taking the difference between the initial and relaxed positions. The 

relaxation process is modeled using the graph Laplacian 

,𝑳𝑖𝑗 =  { ― ∑
𝑗𝑳𝑖𝑗 𝑖 == 𝑗

1 𝑖 𝑖𝑠 𝑎 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 𝑜𝑓 𝑗
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

which, for a perfectly regular mesh, satisfies
,𝑳𝒙 = 𝟎

where x are the coordinates of the vertices in the mesh. The vertices are split into two 

groups - the inner vertices, which need to be relaxed to their original position, and the 

boundary vertices which are fixed. The Laplacian L is split accordingly.

𝑥 =  [𝑥𝑖
𝑥𝑏] 𝐿 =  [𝐿𝑖𝑖 𝐿𝑖𝑏

𝐿𝑏𝑖 𝐿𝑏𝑏]
The system of equations is reduced to

[𝐿𝑖𝑖 𝐿𝑖𝑏][𝑥𝑖
𝑥𝑏] = 0

and solving 
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𝑥𝑖 =  ― 𝐿 ―1
𝑖𝑖 𝐿𝑖𝑏𝑥𝑏

yields the relaxed positions of the inner vertices. With the boundary vertices fixed, this has 

the effect of simultaneously moving all the vertices to the barycenter of their on-ring 

neighborhood, thus creating a regular hexagonal grid. 

4. Force Reconstruction

The displacements computed in the previous step are already a good proxy for the traction 

forces. The conversion of the markers' displacements into traction forces depends on the 

type of image. For pillars, the forces are discretely applied to each pillar and can be 

reconstructed directly from the displacements. For quantum dots, the forces are applied 

continuously on the substrate, and thus their reconstruction requires a finite element 

method.

4.1. Pillars

For pillars, the forces can be directly computed from the displacement field u obtained in 

the previous steps as

,𝐹 =
3𝐸𝐼
𝐿3 𝑢

where E is the Young's modulus, I is the moment of inertia, and L is the length of the 

pillars2. Results of this procedure are shown in Figure 3 in the main paper.

4.2. Quantum Dots

For quantum dots, we have to solve a volumetric deformation problem, which given the 

target displacements of the vertices on the surface, finds the traction forces inducing such 

displacement. 
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Volumetric Meshing. To set up our physical simulation problem, it is necessary to first 

discretize the substrate, decomposing it into a mesh composed of tetrahedra. The 

tetrahedral mesh is adaptive, with a higher density in the regions corresponding to the 

higher displacement.

The meshing proceeds in 4 steps.

Step 1. A background 2D mesh is created as the Delaunay triangulation of the displaced 

markers, plus a few additional points on an extended bounding box whose size is user-

controlled. In the following, we will distinguish the inner box (the substrate) from the outer 

box (substrate + padding).

Step 2. A sizing field is computed in 2D to indicate the target edge length of the mesh to 

be used in the simulation. First, the “source” of the sizing field is determined as the mesh 

triangles whose vertices have a displacement larger than a user-given threshold (set as 

percentage of the max displacement across all dots - 18% by default in our application). The 

target size for the source region is then set as a user-defined percentage of the median 

distance between adjacent quantum dots - 30% by default in our app. If no marker falls 

within this threshold, the whole inner-box is set to be the "source", and the target size is set 

to the median distance between adjacent dots. The sizing field is then propagated from the 

source region to the rest of the background mesh so that the ratio between adjacent 

vertices follow a user-given ratio (a gradation of 1.2 is used by default).

Step 3. A dense tetrahedral mesh of the outer box is computed in 3D using TetGen7. Let 

 be the maximum target size of the 2D sizing field computed above. The 2D sizing field is 𝑠𝑚𝑎𝑥

extended through the dense 3D volume so that it is equal to the original field on the top (the 

surface), and equal to  on the bottom.𝑠𝑚𝑎𝑥
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Step 4. The dense tetrahedral mesh is remeshed with mmg8 to follow the 3D sizing field.

Finite Element Method. We propose two approaches, one for creating a quick preview of 

the forces using a linear elastic material model, and a second one for accurate 

reconstruction using a Neo-Hookean material model. For both modes the material 

parameters are obtained through material testing (Supplementary Figure 61) and assume no 

additional external forces, which is a realistic approximation for most experimental setups. 

