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S1 Working formulae

To make our analysis self-contained, in this Section we describe our modeling and theoretical

expressions. This information is partially included in the Method section of the main text,

but we repeat it here for completeness. We consider coherent, elastic transport of electrons

in a two-terminal junction. The metals include collections of noninteracting electrons with

occupation numbers following the grand canonical ensemble; the Fermi function f(ε, µν , T ) =

1
eβ(ε−µν )+1

is evaluated at the chemical potential µν and temperature T with the inverse

temperature β = 1/kBT ; ν = L,R. Below we denote by µ the equilibrium Fermi energy.

Ignoring decoherence and inelastic processes within the constriction, the average current is

given by the Landauer formula,

〈I〉 =
2e

h

∫ ∞
−∞

dετ(ε) [f(ε, µL, T )− f(ε, µR, T )] . (S1)

The corresponding zero frequency power spectrum of the noise is given by1

S = S1 + S2

S1 =
4e2

h

∫ ∞
−∞

dε{f(ε, µL, T )[1− f(ε, µL, T )] + f(ε, µR, T )[1− f(ε, µR, T )]}τ 2(ε),

S2 =
4e2

h

∫ ∞
−∞

dε{f(ε, µR, T )[1− f(ε, µL, T )] + f(ε, µL, T )[1− f(ε, µR, T )]}τ(ε)[1− τ(ε)].

(S2)

In this partition of the total noise, S1 includes additive terms in the left and right metals while

S2 collects transport processes from one terminal to the other. The transmission function

τ(ε) is energy dependent; voltage and temperature dependency, rooted in many-body effects,

are sometimes phenomenologically introduced into the transmission function—though not

in our work.

To derive the standard result for the shot noise, one assumes a constant transmission

function. In this work, we write down a Taylor expansion for the transmission function,

S2



performed around the equilibrium Fermi energy µ,

τ(ε) ≈ τ(µ) +
dτ

dε

∣∣∣∣
µ

(ε− µ). (S3)

For simplicity, we denote τ(µ) by τ0 and τ ′(µ) ≡ dτ
dε

∣∣
µ
. Another central ingredient of our

work is that we allow the applied potential to drop asymmetrically around the equilibrium

Fermi energy,

µL = µ+ α∆µ,

µR = µ− (1− α)∆µ, (S4)

with 0 ≤ α ≤ 1; when α = 1/2, the potential bias is partitioned symmetrically at the two

ends.

S2 Review of “normal shot noise": Constant transmis-

sion function

Let us now review the standard, ‘normal’ shot noise expression, which is used to fit exper-

imental observations of shot noise at low voltage. Equations (S1)-(S2) can be simplified if

τ(ε) is assumed a constant. This assumption is justified at low bias voltage. Then, e.g., the

width of resonances (responsible for charge transport through the conductor) is considerable

relative to the bias window and the transmission function can be approximated by its (fixed)

value at the Fermi energy. Making this critical assumption, the averaged current under a

finite voltage reduces to 〈I〉 = 2e
h

∆µ
∑

i τ0,i, with the power noise1,2

ST∆µ = 4kBTG0

∑
i

τ 2
0,i

+ 2∆µ coth

(
∆µ

2kBT

)
G0

∑
i

τ0,i(1− τ0,i). (S5)
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Here ∆µ = eV is the chemical potential difference due to the bias voltage V , G0 = 2e2/h

is the quantum of conductance. The current and the power noise may include contributions

from multiple channels, with τ0,i the transmission probability of the ith channel evaluated

at the Fermi energy µ. Eq. (S5) is well known; we retrieve it in Sec. S3 as a special limit of

a more general expression.

Low bias measurements of shot noise in atomic-scale and molecular junctions agree well

with Eq. (S5), see for example Refs.3–6 Specifically, when the temperature is low relative to

the bias, coth( |∆µ|
2kBT

)→ 1, and we get

ST→0
∆µ = 2|∆µ|GF. (S6)

Here, F =
∑

i τi(1− τ0,i)/
∑

i τ0,i is the Fano factor, G = G0

∑
i τ0,i stands for the electrical

conductance. The noise (S6) is linear in voltage. Therefore, nonlinearity of the shot noise

at high voltage corresponds to an ‘anomalous’ behavior. Since 〈I〉 = GV and ∆µ = eV , we

can organize Eq. (S6) in its familiar form as ST→0
∆µ = 2e|〈I〉|F .

