Probing binding interactions of cytisine derivatives to the $\alpha 4\beta 2$ nicotinic acetylcholine receptor

Annet E. M. Blom,† Hugo Rego Campello,§ Henry A. Lester,‡ Timothy Gallagher,§ Dennis A. Dougherty*,†

†Division of Chemistry and Chemical Engineering and ‡Division of Biology, California Institute of Technology, Pasadena, California 91125, United States; §School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom

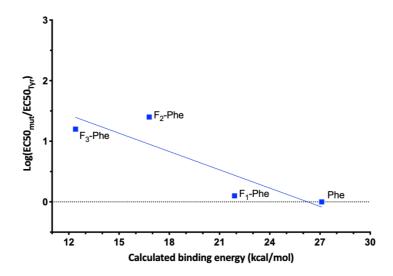

Supporting Information:

Table of contents

1.	Supporting Figures 51-55 and Tables 51-515	34
	1.1. Fluorination at TyrC2 in A2B3, Figure S1, Table S1	S2
	1.2. EC ₅₀ values for cytisine derivatives in A2B3, Table S2	S2
	1.3. EC ₅₀ values for WT α7, Figure S2, Table S3	S3
	1.4. EC ₅₀ values for sterics series in A3B2, Figure S3, Table S4	S4
	1.5. Conformational analysis of ligand 10 and 11, Figure S4	S5
	1.6. Scatterplot of EC ₅₀ vs logD, Figure S5	S5
	1.7. Electrostatic potential and volume calculations, Table S5	S6
	1.8. Non-canonical amino acid mutagenesis data in A2B3, Table S6-S9	S7
	1.9. Non-canonical amino acid mutagenesis data in A2B3, Table S10-S13	S11
2.	Synthetic methods	S15
	2.1. General synthetic chemistry experimental protocols	S15
	2.2. Structural assignment and numbering system	S15
	2.3. Summary and General procedures A and B	S16
3.	Synthesis of C(10)-substituted cytisine derivatives	S18
	3.1. (+)-10-Aminocytisine.HCl 8	S 18
	3.2. (–)-10-Fluorocytisine 2	S 19
	3.3. (–)-10-Trifluoromethylcytisine.HCl 5	S 19
	3.4. (+)-10-(N-Methylamine)cytisine.HCl 10	S 21
4.	Synthesis of 9-bromo-10-substituted cytisine derivatives	S22
	4.1. 9-Bromo-10-ethylcytisine.HCl 7	S 22
	4.2. 9-Bromo-10-aminocytisine.HCl 9	S 23
	4.3. 9-Bromo-10-(methylamino)cytisine.HCl 11	S 24
5.	¹ H and ¹³ C NMR spectra of (previously unreported) ligands 2 , 5 and 7-11 .	S25

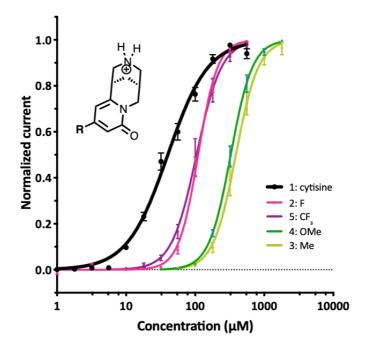
03

1. Supporting Figures S1-S5 and Tables S1-S13

Figure S1. Fluorination plot for cytisine at TyrC2 in the A2B3 stoichiometry. (A) Fluorination plot showing F_n -Phe series in blue (R^2 =0.77). The x-axis is the calculated binding energy between a Sodium ion and each side chain in the gas phase. The y-axis is the log fold shift in EC₅₀.

Table S1. Cytisine EC₅₀ values for non-canonical amino acids at TyrC2 in A2B3.

Residue	EC ₅₀ (μΙ	M)		n _H			Fold shift to WT	Fold shift to Phe	N	I _{max}
Tyr	0.0056	±	0.0001	1.4	±	0.04	1.0		13	0.11-1.9
Phe	0.012	±	0.0003	1.4	±	0.05	2.1	1.0	18	0.054-0.84
4-F ₁ -Phe	0.014	±	0.0005	1.4	±	0.07	2.5	1.2	16	0.022-0.54
3,5-F ₂ -Phe	0.34	±	0.02	1.3	±	0.1	60	28	8	0.009-0.10
3,4,5-F ₃ -Phe	0.20	±	0.009	1.3	±	0.07	36	17	13	0.034-0.30


Table S2. EC₅₀ values for cytisine derivatives at WT A2B3.

Liga	and	EC ₅₀	(nN	I)	n _H			Fold shift	N	Efficacy	$ I_{max} $ (μA)
1	Cytisine	5.6	±	0.1	1.4	±	0.04	1.0	13	0.05	0.1 - 2.1
2	F	7.1	±	0.1	1.4	±	0.03	1.3	14	0.10	0.4 – 16
3	Me	13	±	0.2	1.4	±	0.03	2.3	12	0.16	0.5 - 8.7
4	OMe	76	±	2	1.4	±	0.04	14	13	0.08	0.3 - 1.0
5	CF ₃	100	±	3	1.3	±	0.04	18	14	0.06	0.9 - 5.1
10	NHCH ₃	260	±	4	1.1	±	0.02	44	12	0.19	1.1 – 4.5

-

¹ Duffy, N. H. Studies of the Serotonin Type 3A Receptor and the Chemical Preparation of TRNA. phd, California Institute of Technology, 2014. https://doi.org/Duffy, Noah Hanville (2014) Studies of the Serotonin Type 3A Receptor and the Chemical Preparation of tRNA. Dissertation (Ph.D.), California Institute of Technology. doi:10.7907/X1YA-DM13. http://resolver.caltech.edu/CaltechTHESIS:05062014-151417635

11	Br/ NHCH ₃	230	±	6	1.2	±	0.03	37	13	0.29	0.35 - 2.2
6	Et	24	±	0.5	1.2	±	0.03	4.3	16	0.16	0.34 -3.9
7	Br/ Et	1.2	±	0.02	2.3	±	0.08	0.21	14	0.33	0.86 - 8.6
8	NH ₂	30	±	0.8	1.2	±	0.03	5.4	16	0.18	0.40 - 3.7
9	Br/ NH ₂	1.3	±	0.02	1.9	±	0.05	0.23	23	0.29	0.83 - 5.4

Figure S2. Dose-response curves of cytisine derivatives to the α 7 nAChR. The cytisine structure indicated the position of the substituent at C(10). The EC₅₀ of NHCH₃-cytisine was too far right-shifted to record a full dose-response relation.

Table S3. EC₅₀ values for cytisine derivatives at WT α 7. ND: not determined.

Lig	Ligand	EC ₅₀ (μΜ)		n _H			Fold shift	N	Efficacy	$ \mathbf{I}_{max} $	
1	Cytisine	40	±	1	1.5	±	0.07	1.0	11	ND	0.86-14	
2	F	110	±	2	3.1	±	0.2	2.8	6	ND	0.050-5.6	
5	CF ₃	110	±	4	2.4	±	0.2	2.6	7	0.16	0.22-4.1	
4	OMe	330	±	8	2.8	±	0.2	8.1	8	0.37	0.37-18	
3	Me	390	±	14	2.7	±	0.2	9.7	7	0.35	0.42-11	

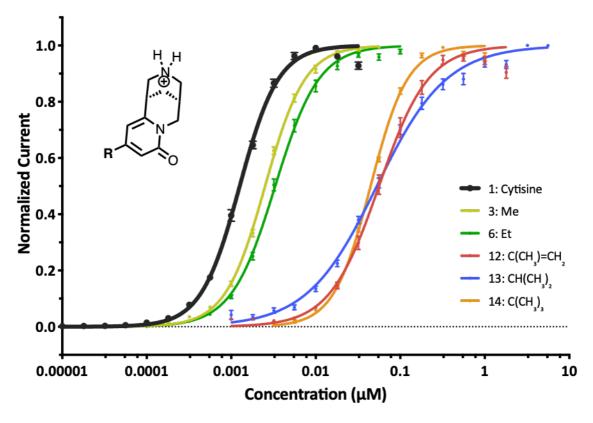
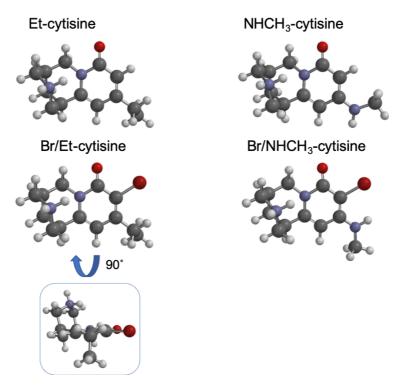



Figure S3. Investigation of steric effects on C(10)-substitution in A3B2. (A) Dose-response curves for C(10)-derivatives with increased steric bulk. Cytisine derivatives used in this series; 3 (Me), 6 (Et), 12 ($C(CH_3)CH_2$), 13 ($CH(CH_3)_2$), 14 ($C(CH_3)_3$).

Table S4. EC_{50} values for cytisine derivatives, sterics series, at WT A3B2. Volume of ligand was calculated after equilibrium geometry optimization using HF-6-31** in vacuum.

Liga	and	EC ₅	₀ (nN	A)	n _H			Fold shift	N	Efficacy	I _{max}	Volume (ų)
1	cytisine	1.3	±	0.02	1.9	±	0.05	1.0	12	0.73	0.22-27	198
3	Me	2.5	±	0.2	1.8	±	0.04	1.9	13	0.67	0.37-47	216
6	Et	3.3	±	0.06	1.7	±	0.04	2.5	16	0.51	1.1-36	234
12	C(CH ₃)CH ₂	56	±	2	1.5	±	0.06	44	12	0.14	0.28-5.8	249
13	CH(CH ₃) ₂	53	±	2	1.4	±	0.03	42	17	0.06	0.055-4.0	252
14	C(CH ₃) ₃	45	±	0.5	2.0	±	0.04	35	10	0.67	1.0-24	270

Figure S4. Conformational analysis of cytisine derivatives with NHCH₃ and Et-substituents at C(10). Lowest energy conformers of 6 (Et) and 7 (Br/Et) have the C(10)-substituent perpendicular to the pyridone ring, while 10 (NHCH₃) and 11 (Br/NHCH₃) have the substituent in the plane of the ring.

