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S1. Data analysis 

S1.1 Fit of the time resolved absorption data for complexes in solution 

To fit the data, we have numerically integrated the following set of differential equations 

for the fractional populations Pi=Ni/NT of the different excited states. 
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where Ip0, t0 and p are the intensity, the peak position of a Gaussian shaped pulse and the 

duration of the pump pulse, respectively. This set of partial differential equations is 

supplemented with the following boundary conditions: for t=0, P0=1, P1=P2=P3=0 with 

P0+P1+P2+P3=1. The initial integration was performed with a given pulse duration and an 

initial set of relaxation times. This makes it possible to compute the evolution of the fractional 

population Ni of the different state of the complexes. Since, at the used probe wavelength, our 

experiment is mainly sensitive to the change in the population of the excited states, we 

computed the quantity S(t)=A*(P1(t)+P2(t)+P3(t)) were A is an adjustable parameter that 

modulate the change in the optical density and t is the delay between the pump and the probe 

pulses. However, if the relaxation time constants are such that 1<<2<<3, it is mainly the 

longer relaxation time which will contribute to the quantity S(t). Hence, since we have already 

shown that 1<<2<<3 for the [Fe(phen)3]2+ complexes in solution, once the pulse duration is 

fixed, one needs only to adjust the parameters A and 3. To fit the data presented in Fig 1, we 

solved the set of differential equations with the following initial parameters A= 0.03, 

p=1=2=0.3 ps and 3= 1000 ps. Then, the parameters A and 3 were optimized using a (2) 

square minimizing procedure. The evolution of the fractional populations used to plot the 

fitted data in Fig. 1 is displayed in Fig. S1. 
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Figure S1 : 

S2 Fit of the time resolved absorption data for complexes in the bulk 

Using the procedure we just described, we first fitted the data displayed in Fig 2a adjusting 

the amplitude of A but keeping the same time constant used to fit the data presented in Fig. 1. 

As can be noticed in Fig. S2 (red solid line), the fit correctly reproduces the data on the long 

time scale, but a clear shift appears on the small time scale (0<delay<50 ps). To correct for 

this shift, we considered that the time constant 2 is also an adjustable parameters. The result 

of the optimized fit considering that the parameters A, 2 and 3 are adjustable is displayed on 

Fig. S2 (a) (blue solid line). As expected, the introduction of a new free parameter corrects for 

the discrepancy we had between the fitting curve and the experimental data. The evolution of 

the fractional populations used to plot the fitted data in Fig. 2a is displayed in Fig. S2b. 
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Figure S2 : 

 



S3 Fit of the time resolved SHG data 

Here also, we fitted the data integrating numerically a set of differential equations 

accounting for the evolution the fractional populations Pi=Ni/NT of the different excited states. 

But, according to our model and contrary to the TRA absorption, the TRSHG signal recorded 

by our experimental set-up writes: 

𝑆𝑆𝐻𝐺(𝑡) = ∑ 𝐴𝑖 ⁡𝑃𝑖𝑖 . 

This means we have much more parameters to play with. The procedure we used consisted in 

minimizing the numbers of parameters to adjust. Our experimental data clearly stresses that at 

least a set of two differential equations is needed. In other words, a mono-exponential decay 

cannot account for our experimental data. Therefore, we started considering the set of the 

following differential equations: 
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with the following boundary conditions: for t=0, P0=1, P1=P2=0 with P0+P1+P2=1.  
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Figure S3 

Here, considering p=150 fs, we numerically integrated our set of differential equations using 

a set of initial parameters and optimized the parameter through a (2) square minimizing 

procedure. The results of these computations are displayed in Fig. S3. One can notice on both 

short and long time delays that this set of differential equations is not able to properly account 

for our data. As for the TRA experiment, we then considered a similar set of three differential 



equations for the evolution the fractional populations, integrated them with a set of initial 

parameters that we optimized through a (2) square minimizing procedure. The results are 

displayed in Fig. S4. 
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Figure S4 

With such a set of differential equations, we were able to properly fit our experimental data. 

One can however notice a small shift between experimental and numerical data during the 

early relaxation time. It is to correct for this latter shift that we finally considered the set of 

four differential equations for the evolution the fractional populations. 
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As expected and as shown in Fig. S5, with a larger set of free parameters, we were able to 

reproduce very nicely our experimental data. But more importantly, we also found a better 

agreement with two of the main time constants we deduced from the TRA experiment. 
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Figure S5 

 