We now consider a junction at equilibrium, ∆µ = 0. Eq. (S2) then reduces to the

Johnson-Nyquist thermal noise,

ST∆µ=0 = 4kBTG, (S7)

with the electrical conductance G = 2e2

h

∫
dετ(ε)

(
−df
dε

)
. Note that we can also approach the

equilibrium limit from Eq. (S5) and arrive at a corresponding result. Nevertheless, Eq. (S7)

holds without assuming a constant transmission function.
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S3 Derivation of Eqs. (3)-(8): anomalous shot noise

We begin with the calculation of the current (S1) using the transmission function (S3), and

the chemical potential (S4),

I =
2e

h

∫ ∞
−∞

dε [f(ε, µL, T )− f(ε, µR, T )] [τ0 + τ ′(µ)(ε− µ)]

=
2e

h
τ0∆µ+

2e

h
τ ′(µ)

∫ ∞
−∞

dε [f(ε, µL, T )− f(ε, µR, T )]
1

2
[ε− µL + ε− µR + ∆µ(2α− 1)]

=
2e

h

[
τ0∆µ+ τ ′(µ)(∆µ)2

(
α− 1

2

)]
,

where we used the relation µ = (µL + µR)/2 + ∆µ
(

1
2
− α

)
.

We examine next the behavior of shot noise under high voltage; we assume that there is

no applied temperature difference. We begin by evaluating S1 in Eq. (S2) using the linear

expansion for the transmission function, Eq. (S3). For convenience, we assume a single

channel. We omit the prefactor 4e2

h
and re-install it only at the end of our derivation,

S1 =

∫ ∞
−∞

dε

(
−kBT

∂fL
∂ε
− kBT

∂fR
∂ε

)
× [τ0 + τ ′(µ)(ε− µ)]

2
. (S8)

Here, fν = f(ε, µν , T ), ∆µ = µL−µR, µL = µ+α∆µ, µR = µ−(1−α)∆µ and T = TL = TR.

Explicitly,

S1 =

∫ ∞
−∞

dε

{
(−kBT )

[
τ 2

0

∂fL
∂ε

+ 2τ0τ
′(µ)(ε− µ)

∂fL
∂ε

+ [τ ′(µ)]2(ε− µ)2∂fL
∂ε

]

+ (−kBT )

[
τ 2

0

∂fR
∂ε

+ 2τ0τ
′(µ)(ε− µ)

∂fR
∂ε

+ [τ ′(µ)]2(ε− µ)2∂fR
∂ε

]}
. (S9)
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We now evaluate the different terms,

I1 ≡
∫ ∞
−∞

dε(−kBT )τ 2
0

∂fL
∂ε

= kBTτ
2
0 ,

I2 ≡
∫ ∞
−∞

dε(−kBT )2τ0τ
′(µ) [ε− (µL − α∆µ)]

∂fL
∂ε

=

∫ ∞
−∞

dε(−kBT )2τ0τ
′(µ)(ε− µL)

∂fL
∂ε

+

∫ ∞
−∞

dε(−kBT )2τ0τ
′(µ)α∆µ

∂fL
∂ε

= 2kBTτ0τ
′(µ)α∆µ,

I3 ≡
∫ ∞
−∞

dε(−kBT )[τ ′(µ)]2 [ε− (µL − α∆µ)]2
∂fL
∂ε

=

∫ ∞
−∞

dε(−kBT )[τ ′(µ)]2
[
(ε− µL)2 + 2α∆µ(ε− µL) + α2(∆µ)2

] ∂fL
∂ε

= kBT [τ ′(µ)]2
π2k2

BT
2

3
+ kBT [τ ′(µ)]2α2(∆µ)2. (S10)

Summing up these integrals, along with the corresponding contributions from the right side,

we get

S1 = 2kBTτ
2
0 + 2kBTτ0τ

′(µ)∆µα− 2kBTτ0τ
′(µ)∆µ(1− α)

+ 2kBT [τ ′(µ)]2
π2k2

BT
2

3
+ kBT [τ ′(µ)]2

[
α2(∆µ)2 + (1− α)2(∆µ)2

]
. (S11)

Next, we evaluate S2 in Eq. (S2). Under bias voltage it can be organized as

S2 = coth

(
∆µ

2kBT

)∫ ∞
−∞

dε [fL(ε)− fR(ε)] [τ0 + τ ′(µ)(ε− µ)][1− τ0 − τ ′(µ)(ε− µ)].