We solve for the displacement u

and  on the boundary,―𝑑𝑖𝑣(𝜎(𝑢)) = 0 𝑢 = 𝑔
where  is the stress tensor and  are the boundary conditions. Note that the form of 𝜎(𝑢) 𝑔

 depends on the material model: for linear elasticity 𝜎(𝑢)

𝜎(𝑢) = 2 𝜇𝜖(𝑢) + 𝜆 Tr(𝜖(𝑢))𝐼,
with ), for Neo-Hookean𝜖(𝑢) =

1
2(∇𝑢𝑇 + ∇𝑢

𝜎(𝑢) = 𝜇(𝐹 ― 𝐹 ―𝑇) + 𝜆ln (det 𝐹)𝐹 ―𝑇,
with .𝐹(𝑢) = ∇𝑢 +  𝐼

In both cases, the same boundary conditions  are specified. For the bottom side  is zero, 𝑔 𝑔

while for the top side it corresponds to the displacement field reconstructed in Section 3. 

Note that, since a planar displacement field is measured in the xy-direction, we leave the z-

direction free to move to account for buckling effects. Since the displacement field is defined 

only on the vertices of the detected points, radial basis function is used for interpolation 

with Gaussian kernel9, 10 to extend it to the whole plane. Finally, to obtain the traction forces 

from the solution of the partial differential equation, we multiply the stress  with the face 𝜎

normal. We use isoparametric linear Lagrangian elements in both cases. Results of this 

procedure are shown in Figure 2 in the main paper.
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5. Material Characterization

In a previous publication the mechanical properties of the material was thoroughly 

characterized1. Fitting of the hyperelastic Ogden model11 achieved a very close recreation of 

the uniaxial and biaxial material tests. Here, for the sake of implementation and 

computation speed a linear model and Neo-Hookean model were fitted to the test data. The 

data was least-square fitted for both uniaxial and biaxial simultaneously. Given the 

incompressible properties of the silicone used, Poisson ratio was fixed at 0.49 and the only 

free parameter was the Young's modulus E. The Neo-Hookean model shows a very good fit 

and deviates only slightly from the Ogden model for large stretches (Supplementary Figure 

6). The best overall fit for the linear model was achieved at a lower stiffness of 

, in which case the uniaxial did not match well (Supplementary Figure 6 (a)). 𝐸 =  10.05𝑘𝑃𝑎

Using the same stiffness as for the Neo-Hooke, the uniaxial fit was better, but the biaxial fit 

quite off (Supplementary Figure 6 (b)). Hence, for accuracy the Neo-Hookean model is 

chosen, whereas for speed the linear model can be used.
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Supplementary Figure 6. Material model fitting. (a) Uniaxial test data and fitted curves. (b) 

Equibiaxial test data and fitted curves.
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Supplementary Figure 7. Mechanical response of YFP paxillin-expressing REF-52 cells to 

increasing environmental temperature. (a) Representative example of cellular traction maps 

(left panels) and corresponding inverted fluorescent images (YFP-paxillin, right panels). Scale 

bar is 10 µm. (b) Corresponding evolution of traction, strain energy and area relative to the 

values measured at 37°C. Population analysis reporting the displacement (c) and strain 

energy/area (d) relative to the values measured at 37°C. A red or blue line defines the 

average value. The shaded area corresponds to the standard error of the mean. n = number 

of individual measures, n’ = number of independent experiments.
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Supplementary Figure 8. Focal adhesion and actin filaments remodelling in YFP paxillin-

expressing REF-52 cells exposed to increasing environmental temperature. Representative 

examples reporting the distribution of actin filaments (red), phosphorylated paxillin (green) 

and nuclei (blue) in cells exposed to temperatures up to 40°C (middle row) and 45°C (bottom 

row) as compared to control cells maintained at 37°C (upper row).
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Supplementary Figure 9. Correlation of traction forces. (a, b) Two examples of entanglement 

between highly correlated pillars actuated by HeLa cells. Force components in the x (U1x and 

U2x) and y (U1y and U2y) are reported over a total time of 160 min. (d-g) Binned scatter plot 

of pairwise force correlation between pillars (as function of the length between the pair) at 

displaced by HeLa cells in the G1 (d) or S/G2 (e) cell cycle phase, respectively. Corresponding 

binned scatter plots for MDCK cells in the G1 (f) or S/G2 (g) phase. 



26

Supplementary Figure 10. Actin filaments in MDCK cells. (a) Boxplot reporting the 

calibration of actin stress fiber length in fixed samples. The bars extend from the 25th to the 

75th percentile. A line in the box represents the mean value while the box height 

corresponds to its standard deviation. Individual measures are reported as open red circles.  

(b)  Corresponding frequency distribution (in percentage) of measured values.
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