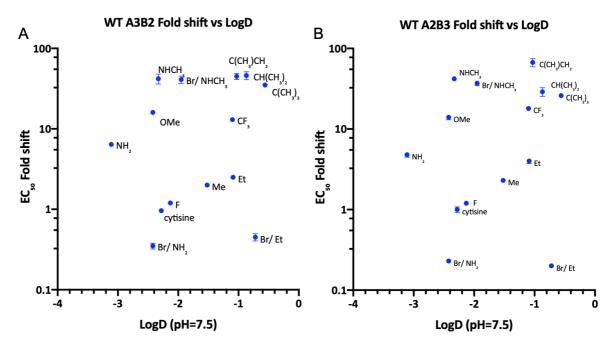


Figure S5. Scatterplot, EC_{50} fold shifts of C(10) derivatives vs $logD_{7.5}$. (A) Values for A3B2 stoichiometry and (B) values for A2B3 stoichiometry.

Table S5. Calculated electrostatic potentials of carbonyl and amine in cytisine derivatives, as well as the total volume of the ligand.

Liga	nd	Carbonyl (kcal/mol)	Amine (kcal/mol)	Volume (Å3)
5	CF ₃	8.4	171	230
2	F	4.6	170	203
1	cytisine	2.9	168	198
3	Me	0.94	166	216
6	Et	0.44	166	234
12	C(CH ₃)CH ₂	0.35	166	249
13	CH(CH ₃) ₂	0.11	166	252
4	OMe	0.03	166	225
14	C(CH ₃) ₃	0.03	165	270
7	Br/ Et	-2.1	168	253
8	NH ₂	-3.6	165	208
9	Br/ NH ₂	-5.9	167	226
10	NHCH ₃	-5.9	164	228
11	Br/NHCH ₃	-8.1	166	246

Table S6. EC_{50} and n_H values for nonsense-suppression experiments at W154 in A3B2.

Liga	and	Residue	EC ₅₀ (r	ıM)		n _H			Fold shift	ld shift N	I _{max}	
1	Cytisine	Trp	1.2	±	0.024	2.2	±	0.08		21	0.082 - 4.0	
		F ₄ -Trp	14	±	0.81	1.1	±	0.07	12	10	0.075 - 0.15	
10	NHCH ₃	Trp	41	±	55	1.4	±	0.2		12	1.5 – 16	
			1300	±	120	1.7	±	0.6				
		F ₄ -Trp	1100	±	51	1.1	±	0.06	27	14	0.080 - 0.70	
5	CF ₃	Trp	19	±	0.72	1.4	±	0.07		10	0.055 - 6.05	
		F ₄ -Trp	780	±	82	0.91	±	0.08	41	10	0.087 - 0.54	
4	OMe	Trp	15	±	0.39	1.9	±	0.08		17	0.18 – 8.8	
		F ₄ -Trp	760	±	61	0.99	±	0.07	51	10	0.021 - 0.23	
2	F	Trp	1.6	±	0.039	2.1	±	0.1		11	0.22 - 7.3	
		F ₄ -Trp	150	±	7.9	1.1	±	0.05	96	11	0.069 - 0.64	
3	Me	Trp	3.3	±	0.086	1.8	±	0.07		17	0.056 - 6.6	
		F ₄ -Trp	140	±	8.1	1.1	±	0.07	46	10	0.087 - 0.56	
6	Et	Trp	2.7	±	0.078	1.7	±	0.08		12	0.051 – 15	
		F ₄ -Trp	460	±	12	1.0	±	0.03	170	11	0.063 - 0.58	
8	NH ₂	Trp	8.5	±	0.46	1.5	±	0.1		13	0.16 – 15	
		F ₄ -Trp	550	±	72	1.0	±	0.1	65	9	0.033 - 0.78	
14	C(CH ₃) ₃	Trp	44	±	1.1	1.7	±	0.06		15	1.9 – 29	
		F ₄ -Trp	270	±	120	1.3	±	0.07	61	12	0.072 - 0.75	
9	Br/NH ₂	Trp	0.65	±	0.042	1.9	±	0.2		11	0.78 – 14	
		F ₄ -Trp	21	±	0.98	1.0	±	0.05	33	11	0.063 - 0.97	
7	Br/Et	Trp	0.41	±	0.023	2.4	±	0.3		9	1.3 – 17	
		F ₄ -Trp	14	±	0.55	1.1	±	0.05	34	12	0.077 – 1.9	
11	Br/NHCH ₃	Trp	31	±	24	1.4	±	0.1		12	0.89 – 25	
			2600	±	140	2.2	±	1				
		F ₄ -Trp	1900	±	94	1.2	±	0.07	61	13	0.074 - 0.22	

Table S7. EC_{50} and n_H values for nonsense-suppression experiments at T155 in A3B2.

	Ligand	Residue	EC ₅₀ ((nM))	n _H			Fold shift	N	I _{max}
1	Cytisine	Thr	1.7	±	0.030	1.7	±	0.05		12	0.26 - 12
		Tah	46	±	1.1	1.2	±	0.03	27	12	0.30 - 13
10	NHCH ₃	Thr	40	±	78	1.7	±	0.44		14	0.26 – 17
			770	±	290	0.84	±	0.15			
		Tah	1000	±	33	1.4	±	0.06	25	11	0.28 - 14
5	CF ₃	Thr	23	±	0.75	1.3	±	0.05		10	0.15 – 16
		Tah	1400	±	39	1.4	±	0.04	61	12	0.059 - 8.3
4	OMe	Thr	20	±	0.35	1.5	±	0.04		10	0.59 - 9.6
		Tah	430	±	15	1.3	±	0.05	22	10	0.015 - 9.3
2	F	Thr	1.8	±	0.029	1.5	±	0.03		12	0.72 - 7.0
		Tah	60	±	1.7	1.2	±	0.03	33	12	0.28 - 13
3	Me	Thr	3.4	±	0.088	1.5	±	0.06		13	0.098 - 8.2
		Tah	100	±	3.2	1.3	±	0.05	31	14	0.042 - 14
6	Et	Thr	3.1	±	0.10	1.4	±	0.06		12	0.086 - 7.3
		Tah	170	±	4.4	1.2	±	0.03	56	12	0.46 - 11
8	NH ₂	Thr	13	±	0.37	1.3	±	0.04		13	0.15 - 7.6
		Tah	220	±	4.0	1.2	±	0.02	17	12	2.4 - 15
14	C(CH ₃) ₃	Thr	43	±	0.98	1.9	±	0.07		21	0.30 - 15
		Tah	1100	±	14	1.4	±	0.02	26	11	0.16 - 8.7
9	Br/NH ₂	Thr	0.40	±	0.0089	2.2	±	0.10		13	0.031 - 6.0
		Tah	3.7	±	0.084	1.4	±	0.04	9.3	13	0.45 - 17
7	Br/Et	Thr	0.50	±	0.016	2.0	±	0.12		12	0.30 - 7.7
		Tah	5.6	±	0.13	1.3	±	0.03	11	11	1.6 – 20
11	Br/NHCH ₃	Thr	38	±	47	1.3	±	0.13		20	0.13 – 34
			3400	±	150	1.4	±	0.43			
		Tah	97	±	31	1.3	±	0.05	25	10	0.97 - 12

Table S8. EC_{50} and n_H values for nonsense-suppression experiments at L119 in A3B2.

	Ligand	Residue	EC ₅₀ ((nM))	n _H			Fold shift	N	I _{max}
1	Cytisine	Leu	1.2	±	0.023	1.9	±	0.06		13	0.069 - 2.8
		Lah	38	±	0.92	1.1	±	0.03	32	15	0.67 - 23
10	NHCH ₃	Leu	41	±	91	1.5	±	0.3		11	0.064 – 1.1
			1300	±	150	1.1	±	0.4			
		Lah	1300	±	20	1.5	±	0.03	32	13	0.13 – 5.5
5	CF ₃	Leu	17	±	0.66	1.2	±	0.06		10	0.012 – 1.3
		Lah	250	±	4.6	1.1	±	0.02	15	12	0.030 - 7.6
4	OMe	Leu	18	±	0.34	1.6	±	0.05		11	0.057 – 1.0
		Lah	530	±	13	1.2	±	0.03	30	12	0.10 – 7.4
2	F	Leu	2.0	±	0.029	2.0	±	0.05		14	0.057 - 0.90
		Lah	36	±	0.55	1.2	±	0.02	18	14	0.53 – 7.9
3	Me	Leu	2.8	±	0.074	1.8	±	0.07		11	0.11 – 1.0
		Lah	130	±	2.6	1.1	±	0.02	46	11	0.050 - 2.7
6	Et	Leu	4.5	±	0.24	1.2	±	0.07		11	0.075 – 1.4
		Lah	79	±	3.1	1.2	±	0.05	18	12	0.31 – 4.9
8	NH ₂	Leu	9.5	±	0.19	1.4	±	0.03		15	0.48 – 16
		Lah	230	±	4.1	1.2	±	0.02	25	14	0.077 – 49
14	C(CH ₃) ₃	Leu	49	±	0.86	1.8	±	0.05		16	0.14 – 11
		Lah	950	±	17	1.4	±	0.03	19	16	0.79 - 33
9	Br/NH ₂	Leu	0.41	±	0.0068	2.2	±	0.07		12	0.32 - 5.2
		Lah	2.4	±	0.043	1.6	±	0.04	5.9	11	1.1 – 28
7	Br/Et	Leu	0.40	±	0.020	1.4	±	0.1		13	0.055 - 0.47
		Lah	1.0	±	0.047	1.6	±	0.1	2.5	12	0.20 – 7.1
11	Br/NHCH ₃	Leu	37	±	48	1.4	±	0.2		13	0.32 – 11
			2900	±	130	1.6	±	0.7			
		Lah	410	±	11	1.2	±	0.03	11	14	10 - 46

Table S9. EC_{50} and n_H values for nonsense-suppression experiments at Y202 in A3B2.