(S12)
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The integral can be evaluated exactly using the following relations,

I4 ≡ coth

(
∆µ

2kBT

)∫ ∞
−∞

dε[fL(ε)− fR(ε)]τ0(1− τ0) = τ0(1− τ0)∆µ coth

(
∆µ

2kBT

)
,

I5 ≡ coth

(
∆µ

2kBT

)∫ ∞
−∞

dε[fL(ε)− fR(ε)](1− 2τ0)τ ′(µ)(ε− µ)

= coth

(
∆µ

2kBT

)
(1− 2τ0)τ ′(µ)

∫ ∞
−∞

dε[fL(ε)− fR(ε)]

{[
ε−

(
µ+

(
α− 1

2

)
∆µ

)]
+

(
α− 1

2

)
∆µ

}
= coth

(
∆µ

2kBT

)
(1− 2τ0)τ ′(µ)

[
α− 1

2

]
(∆µ)2,

I6 ≡ coth

(
∆µ

2kBT

)∫ ∞
−∞

dε[fL(ε)− fR(ε)][τ ′(µ)]2
{[

ε−
(
µ+

(
α− 1

2

)
∆µ

)]
+

(
α− 1

2

)
∆µ

}2

= coth

(
∆µ

2kBT

)
[τ ′(µ)]2

[
∆µ

π2k2
BT

2

3
+

1

12
(∆µ)3 +

(
α− 1

2

)2

(∆µ)3

]
. (S13)

Overall, we get

S2 = τ0(1− τ0)∆µ coth

(
∆µ

2kBT

)
+ coth

(
∆µ

2kBT

)
(1− 2τ0)τ ′(µ)

(
α− 1

2

)
(∆µ)2

− coth

(
∆µ

2kBT

)
[τ ′(µ)]2

[
∆µ

π2k2
BT

2

3
+

1

12
(∆µ)3 +

(
α− 1

2

)2

(∆µ)3

]
. (S14)

Combining S1 [Eq. (S11)] and S2, we get the voltage-activated anomalous shot noise,

ST∆µ = 2kBTτ
2
0 + 2kBTτ0τ

′(µ)∆µα− 2kBTτ0τ
′(µ)∆µ(1− α)

+ 2kBT [τ ′(µ)]2
π2k2

BT
2

3
+ kBT [τ ′(µ)]2

[
α2(∆µ)2 + (1− α)2(∆µ)2

]
+ τ0(1− τ0)∆µ coth

(
∆µ

2kBT

)
+ coth

(
∆µ

2kBT

)
(1− 2τ0)τ ′(µ)

(
α− 1

2

)
(∆µ)2

− coth

(
∆µ

2kBT

)
[τ ′(µ)]2

[
∆µ

π2k2
BT

2

3
+

1

12
(∆µ)3 +

(
α− 1

2

)2

(∆µ)3

]
. (S15)

Multiplying it by 2G0 =
4e2

h
we obtain Eqs. (4)-(6) in the main text. It is significant to

note that this result is exact in ∆µ, to the order of τ ′(µ) considered.
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S4 Theory-experiment analysis of other types of junc-

tions

So far, our focus has been on junctions whose transmission function can be approximated

by the expansion (S3) around the Fermi energy. This expansion leads to a differential

conductance that is linear in voltage. In this section, we consider an alternative form for the

transmission function, relevant for a complementary class of junctions,

τ(ε) ≈ τ0 +
1

2
τ ′′(µ)(ε− µ)2. (S16)

We again allow the voltage bias to drop asymmetrically around the equilibrium Fermi energy,

µL = µ+α∆µ, µR = µ− (1−α)∆µ, with 0 ≤ α ≤ 1. Using the Landauer formula we obtain

the averaged charge current as,

〈I〉 =
2e

h
τ0∆µ+

e

h
τ ′′(µ)

[
∆µ

π2k2
BT

2

3
+

1

12
(∆µ)3 +

(
α− 1

2

)2

(∆µ)3

]
. (S17)

We now assume that the temperature is low relative to the bias voltage and derive the

differential conductance,

d〈I〉
dV

∣∣∣
T→0

= G0τ0 +
3G0

2
τ ′′(µ)

[
1

12
+

(
α− 1

2

)2
]

(∆µ)2. (S18)

By fitting the differential conductance to a parabola we obtain the curvatureB ≡ 3
2
G0τ

′′(µ)[1/12+

(α−1/2)2], with d〈I〉
dV
|T→0 = G0τ0 +B(∆µ)2. Note that the quadratic term in d〈I〉

dV
is sustained

even when α = 1/2.