	Ligand	Residue	EC ₅₀ (1	ıM)		$n_{\rm H}$			Fold shift	N	I _{max}
1	Cytisine	Phe	6.6	±	0.14	1.4	±	0.04		13	0.064 - 22
		F ₃ -Phe	160	±	6.3	1.1	±	0.05	24	13	0.44 - 8.0
10	NHCH ₃	Phe	53	±	71	1.3	±	0.3		18	0.10 – 12
			5700	±	69	1.4	±	0.3			
		F ₃ -Phe	5300	±	300	1.0	±	0.06	100	15	0.025 – 2.9
5	CF ₃	Phe	6.9	±	0.78	0.78	±	0.06		12	0.64 – 8.6
		F ₃ -Phe	460	±	38	1.17	±	0.1	67	12	0.14 - 0.83
4	OMe	Phe	28	±	4.4	0.71	±	0.1		14	0.25 - 6.3
		F ₃ -Phe	1500	±	120	0.76	±	0.05	54	16	0.17 - 0.83
2	F	Phe	10	±	0.69	0.78	±	0.04		15	0.31 – 8.9
		F ₃ -Phe	190	±	10	0.88	±	0.04	19	16	0.21 – 1.1
3	Me	Phe	14	±	1.1	0.76	±	0.05		14	0.16 – 7.5
		F ₃ -Phe	140	±	8.4	1.0	±	0.06	10	13	0.059 - 0.50
6	Et	Phe	2.3	±	0.077	1.9	±	0.1		14	0.040 - 3.3
		F ₃ -Phe	160	±	6.9	1.3	±	0.07	70	10	0.15 – 1.3
8	NH ₂	Phe	36	±	1.1	1.4	±	0.05		14	0.50 - 8.5
		F ₃ -Phe	2200	±	67	1.2	±	0.04	61	11	0.088 - 5.7
14	C(CH ₃) ₃	Phe	160	±	12	0.96	±	0.07		12	0.064 - 0.67
		F ₃ -Phe	6000	±	590	1.0	±	0.09	38	9	0.017 - 0.32
9	Br/NH ₂	Phe	0.68	±	0.018	2.5	±	0.2		11	0.043 – 7.7
		F ₃ -Phe	30	±	0.84	1.1	±	0.03	44	6	0.30 - 2.4
7	Br/Et	Phe	0.41	±	0.020	2.6	±	0.3		15	0.053 - 7.6
		F ₃ -Phe	13	±	1.3	0.73	±	0.06	32	9	0.10 – 10
11	Br/NHCH ₃	Phe	3.0	±	42	1.6	±	0.2		17	0.081 – 13
			260	±	110	1.2	±	0.4			
		F ₃ -Phe	280	±	52	1.0	±	0.1	93	16	0.49 – 5.4
			8900	±	100	2.7	±	2			

Table S10. EC_{50} and n_{H} values for nonsense-suppression experiments at W154 in A2B3.

1.3 0.97 1.2 1.2 1.2	± ± ± ± ± ±	0.09 0.03 0.05 0.04	23	15 9 13	0.053 - 1.1 $0.057 - 0.17$ $0.16 - 4.3$
1.2 1.2 1.2	± ±	0.05			
1.2 1.2 1.3	± ±	0.04	12	13	0.16 - 4.3
1.2	±		12		-
1.3		0.05		14	0.088 - 1.1
	+	0.05		14	0.18 – 4.5
1.5	_	0.05	16	10	0.14 - 0.75
1.5	±	0.1		14	0.10 - 2.6
1.2	±	0.05	17	10	0.054 - 0.41
1.6	±	0.08		14	0.13 – 2.1
1.1	±	0.05	26	13	0.051 - 0.22
1.6	±	0.08		12	0.24 - 2.1
1.2	±	0.06	24	11	0.023 - 0.26
1.6	±	0.08		14	0.072 - 0.79
1.1	±	0.1	24	11	0.011 - 0.84
1.3	±	0.06		16	0.28 - 6.2
1.0	±	0.03	18	9	0.023 - 0.85
1.4	±	0.07		11	0.088 - 2.3
1.2	±	0.1	44	17	0.015 - 1.2
1.8	±	0.2		12	0.15 - 11
1.1	±	0.05	10	12	0.14 – 1.2
2.9	±	0.2		10	0.33 – 1.4
1.1	±	0.05	19	6	0.060 - 0.25
	±			1.1	0.21 2.2
1.2	_	0.04		11	0.21 - 3.2
	1.1 1.3 1.0 1.4 1.2 1.8 1.1 2.9	1.1 ± 1.3 ± 1.0 ± 1.4 ± 1.2 ± 1.8 ± 1.1 ± 2.9 ± 1.1 ±	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

Table S11. EC_{50} and n_H values for nonsense-suppression experiments at T155 in A2B3.

	Ligand	Residue	EC ₅₀ ((nM))	n _H			Fold shift	N	I _{max}
1	Cytisine	Thr	7.2	±	0.18	1.4	±	0.04		12	0.19 - 0.56
		Tah	130	±	2.5	1.2	±	0.02	18	10	0.024 - 0.43
10	NHCH ₃	Thr	180	±	3.3	1.33	±	0.03		13	0.048 - 0.49
		Tah	2800	±	52	1.4	±	0.03	16	12	0.23 - 2.3
5	CF ₃	Thr	110	±	1.6	1.3	±	0.02		11	0.12 - 0.48
		Tah	3700	±	47	1.4	±	0.02	34	11	0.23 – 1.9
4	OMe	Thr	85	±	1.8	1.3	±	0.03		13	0.050 - 0.61
		Tah	1400	±	23	1.3	±	0.03	16	10	0.20 - 0.7.8
2	F	Thr	5.5	±	0.15	1.3	±	0.04		9	0.020 - 0.43
		Tah	170	±	2.5	1.2	±	0.02	31	11	0.023 – 1.8
3	Me	Thr	11	±	0.24	1.4	±	0.04		7	0.043 - 0.68
		Tah	330	±	4.1	1.3	±	0.02	30	19	0.38 - 2.5
6	Et	Thr	15	±	0.20	1.5	±	0.03		15	0.031 - 0.59
		Tah	680	±	12	1.3	±	0.03	45	14	0.11 - 0.94
8	NH ₂	Thr	42	±	0.55	1.2	±	0.02		12	0.056 - 0.87
		Tah	850	±	11	1.2	±	0.02	20	13	0.053 - 0.47
14	C(CH ₃) ₃	Thr	230	±	5.4	1.3	±	0.03		14	0.093 - 0.42
		Tah	2000	±	55	1.2	±	0.03	8.7	15	0.052 - 1.6
9	Br/NH ₂	Thr	1.4	±	0.032	1.8	±	0.07		14	0.099 – 1.8
		Tah	16	±	0.17	1.3	±	0.02	11	15	0.12 – 1.2
7	Br/Et	Thr	0.89	±	0.019	2.4	±	0.1		14	0.20 – 1.6
		Tah	18	±	0.37	1.3	±	0.03	20	15	0.23 – 3.3
11	Br/NHCH ₃	Thr	190	±	3.0	1.2	±	0.02		13	0.22 - 0.94
		Tah	2300	±	37	1.3	±	0.02	12	15	0.20 - 2.7

Table S12. EC_{50} and n_{H} values for nonsense-suppression experiments at L119 in A2B3.

	Ligand	Residue	EC ₅₀ (nM)			n _H			Fold shift	N	I _{max}
1	Cytisine	Leu	4.9	±	0.096	1.3	±	0.03		11	0.078 - 1.3
		Lah	190	±	5.1	1.0	±	0.02	39	12	0.081 - 0.11
10	NHCH ₃	Leu	160	±	6.7	1.0	±	0.04		7	0.21 – 1.9
		Lah	3800	±	76	1.4	±	0.04	24	11	0.079 – 1.0
5	CF ₃	Leu	57	±	1.3	1.3	±	0.03		14	0.16 – 3.0
		Lah	990	±	20	1.4	±	0.03	17	12	0.59 – 3.7
4	OMe	Leu	65	±	1.9	1.2	±	0.04		10	0.043 - 0.31
		Lah	2100	±	30	1.2	±	0.02	32	13	0.036 – 3.1
2	F	Leu	5.2	±	0.13	1.5	±	0.05		11	0.031 - 0.47
		Lah	170	±	3.4	1.3	±	0.03	33	10	0.064 - 0.63
3	Me	Leu	8.7	±	0.29	1.3	±	0.05		11	0.11 – 2.0
		Lah	460	±	8.3	1.3	±	0.03	53	11	0.43 – 3.5
6	Et	Leu	18	±	0.40	1.4	±	0.04		11	0.097 – 1.1
		Lah	630	±	13	1.3	±	0.03	35	9	0.43 – 1.6
8	NH ₂	Leu	43	±	0.85	1.1	±	0.02		15	0.3 – 2.4
		Lah	2200	±	39	1.2	±	0.02	51	14	0.044 - 8.2
14	C(CH ₃) ₃	Leu	160	±	3.9	1.3	±	0.04		12	0.030 - 0.29
		Lah	5300	±	91	1.3	±	0.03	33	15	0.11 – 0.95
9	Br/NH ₂	Leu	1.5	±	0.024	1.9	±	0.05		14	0.59 – 3.1
		Lah	31	±	0.97	1.2	±	0.04	21	15	0.24 – 20
7	Br/Et	Leu	0.87	±	0.018	2.0	±	0.07		16	0.17 – 2.2
		Lah	8.1	±	0.22	1.4	±	0.05	9.3	11	0.96 – 4.6
11	Br/NHCH ₃	Leu	160	±	4.6	1.3	±	0.04		12	0.080 - 0.81
		Lah	3000	±	41	1.2	±	0.02	19	15	0.12 – 2.7

Table S13. EC_{50} and n_{H} values for nonsense-suppression experiments at Y202 in A2B3.

	Ligand	Residue	EC ₅₀ ((nM)		n _H			Fold shift	N	I _{max}
1	Cytisine	Phe	12	±	0.35	1.4	±	0.05		18	0.076 - 0.84
		F ₃ -Phe	200	±	9.2	1.3	±	0.07	17	13	0.034 - 0.30
10	NHCH ₃	Phe	110	±	5.7	1.3	±	0.08		11	0.064 - 0.31
		F ₃ -Phe	8000	±	610	1.1	±	0.08	73	12	0.022 - 0193
5	CF ₃	Phe	6.2	±	0.17	1.5	±	0.05		16	0.045 - 0.24
		F ₃ -Phe	720	±	53	1.2	±	0.1	116	14	0.008 - 0.040
4	OMe	Phe	42	±	3.2	1.4	±	0.1		10	0.017 - 0.086
		F ₃ -Phe	1400	±	100	1.4	±	0.1	33	11	0.010 - 0.19
2	F	Phe	7.9	±	0.53	1.2	±	0.09		12	0.036 - 0.16
		F ₃ -Phe	200	±	12	1.4	±	0.1	25	12	0.015 - 0.022
3	Me	Phe	8.6	±	0.30	1.2	±	0.05		12	0.036 - 0.30
		F ₃ -Phe	250	±	28	1.0	±	0.1	29	11	0.007 - 0.032
6	Et	Phe	7.9	±	1.4	1.0	±	0.1		9	0.017 - 0.072
		F ₃ -Phe	580	±	51	1.1	±	0.1	73	9	0.006 - 0.17
8	NH ₂	Phe	85	±	3.4	1.4	±	0.07		5	0.054 - 0.136
		F ₃ -Phe	4000	±	230	1.3	±	0.1	47	10	0.010 - 0.096
14	C(CH ₃) ₃	Phe	300	±	19	1.5	±	0.1		11	0.014 - 0.13
		F ₃ -Phe	5000	±	880	1.4	±	0.3	17	6	0.005 - 0.017
9	Br/NH ₂	Phe	2.1	±	0.10	1.6	±	0.1		10	0.064 – 1.6
		F ₃ -Phe	96	±	6.2	1.0	±	0.07	46	6	0.16 – 0.89
7	Br/Et	Phe	1.3	±	0.042	2.1	±	0.1		13	0.082 - 0.34
		F ₃ -Phe	26	±	1.5	1.1	±	0.07	20	13	0.025 - 0.27
11	Br/NHCH ₃	Phe	10	±	0.46	1.4	±	0.08		10	0.21 -0.98
		F ₃ -Phe	560	±	27	1.3	±	0.07	56	11	0.023 - 0.16

2. Synthetic methods

2.1 General synthetic chemistry experimental protocols.

All reagents were purchased from commercial suppliers and used without further purification unless otherwise stated. Anhydrous solvents were obtained by distillation using standard procedures or by using the Anhydrous Engineering Ltd. double alumina and alumina-copper catalyzed drying columns. Reactions requiring anhydrous conditions were run under an atmosphere of dry nitrogen; glassware and needles were flamed-dried prior to use or placed in the oven (150 °C) for at least 2 h and allowed to cool in a desiccator. Thin layer chromatography was performed using aluminum-backed 60 F254 silica plates. Visualization was achieved by UV fluorescence or a basic KMnO₄ solution and heat. Flash column chromatography was performed on silica gel (Aldrich 40-63 µm, 230-400 mesh).

Infrared spectra were recorded using a Perkin Elmer Spectrum One FT-IR Spectrometer as solids or neat films in the range of 600-4000 cm⁻¹. NMR spectra were recorded using either a Varian 400 MHz or 500 MHz spectrometer. Chemical shifts are quoted in parts per million, coupling constants are given in Hz to the nearest 0.5 Hz. ¹H and ¹³C NMR spectra are referenced to the appropriate residual peak. DEPT135, COSY, HSQC and HMBC were used in assigning NMR spectra. Melting points were determined using Reichert melting point apparatus. Mass spectra were determined by the University of Bristol mass spectroscopy service by electrospray ionization (ESI⁺) using a Bruker Daltonics micrOTOF II spectrometer.

2.2 Structural assignment and numbering system.

Structural assignments follow from earlier work² to develop access to C(10) cytisine derivatives and only compounds not previously described are reported here.

The numbering system described below has been used in the Supplemental Information for NMR assignment and discussion of C(10)-monosubstituted and C(9),C(10)-disubstituted cytisine derivatives. For simplicity, the cytisine derivatives have been named using the scaffold as shown here.

S15

². Campello, H. R.; Del Villar, S. G.; Honraedt, A.; Viñas, T. M.; Oliveira, A. S. F.; Ranaghan, K. E.; Shoemark, D. K.; Bermudez, I.; Gotti, C.; Sessions, R. B.; Mulholland, A. J.; Wonnacott, S.; Gallagher, T. *Chem,* **2018**, *4*, 1710-1725.

Figure S6. The numbering system for cytisine used here.³

2.3 Summary and General procedures.

C(10)-functionalization of *N*-Boc cytisine (prepared from enantiomerically pure (-)-cytisine) via iridium-catalysed C–H activation/borylation has been described previously.¹ This chemistry was used previously to prepare 10-bromocytisine and C(10) ligands **3**, **4**, **6**, **12**, **13** and **14**. In this paper, the C-H activation of N-Boc cytisine has been applied to generate new C(10) and C(9)/C(10) ligands using either N-Boc 10-bromocytisine¹ or N-Boc 10-iodocytisine (described here) as key intermediates. Synthetic details (summarized in schemes 1 and 2), including key intermediates and compound characterization data, for novel C(10) ligands **2**, **5**, **8** and **10** and the 9-bromo-10-substituted variants **7**, **9** and **11** are provided here.

Scheme S1. Transformations to provide ligands 5 and 7.

³. Rouden, J.; Lasne, M. C.; Blanchet, J.; Baudoux, J. Chem. Rev. **2014**, 114, 712-778.

S16

Scheme S2. Transformations from N-Boc 10-bromocytisine to provide derivatives 2, 8, 9, 10 and 11.

(i) General procedure A: C(9) Bromination of C(10)-substituted cytisine derivatives.

To a solution of the corresponding N-Boc C(10)-substituted cytisine derivative (specifically N-Boc precursors of 6, 8 and 10; 1 equiv.) in THF (0.05 M) was added N-bromosuccinimide (1 equiv.) and the reaction mixture was stirred at room temperature for 18 h. Water (10 volumes) was added, and the aqueous phase was extracted with EtOAc (3 x 10 volumes). The combined organic phases were dried over Na₂SO₄, filtered and concentrated. Purification of the crude reaction mixture by flash column chromatography afforded the corresponding N-Boc 9-bromo-10-substituted cytisine derivatives which were deprotected (see below) to provide 7, 9 and 11.

(ii) General procedure B: N-Boc deprotection and conversion to HCl salt.

The intermediate *N*-Boc C(10)-substituted (or C(9)-bromo-C(10)-disubstituted) cytisine derivative was dissolved in 0.5 M HCl in methanol (concentration of the substrate approx. 0.1

M) and the reaction mixture was stirred at room temperature for 72 h. The solvent was removed *in vacuo*, the residue was dissolved in the minimum amount of methanol, and acetone was added slowly to give approx. 1:10 v/v of methanol/acetone. After 2 h, the precipitated HCl salt was collected by filtration, washed with cold acetone and dried. This provided final products of good purity and the salts were not purified further.

3 Synthesis of C(10)-substituted cytisine derivatives.

3.1 (+)-10-Aminocytisine.HCl 8.

(i) N-Boc 10-aminocytisine.

A resealable tube was charged with *N*-Boc 10-bromocytisine¹ (1.85 g, 5 mmol), copper powder (32 mg, 10 mol%) and ammonium hydroxide (15 mL, conc. aq. sol.) was added. The tube was sealed the mixture was stirred at 100 °C (CAUTION) for 24 h, after which the solution was cooled to room temperature and extracted with DCM (5 x 50 mL). The combined extracts were dried over Na₂SO₄, filtered and concentrated *in vacuo*. Purification of the crude reaction mixture by flash column chromatography [DCM/MeOH/NH₄OH: (89:10:1)] afforded the N-Boc 10-aminocytisine (1.30 g, 85%) as an off-white solid. During this procedure, some cleavage of the N-Boc residue (to give 10-aminocytisine **8** directly) was also observed by TLC.

R_f: 0.28 [DCM/MeOH (10% MeOH)]; **mp:** >200 °C (toluene); **FTIR** (**neat**) 3414, 3302, 3211, 2905, 1679, 1642, 1551 cm⁻¹; ¹**H NMR (400 MHz, MeOD, δ)** 5.83 (s, 1H, C9-H), 5.51 (s, 1H, C11-H), 4.29-4.02 (m, 3H, C6-Ha, C2-H, C4-H), 3.68 (dd, 1H, J = 6.5, 14.5 Hz, C6-Hb), 3.34-2.93 (m, 3H, C1-H, C2-H, C4-H), 2.36 (s, 1H, C5-H), 1.98 (m, 2H, C13-H), 1.34-1.24 (m, 9H, Boc); ¹³**C NMR (100 MHz, MeOD, δ)** 165.2 (CO), 157.7 (CO Boc), 154.7 (C12), 149.0/148.8 (C10, rotamers), 99.6/99.3 (C9, rotamers), 91.9 (C11), 80.1/79.6 (Boc, rotamers), 51.4/50.2/50.1 (C2, C4, rotamers), 49.0 (C6), 34.9 (C1), 27.9/27.7 (C5, rotamers), 27.0 (Boc), 25.7 (C13); **HRMS (ESI**⁺) **m/z** [M+H]⁺ Calcd for C₁₆H₂₄N₃O₃ 306.1812; Found 306.1809.