Repeating the procedure of Sec. S3, we derive a closed form formula for the current noise
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using the transmission function (S16). Here, we present only the low temperature limit,

ST→0
∆µ = 4G0kBTτ

2
0 + 2G0τ0(1− τ0)∆µ coth

(
∆µ

2kBT

)
+ 2G0(1− 2τ0)

τ ′′(µ)

2

[
1

12
+

(
α− 1

2

)2
]
|(∆µ)|3 (S19)

It is significant to note that the curvature B, which determines the nonlinearity of the dif-

ferential conductance, dictates the anomalous component of the shot noise. Nevertheless, in

the present model, Eq. (S16), we cannot in practice determine the extent of bias asymmetry

α.
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Figure S1: Anomalous shot noise with a quadratic differential conductance-voltage characteristics.
Measurements (◦) are compared to a linear fit at low voltage (dashed) and to the anomalous shot
noise formula Eq. (S19) (�) using T = 7 K, τ0,1=0.99, τ0,2=0.00. We further show (full) simulations
based on Eq. (13). (a) We fit the differential conductance data (full) to a parabola (dotted) within
the region -200 to 120 mV and get the curvature B = −0.826 G0/(eV )2, which is substituted into
Eq. (S19) to reproduce the nonlinear shot noise (b), showing an excellent agreement. Results from
the nomalous shot noise formula outside the proper fitting window are further displayed in the main
plot (light �).

We illustrate the analysis and the validity of Eq. (S19) on experimental data of shot noise

in Au atomic junctions. Besides results in the main text, Figure S1 displays data for which

the differential conductance is approximately quadratic around zero voltage (inset), which
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Figure S2: Anomalous shot noise with a possible quadratic differential conductance-voltage char-
acteristics. Measurements (◦) are compared to the anomalous shot noise formula Eq. (S19) (�)
using T = 6 K, τ0,1=0.984, τ0,2=0.0018. We further show (full) simulations based on Eq. (13). Inset:
We fit the differential conductance (full) to a parabola (dotted) and get the curvature B = −0.169
G0/(eV )2, which is substituted into Eq. (S19) to reproduce the nonlinear shot noise.

make it suitable for the present analysis. Following our procedure, we extract the curvature of

the parabola B from the differential conductance and employ it in Eq. (S19) to generate the

current noise. In Fig. 7 (main text), the quadratic behavior of the differential conductance

with voltage extends up to 200 mV, and the noise is indeed well reproduced throughout the

whole range. In contrast, in Fig. S1, the quadratic behavior only extends up to 120 mV,

beyond which deviations show; in accordance, we properly capture the experimental data

for the shot noise up to this voltage. Remarkably, in Fig. S1 the nonlinear (cubic) term

almost immediately dominates at low voltage, since the curvature is quite large. Finally,

Fig. S2 displays differential conductance data that does not show a definite quadratic trend

(extending the experiment to higher voltage could strengthen this model). Nevertheless, we

test the quadratic formula on this data and show that we qualitatively capture the overall

trend of the experimental shot noise, observing an enhancement of noise relative to the low

bias case.
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S5 Experimental procedure

Formation of Au atomic Junctions. The mechanically controllable break junction tech-

nique7 in cryogenic temperature is used to form Au atomic junctions. A gold wire (99.99%,

0.1 mm diameter, Goodfellow), with a partial cut in its center is attached to a flexible and

insulating substrate. This structure is placed in a vacuum chamber, pumped to 10−5 mbar

and cooled to 4.2 K. The sample is then bent by a piezoelectric element. As a result, the

wire is stretched and gradually thinned until a contact with only few atoms down to a single

atom in its cross-section is formed between the two wire segments. To measure conductance

and noise across the formed atomic junction, the two wire segments are used as electrodes.

Repeated squeezing of the electrodes against each other, followed by stretching the reformed

contact is used to obtain new atomic junctions. This procedure allows the characterization

of an ensemble of atomic junctions with different structures.