(ii) 10-Aminocytisine.HCl 8.

N-Boc 10-aminocytisine (1.0 mmol) was deprotected using the General Procedure B afforded (+)-10-aminocytisine. HCl 8 (273 mg, 98%) as an off-white solid.

mp: >200 °C; [α]_D²⁵ = +77 [c 1.0, MeOH]; FTIR (neat) 2929, 2790, 1649, 1533 cm⁻¹; ¹H NMR (400 MHz, D₂O, δ) 6.26 (s, 1H, C11-H), 4.09 (d, 1H, J = 15.0 Hz, C6-Ha), 3.95 (dd, 1H, J = 6.5, 15.0 Hz, C6-Hb), 3.41-3.26 (m, 5H, C1-H, C2-H, C4-H), 2.68 (s, 1H, C5-H), 2.07-1.94 (m, 2H, C13-H); Note: C9-H was not observed in D₂O (see comment relating to ligand 10 below).

¹³C NMR (100 MHz, D₂O, δ) 161.4 (CO), 159.1 (C10), 148.1 (C12),104.5 (C9), 91.5 (C11), 49.2 (C2 or C4), 48.8 (C6), 48.1 (C2 or C4), 31.2 (C1), 24.5 (C5), 22.5 (C13); HRMS (ESI⁺) m/z [M+H]⁺ Calcd for C₁₁H₁₆N₃O 206.1288; Found 206.1292.

3.2 (-)-10-Fluorocytisine 2.

To a solution of *N*-Boc 10-aminocytisine (305 mg, 1.0 mmol) in HF-pyridine complex (70%, 2.0 mL) at -20 °C was slowly added 'BuONO (0.18 mL, 1.5 mmol) over 1 min. The mixture was stirred at -20 °C for 30 min, warmed to room temperature and stirred for 2 h and finally heated at 60 °C overnight. The reaction mixture was cooled to 0 °C and taken to pH 10 with conc. aqueous NH₃. The mixture was diluted with EtOAC (10 mL), filtered to remove insoluble material, the aqueous phase was extracted with EtOAc (4 x 10 mL) and the combined organic layers were concentrated *in vacuo*. The crude reaction mixture was partitioned between 3M HCl (5 mL) and DCM (5 mL). The aqueous layer was washed with DCM (2 x 5 mL), basified with concentrated NH₄OH to pH 10 and extracted with DCM (5 x 5 mL). The combined organic layers were dried over Na₂SO₄, filtered and concentrated *in vacuo*. Purification of the crude by flash column chromatography [DCM/MeOH/NH₄OH (89:10:1)] gave (–)-10-fluorocytisine 2 (140 mg, 67%) as a pale-yellow solid. Note that N-Boc cleavage occurred under these reaction conditions and a pure sample of the free base was obtained by recrystallization in toluene.

R_f: 0.25 [DCM/MeOH (20% MeOH)]; **mp**: 143-145 °C (toluene); [α]_D²⁵ = -92 [c 1.0, EtOH]; **FTIR (neat)** 3391, 3289, 1644, 1552 cm⁻¹; ¹**H NMR (400 MHz, CDCl₃, δ)** 6.06 (dd, 1H, J = 2.5, 11.0 Hz, C9-H), 5.87 (dd, 1H, J = 2.5, 7.0 Hz, C11-H), 4.04 (d, 1H, J = 15.5 Hz, C6-Ha), 3.83 (dd, 1H, J = 6.5, 15.5 Hz, C6-Hb), 3.08-2.95 (m, 4H, C2-H, C4-H), 2.89-2.86 (m, 1H, C1-H), 2.34-2.29 (m, 1H, C5-H), 1.93 (m, 2H, C13-H), 1.56 (br s, 1H, NH); ¹³**C NMR (100 MHz, CDCl₃, δ)** 169.9 (d, J = 264 Hz, C10), 164.8 (d, J = 19 Hz, CO), 153.5 (d, J = 13.5 Hz, C12), 99.6 (d, J = 16.5 Hz, C9), 96.5 (d, J = 26 Hz, C11), 53.7/52.9 (C2, C4), 49.8 (C6), 36.0 (d, J = 2 Hz, C1), 27.5 (C5), 26.2 (C13); ¹⁹**F NMR (376 MHz, CDCl₃, δ)** -99.6 (m); **HRMS (ESI**⁺) **m/z** [M+H]⁺ Calcd for C₁₁H₁₄FN₂O 209.1090; Found 209.1095. **Anal. Calcd** for C₁₁H₁₃FN₂O: C, 63.45; H, 6.29; N, 13.45. Found: C, 63.06; H, 6.33; N, 13.20.

The corresponding HCl salt was prepared by dissolution of the free base in methanolic HCl and evaporation under vacuum for biological study.

3.3 (-)-10-Trifluoromethylcytisine.HCl 5.

(i) N-Boc 10-iodocytisine

N-Boc 10-(Bpin)cytisine was prepared on a 5 mmol scale as previously described.¹

In a Schlenk flask, Cu(NO₃)₂·3H₂O (2.42 g, 10.0 mmol), NH₄I (1.45 g, 10.0 mmol) and 4 Å molecular sieves (500 mg) were added to the crude borylation mixture (see above). The Schlenk flask was placed under nitrogen and backfilled with oxygen for three times. The reaction mixture was dissolved in DMF (25 mL) and heated at 80 °C for 24 h under an oxygen atmosphere (balloon). The solvent was removed *in vacuo* and the residue was dissolved in DCM. The mixture was poured over ammonia (30 mL, 15% aq. sol.), the layers separated, and the aqueous phase was extracted with DCM (3 x 25 mL). The combined organic layers were dried over Na₂SO₄, filtered and concentrated. Purification of the crude reaction mixture by flash column chromatography [DCM/MeOH (2% MeOH)] gave N-Boc 10-iodocytsine (1.99 g, 95%) as a pale-yellow solid.

R_f: 0.21 [DCM:MeOH (3% MeOH)]; **mp:** 139 - 140 °C, needles (toluene); **FTIR** (**neat**) 2920, 1679, 1632, 1523 cm⁻¹; ¹**H NMR (500 MHz, CDCl₃, δ,** acquired at 52 °C to mitigate peak broadening) 6.90 (d, J = 2.0 Hz, 1H, C9-H), 6.37 (d, J = 2.0 Hz, 1H, C11-H), 4.39-4.04 (m, 3H, C2-H, C4-H, C6-H), 3.72 (dd, J = 16.0, 7.0 Hz, 1H, C6-H), 3.09-2.93 (m, 2H, C2-H, C4-H), 2.89 (s, 1H, C1-H), 2.39 (s, 1H, C5-H), 1.99-1.87 (m, 2H, C13-H), 1.26 (s, 9H, Boc); ¹³**C NMR (125 MHz, CDCl₃, δ, 52** °C) 161.6 (CO), 154.3 (Boc), 148.8 (C12), 126.3 (C9), 114.3 (C11), 108.2 (C10), 80.1 (Boc), 50.4/49.3 (C2, C4), 48.8 (C6), 34.5 (C1), 28.1 (Boc), 27.5 (C5), 26.1 (C13); **HRMS (ESI**⁺) **m/z** [M+H]⁺ Calcd for C₁₆H₂₂IN₂O₃ 417.0670; Found 417.0672; **m/z** [M+Na]⁺ Calcd for C₁₆H₂₁IN₂NaO₃ 439.0489; Found 439.0491.

(ii) N-Boc 10-trifluoromethylcytisine

A Schlenk flask was charged with *N*-Boc 10-iodocytisine (2.08 g, 5.0 mmol), copper iodide (4.52 g, 23.7 mmol), anhydrous potassium fluoride (1.38 g, 23.7 mmol) and trimethyl(trifluoromethyl)silane (3.5 mL, 23.7 mmol) in DMF (24 mL). The reaction mixture was placed under nitrogen and stirred at 50 °C for 16 h. After this time, the solvent was removed *in vacuo* and the residue distributed between DCM (20 mL) and ammonia (20 mL, 15% aq. sol.). The aqueous phase was extracted with DCM (3 x 20 mL) and the combined organic phases were dried over Na₂SO₄, filtered and the solvent was removed *in vacuo*. Purification of the crude reaction mixture by flash column chromatography [EtOAc/*n*-Hexane (4:1)] yielded N-Boc-10-trifluoromethylcytisine (1.52 g, 85%) as a colorless solid.

mp: 150-151 °C (toluene); FTIR (neat) 2981, 1680, 1664, 1547 cm⁻¹; ¹H NMR (500 MHz, CDCl₃, δ) 6.73 (s, 1H, C9-H), 6.22 (s, 1H, C11-H), 4.48-4.15 (m, 3H, C2-H, C4-H, C6-H), 3.85 (dd, 1H, J = 16.0, 6.5 Hz, C6-H), 3.22-2.95 (m, 3H, C2-H, C4-H, C5-H), 2.49 (s, 1H, C1-H),

2.02 (m, 2H, C13-H), 1.43-1.15 (m, 9H, Boc); ¹³C NMR (125 MHz, CDCl₃, δ) 162.2 (CO), 154.5/154.0 (CO, rotamers), 151.4/151.0 (C12, rotamers), 141.0-139.5 (C10, poorly resolved due to amide resonance), 122.4 (q, J = 270 Hz, $\underline{C}F_3$), 114.2 (C9), 100.6/99.9 (C11, rotamers), 80.6/80.0 (Boc, rotamers), 51.5/50.5/50.1/49.2 (C2, C4, rotamers), 49.3 (C6), 35.3 (C1), 27.9 (Boc), 27.4 (C5), 25.9 (C13); ¹⁹F NMR (470 MHz, CDCl₃, δ) -66.5 (d, J = 102 Hz); HRMS (ESI⁺) m/z [M+H]⁺ Calcd for C₁₇H₂₂F₃N₂O₃ 359.1577; Found 359.1584, m/z [M+Na]⁺ Calcd for C₁₇H₂₁F₃N₂NaO₃ 381.1396; Found: 381.1406; Anal. Calcd for C, 56.98; H, 5.91; N, 7.82. Found: C, 56.65; H, 5.55; N, 8.10.

(iii) (-)-10-Trifluoromethylcytisine.HCl 5.

N-Boc 10-trifluoromethylcytisine (100 mg, 0.28 mmol) was deprotected using the General Procedure B afforded (-)-10-trifluoromethylcytisine.HCl **5** (55 mg, 77%) as a colorless solid. **mp:** >200 °C; colorless powder; [α]_D²⁶ = -66 [c 0.5, MeOH]; **FTIR** (**neat**): 1658, 1551, 1278, 1166, 857 cm⁻¹; ¹**H NMR** (**500 MHz**, **D**₂**O**, **δ**) 6.82 (s, 1H, C9-H), 6.70 (s, 1H, C11-H), 4.11 (d, 1H, J = 15.5 Hz, C6-H), 3.97 (d, 1H, J = 15.5, 6.5 Hz, C6-H), 3.53-3.30 (m, 5H, C2-H, C4-H, C1-H), 2.78 (s, 1H, C5-H), 2.05 (m, 2H, C13-H); ¹³**C NMR** (**125 MHz**, **D**₂**O**, **δ**) 164.3 (CO), 149.3 (C12), 141.5 (q, J = 34.0 Hz, C10), 122.2 (q, J = 273.0 Hz, $C_3 = 273.0$ Hz,

3.4 (+)-10-(N-Methylamine)cytisine.HCl 10.

(i) N-Boc 10-(N-methylamino)cytisine

A resealable tube was charged with *N*-Boc 10-bromocytisine¹ (369 mg, 1.0 mmol) and copper (7 mg, 10 mol%), and MeNH₂ (2.0 mL, 40% aq. sol.) was added. The tube was sealed and mixture was stirred at 100 °C (CAUTION) for 24 h. The solution was cooled to room temperature and extracted with DCM (5 x 10 mL). The combined organic layers were dried over Na₂SO₄, filtered and concentrated *in vacuo*. Purification of the crude reaction mixture by flash column chromatography (DCM/MeOH (94:6)] gave N-Boc 10-(N-methylamino)cytisine (274 mg, 86%) as an off-white solid.

R_f: 0.58 [DCM/MeOH (10% MeOH)]; **mp:** 198-200 °C (toluene); **FTIR (neat)** 3266, 2928, 1684, 1641, 1571 cm⁻¹; ¹**H NMR (400 MHz, CDCl₃, δ)** 5.49 (s, 1H, C9-H), 5.37 (s, 1H, C11-H), 4.53 (s, 1H, NH), 4.28-4.03 (m, 3H, C6-Ha, C2-H, C4-H), 3.72 (dd, 1H, J = 6.5, 15.0 Hz, C6-Hb), 3.02-2.70 (m, 6H, C1-H, C2-H, C4-H, NHMe), 2.31 (s, 1H, C5-H), 1.93-1.81 (m, 2H, C13-H), 1.32-1.22 (br s, 9H, Boc); ¹³**C NMR (100 MHz, CDCl₃, δ)** 164.7 (CO), 156.0 (CO

Boc), 154.8/154.5 (C12, rotamers), 147.9/147.3 (C10, rotamers), 98.0/97.2 (C9, rotamers), 90.4/90.1 (C11, rotamers), 80.2/79.6 (Boc, rotamers), 51.7/50.7/50.4/49.4 (C2, C4, rotamers), 47.9 (C6), 34.8 (C1), 29.4 (NHMe), 28.1 (Boc), 27.6 (C5), 26.4 (C13); **HRMS (ESI**⁺) $\mathbf{m/z}$ [M+H]⁺ Calcd for C₁₇H₂₆N₃O₃ 320.1969; Found 320.1974.

(ii) (+)-10-(N-methylamino)cytisine. $HCl \ \mathbf{10}$.

Following the general procedure B, *N*-Boc 10-(*N*-methylamino)cytisine (0.77 mmol) gave (+)-10-(*N*-methylamino)cytisine.HCl **10** (190 mg, 85%) as a colorless solid.

mp: >200 °C, colorless powder; [α]_D²⁵ = +66 [c 1.0, MeOH]; **FTIR** (**neat**): 3240, 2939, 2714, 2583, 1644, 1557 cm⁻¹; ¹**H NMR** (**400 MHz, D₂O, δ**) 6.25 (s, 1H, C11-H), 4.09 (d, 1H, J = 15.0 Hz, C6-Ha,), 3.95 (dd, 1H, J = 6.5, 15.0 Hz, C6-Hb), 3.42-3.26 (m, 5H, C1-H, C2-H, C4-H), 2.71 (m, 4H, C5-H, NHMe), 2.05-1.94 (m, 2H, C13-H) Note: as with **8**, C9-H was not observed in D₂O. In D₆ DMSO we observed both C11-H and C9-H: 5.45 (d, 1H, J = 3.0 Hz) and 5.03 (d, 1H, J = 3.0 Hz) which suggests that C9-H undergoes H/D exchange; ¹³C NMR (**100 MHz, D₂O, δ**) 160.7 (CO), 158.7 (C10), 147.1 (C12),103.6 (C9), 88.4-87.9 (C11), 49.3 (C2 or C4), 48.7 (C6), 48.1 (C2 or C4), 31.3 (C1), 28.5 (NHMe), 24.5 (C5), 22.6 (C13); **HRMS** (**ESI**⁺) **m/z** [M+H]⁺ Calcd for C₁₂H₁₈N₃O 220.1444; Found 220.1441.

4. Synthesis of 9-bromo-10-substituted cytisine derivatives.

4.1 9-Bromo-10-ethylcytisine.HCl 7.

(i) N-Boc 9-bromo-10-ethylcytisine.

N-Boc 9-bromo-10-ethylcytisine was synthesised from *N*-Boc 10-ethylcytisine¹ (341 mg, 1.07 mmol) according to the General Procedure A. Purification of the crude reaction mixture by flash column chromatography [DCM:MeOH (1% MeOH)] afforded *N-Boc 9-bromo-10-ethylcytisine* (296 mg, 70%) as a colorless solid.

FTIR (neat): 1676, 1638, 1590, 1425 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, δ) 6.00 (s, 1H, C11-H), 4.43-4.03 (m, 3H, C2-H, C4-H, C6-H), 3.85 (dd, J = 15.5, 6.5 Hz, 1H, C6-H), 3.18-2.87 (m, 3H, C1-H, C2-H, C4-H), 2.71-2.52 (m, 2H, CH₂), 2.41 (m, 1H, C5-H), 2.01-1.89 (m, 2H, C13-H), 1.44-1.04 (m, 12H, Boc, CH₃); ¹³C NMR (100 MHz, CDCl₃, δ) 159.3 (CO), 154.7/154.4 (Boc, rotamers), 147.0/146.6 (C12, rotamers), 112.9 (C9), 106.6/105.8 (C11, rotamers), 80.6/80.4 (Boc, rotamers), 51.6/50.6/50.4/49.3 (C2, C4, rotamers), 50.0 (C6), 34.6 (C1), 29.9

(<u>C</u>H₂Me), 28.6 (Boc), 27.4 (C5), 26.1 (C13), 12.7 (CH₂<u>C</u>H₃), C10 was not observed; **HRMS (ESI**⁺) $\mathbf{m/z}$ [M+H]⁺ for C₁₈H₂₆⁷⁹BrN₂O₃ 397.1121; Found: 397.1121.

(ii) 9-Bromo-10-ethylcytisine.HCl 7.

N-Boc 9-bromo-10-ethylcytisine (296 mg, 0.75 mmol) was deprotected (General Procedure B) affording 9-bromo-10-ethylcytsine.HCl **7** (221 mg, quant) as a colorless solid.

mp: > 200 °C; FTIR (neat: 2935, 1635, 1572, 1450 cm⁻¹; ¹H NMR (500 MHz, MeOD, δ) 6.52 (s, 1H, C11-H), 4.44 (d, J = 15.5 Hz, 1H, C6-H), 4.01 (dd, J = 15.5, 6.5 Hz, 1H, C6-H), 3.62 (d, J = 13.5 Hz, 1H, C4-H), 3.52-3.44 (m, 4H, 2 x C2-H, C4-H, C1-H), 2.81 (s, 1H, C5-H), 2.71 (m, 2H, CH₂), 2.23 (d, J = 13.5 Hz, 1H, C13-H), 2.13 (d, J = 13.5 Hz, 1H, C13-H), 1.25 (t, J = 7.5 Hz, 3H, CH₃); ¹³C NMR (125 MHz, MeOD, δ) 159.9 (CO), 156.0 (C10), 144.9 (C12), 112.9 (C9), 108.8 (C11), 49.6 (C6), 49.3/48.4 (C2, C4), 31.6 (C1), 29.4 (CH₂Me), 25.4 (C5), 22.9 (C13), 11.5 (CH₂CH₃); HRMS (ESI⁺) m/z [M+H]⁺ Calcd for C₁₃H₁₈⁷⁹BrN₂O 297.0597; Found: 297.0591.

4.2 9-Bromo-10-aminocytisine.HCl 9.

(i) *N*-Boc 9-bromo-10-aminocytisine.