Differential Conductance Measurements. Differential conductance vs. voltage mea-

surements (d〈I〉/dV vs. V ) are conducted via a standard lock-in technique, using a Stanford

Research SR830 lock-in amplifier. A DC bias voltage signal from a National Instruments

(NI) PCI-6221 DAQ card is modulated by an AC voltage produced by the lock-in amplifier

(1 mV rms at about 3.33 kHz). The resulting current across the sample is amplified by a

current preamplifier (SR570) and sent back to the lock-in to extract the corresponding signal

at the frequency of the applied AC modulation. Differential conductance measurements are

performed before and after each set of noise measurements in order to verify that the con-

tact maintained its stability during the noise measurement by comparing the two differential

conductance spectra.

Shot Noise Measurements. Noise measurements are performed on the atomic junc-

tions using a dedicated circuit.8 To measure noise on atomic junctions, the sample is dis-

connected from the conductance measurement circuit and connected to the dedicated circuit

using switches. The sample is current-biased by a Yokogawa GS200 SC voltage source con-

nected to the sample through two 0.5MΩ resistors located in proximity to the sample. The
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resulting voltage noise is amplified by a custom-made differential low-noise amplifier and

analyzed via a NI PXI-5922 DAQ card, using a LabView implemented fast Fourier trans-

form analysis. For each stable atomic junction, noise measurements are conducted at a set

of different bias currents, where at each bias 3,000 measurements of noise spectra are taken

and averaged.

S6 Estimation of the contribution of the 1/f noise

At high voltage, other noise sources could contribute to the anomalous behavior. Specifically,

the 1/f noise grows quadratically with voltage, and its contribution could become significant.

As representative examples, in Figs S3 and S4 we display the power spectra of the noise

corresponding to Figs. 4 and 6 in the main text. At low frequency, the power spectra shows

the 1/f noise. The white noise component, which comprises the thermal noise and shot noise

is taken in the region f ≈ 1× 105 Hz.

We assess the contribution of the 1/f component in an approximate manner as follows.

First, at each applied voltage we subtract the mean white noise value, to identify the ‘pure’

1/f contribution. Next, plotting this data on a log-log scale, we extract the power α,

S(f) = Sc/f
α, with Sc a prefactor, which depends on the applied voltage.

Performing this analysis on the data presented in Fig. S3, we obtain the exponent, which

somewhat varies with voltage, α = 1.5− 1.7. Since we are interested in the contribution of

1/f noise at high voltage, we use α = 1.66 at 200 mV. To extract Sc at 200 mV we focus on

the low frequency region, and use e.g. the measured value of S(f = 5000 Hz)=2.3 × 10−17

V2/Hz and the calculated power α = 1.66. This results in Sc ∼ 3.2× 10−11 V2/Hz. We can

now estimate the contribution of the 1/f noise at higher frequencies, in what we identify as

S12



0 2 4 6 8 10 12

10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
10

-16 Power spectra

Figure S3: Power spectra for different applied voltage. The red region marks the portion of the
noise used in the shot noise analysis, leading to Fig. 4 in the main text.

Figure S4: Power spectra for different applied voltage. The red region marks the portion of the
noise used in the shot noise analysis, leading to Fig. 6 in the main text.
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white noise, say at f = 9× 104 Hz,

S(f) = Sc/f
α

= 3.2× 10−11 ×G2 × (9× 104)−1.66 = 1.03× 10−27A2/Hz, (S20)

where we used G = 0.95 G0. The anomalous noise presented in Fig. 4 reaches 2 × 10−25

A2/Hz at high voltage, and we conclude that the 1/f noise contributes less than 1% to this

value.

A similar analysis is performed on the power spectra in Fig. S4, which corresponds to

Fig. 6 in the main text. Here, at 240 mV we obtain the power α ∼ 1.7 and the coefficient

Sc = 2.66 × 10−9 V2/Hz, which leads to the residual 1/f noise S(f = 1.6 × 105 Hz)∼

2.08 × 10−26 A2/Hz, using G=0.96 G0. In contrast to the former example where the 1/f

noise is negligible, here we estimate that the 1/f noise contributes ∼10% to the noise at

high voltage, beyond 200 mV. However, in all other cases we confirmed that the 1/f noise

level was minor, less than 3%, and that the anomalous noise examined was indeed white

with negligible frequency-dependent contributions.
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