N-Boc 9-bromo-10-aminocytisine was synthesized from *N*-Boc 10-aminocytisine (250 mg, 0.82 mmol) according to the General Procedure A. Purification of the crude product by flash column chromatography [DCM:MeOH, (6% MeOH)] afforded *N*-Boc 9-bromo-10-aminocytisine (216 mg, 68%) as a colorless solid.

mp: > 200 °C (*n*-Hex:DCM); **FTIR** (**neat**): 3441, 1682, 1633, 1591, 1533, 1442 cm⁻¹; ¹**H NMR** (**500 MHz, CDCl₃, δ**) 5.70 (s, 1H, C11-H), 4.61 (s, 2H, NH₂), 4.43-4.05 (m, 3H, C2-H, C4-H, C6-H), 3.84 (dd, J = 13.5, 6.0 Hz, 1H, C6-H), 3.13-2.83 (m, 3H, C2-H, C4-H, C1-H), 2.38 (s, 1H, C5-H), 1.95 (d, J = 13.0 Hz, 1H, C13-H), 1.92 (d, J = 13.0 Hz, 1H, C13-H), 1.44-1.21 (m, 9H, Boc); ¹³**C NMR** (**125 MHz, CDCl₃, δ**) 159.8 (CO), 154.8 (Boc), 151.5 (C10), 147.0 (C12), 96.9 (C11), 91.4 (C9), 80.5 (Boc), 51.6/50.4 (C2, C4), 49.2 (C6), 34.7 (C1), 28.1 (Boc), 27.4 (C5), 26.4 (C13); **HRMS** (**ESI**⁺) **m/z** [M+Na]⁺ Calcd for C₁₆H₂₂⁷⁹BrN₃NaO₃ 406.0737; Found: 406.0741.

(ii) 9-Bromo-10-aminocytisine.HCl **9**.

N-Boc 9-bromo-10-aminocytisine (260 mg, 0.68 mmol) was deprotected using the General Procedure B affording bromide **9** (189 mg, 98%) as a colorless solid.

mp: > 200 °C; FTIR (neat): 3319, 2934, 2756, 1641, 1454 cm⁻¹; ¹H NMR (500 MHz, MeOD, δ) 6.20 (s, 1H, C11-H), 4.41 (d, J = 15.5 Hz, 1H, C6-H), 3.95 (dd, J = 15.5, 6.5 Hz, 1H, C6-H), 3.59 (d, J = 13.0 Hz, 1H, C2-H), 3.52-3.41 (m, 3H, C2-H, C4-H), 3.35 (s, 1H, C1), 2.75 (s, 1H, C5), 2.19 (d, J = 13.0 Hz, 1H, C13), 2.10 (d, J = 13.0 Hz, 1H, C13); ¹³C NMR (125 MHz, MeOD, δ) 159.9 (CO), 154.7 (C10), 144.9 (C12), 100.2 (C11), 89.3 (C9), 49.2/48.3 (C2, C4), 48.9 (C6), 31.7 (C1), 25.4 (C5), 23.2 (C13); HRMS (ESI⁺) m/z [M+H]⁺ Calcd for C₁₁H₁₅⁷⁹BrN₃O 284.0393; Found: 284.0390.

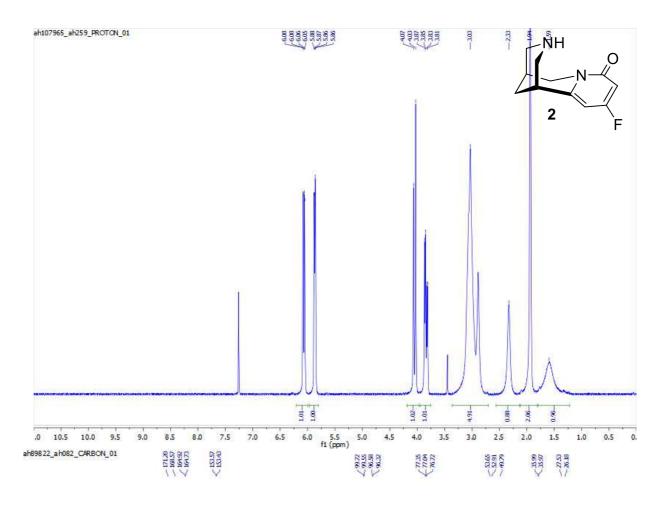
4.3 (+)-9-Bromo-10-(methylamino)cytisine.HCl 11.

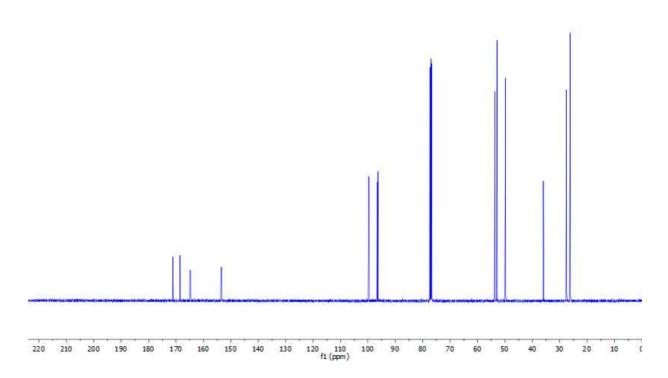
(i) N-Boc 9-bromo-10-(methylamino)cytisine

N-Boc 9-bromo-10-(methylamino)cytisine was synthesised from *N*-Boc 10-(methylamine)cytisine (96 mg, 0.30 mmol) according to the General Procedure A. Purification of the crude reaction mixture by flash column chromatography on silica gel [DCM/MeOH (2% MeOH)] gave *N*-Boc 9-bromo-10-(methylamino)cytisine (84 mg, 70%), which was used in the next step without further purification.

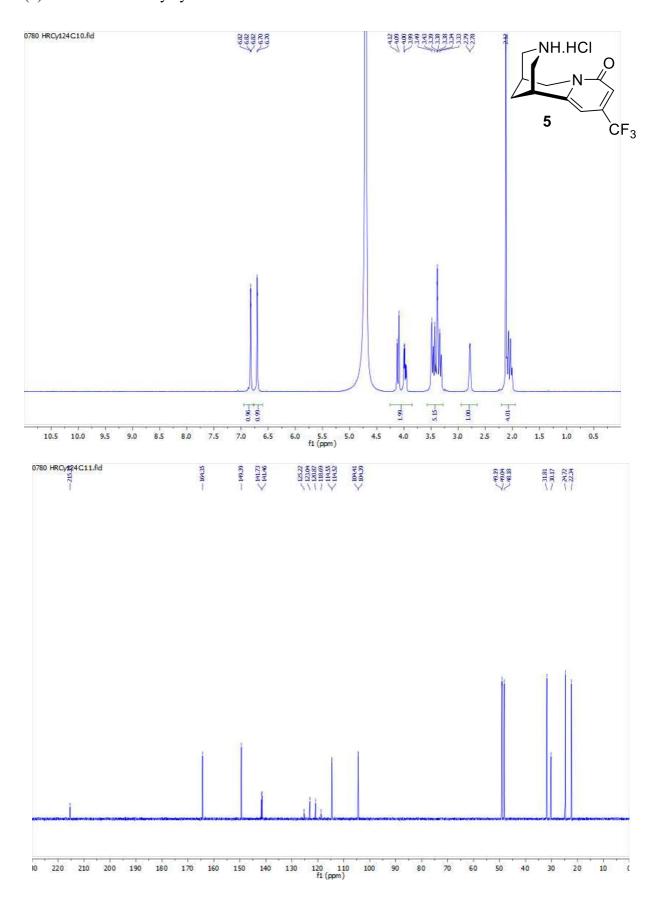
FTIR (neat): 3290, 1633, 1493, 1206, 1100 cm⁻¹; ¹H NMR (500 MHz, CDCl₃, δ) 5.68 (s, 1H, C11-H), 4.84 (s, 1H, NH), 4.36-4.05 (m, 3H, C2-H, C4-H, C6-H), 3.79 (dd, J = 6.5, 15.5 Hz, 1H, C6-H), 3.13-2.85 (m, 6H, C2-H, C4-H, C1-H, NHMe), 2.33 (s, 1H, C5-H), 1.91 (m, 2H, C13-H), 1.36-1.13 (m, 9H, Boc); ¹³C NMR (125 MHz, CDCl₃, δ) 159.2 (CO), 154.7/154.2 (C12, rotamers), 152.4 (CO Boc), 148.0/147.7 (C10, rotamers), 93.0/92.5 (C11), 90.4 (C9), 80.3/79.7 (Boc, rotamers), 51.6/50.6/50.2/49.3 (C2, C4 rotamers), 49.1 (C6), 35.0 (Me), 29.8 (C1), 28.6 (Boc), 27.4 (C5), 26.3 (C13).

(ii) 9-Bromo-10-(methylamino)cytisine.HCl 11.

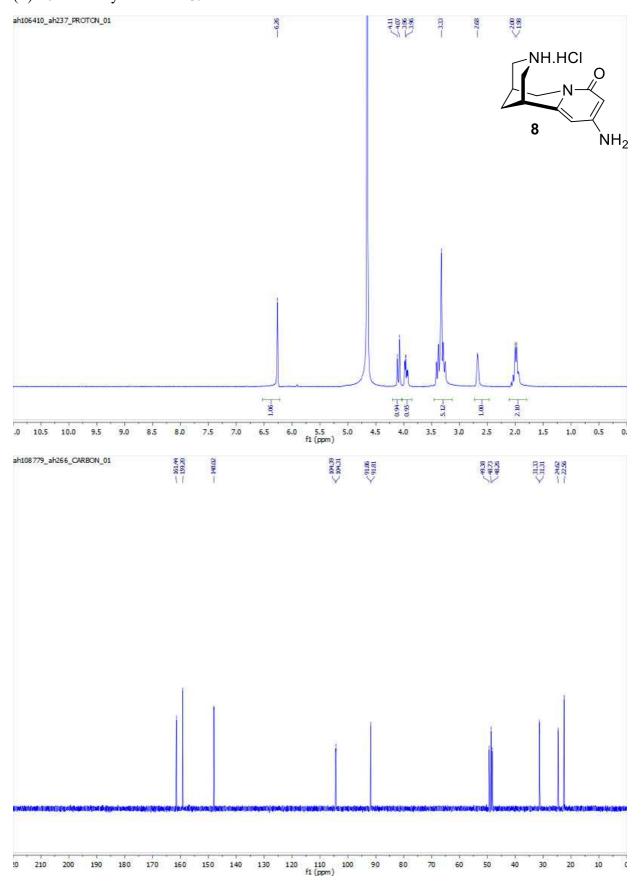

N-Boc 9-bromo-10-(methylamino)cytisine (67 mg, 0.21 mmol) was deprotected according to the General Procedure B affording 9-bromo-10-(methylamine)cytisine.HCl **11** (45 mg, 73%) as a colorless solid. Small amounts (<10%) of 10-(methylamino)-11-bromo-cytisine were observable but this component could not be separated cleanly or fully characterized.

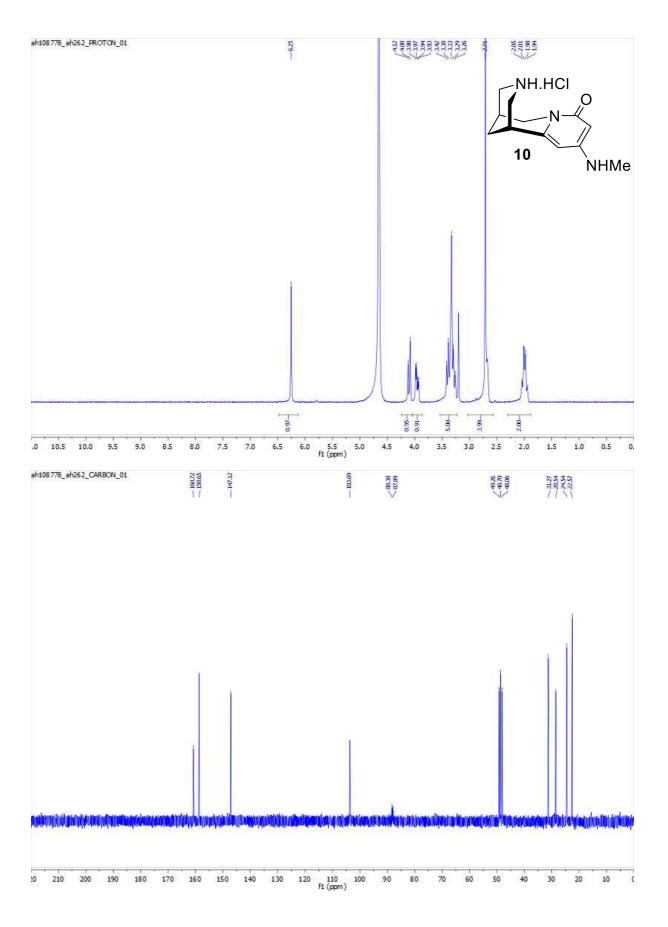

[α]^D₂₃ = +38 [c 0.5, MeOH]; FTIR (neat): 3291, 2949, 2761, 2624, 1634, 1583 cm⁻¹; ¹H NMR (500 MHz, D₂O, δ) 6.14 (s, 1H, C11-H), 4.13 (d, J = 15.5 Hz, 1H, C6-H), 3.88 (dd, J = 6.5, 15.5 Hz, 1H, C6-H), 3.52-3.32 (m, 5H, C1-H, C2-H, C4-H), 2.84 (s, 3H, NHMe), 2.70 (s, 1H, C5-H), 2.04 (m, 2H, C13-H); ¹³C NMR (125 MHz, D₂O, δ) 160.5 (CO), 154.3 (C12), 145.6

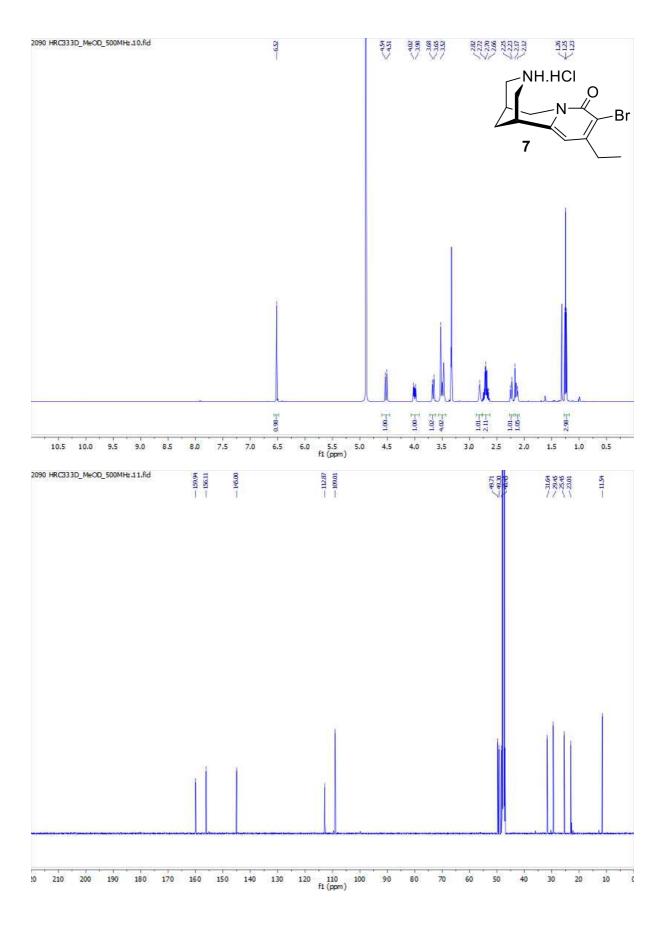
(C10), 97.0 (C9), 89.6 (C11), 49.3/48.5 (C2, C4), 48.9 (C6), 31.6 (C1), 28.9 (NHMe), 24.9 (C5), 22.9 (C13); **HRMS** (**ESI**⁺) **m/z** [M+H]⁺ Calcd for $C_{12}H_{17}^{79}BrN_3O$ 298.0549; Found: 298.0548.

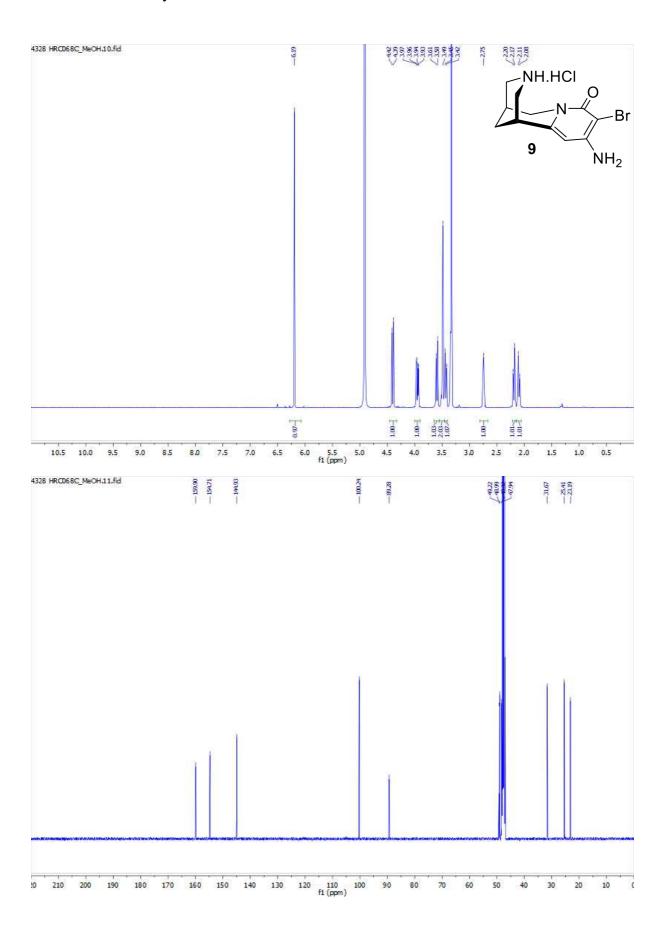

5. ¹H and ¹³C NMR spectra.

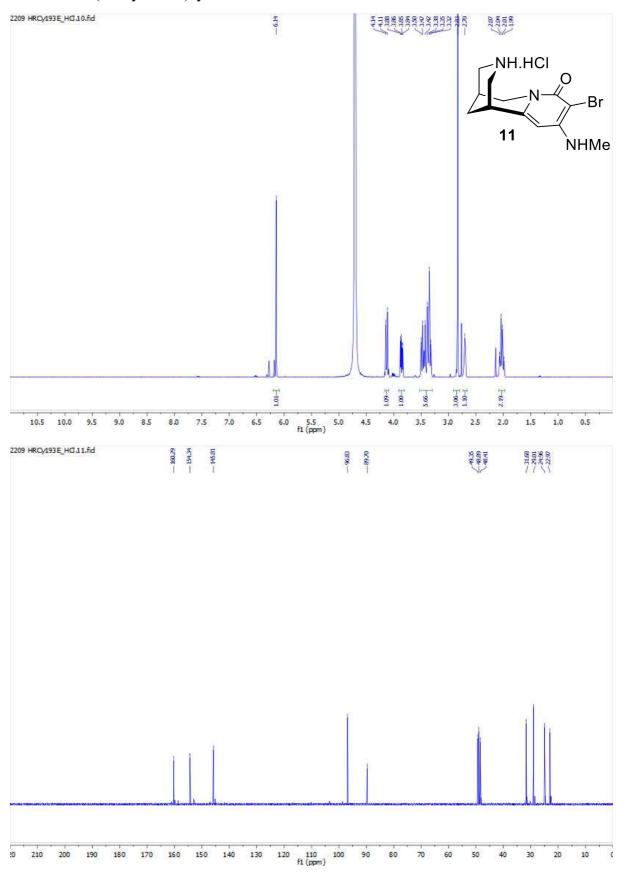
(-)-10-Fluorocytisine 2:




(–)-10-Trifluoromethylcytisine.HCl **5:**


(+)-10-Aminocytisine.HCl 8:


(+)-10-(N-Methylamine)cytisine.HCl 10:


9-Bromo-10-ethylcytisine.HCl 7:

9-Bromo-10-aminocytisine.HCl 9:

9-Bromo-10-(methylamino)cytisine.HCl 11:

