Supporting Information

Electrochemical Reduction of Carbon Dioxide on Au Nanoparticles: an in-Situ FTIR Study

Shuai Chen, Aicheng Chen*

Electrochemical Technology Centre, Department of Chemistry, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada

* Corresponding author: aicheng@uoguelph.ca

Figure S1. A photograph of the in-Situ electrochemical FTIR cell setup.

Figure S2. The reference spectra collected at the potential of 0.2 V vs RHE in a 0.1M Na_2SO_4 saturated with CO_2 , where either H_2O or D_2O was used as the solvent.

Figure S3. XRD patterns of Ti/Au (blue) and Ti plate (red).

Figure S4. Steady current densities at 50 s from Fig. 3(c) at various applied potentials.

Figure S5. CO_2 consumption peaks in H_2O (a) and in D_2O (b) at 2344 cm⁻¹ from SNIFTIR spectra on the Au electrode following saturation with CO_2 in a 0.10 M Na_2SO_4 solution every eight seconds, from 0 second to 80 seconds under an applied potential of -0.50 V. $\Delta R/R = (R_{E2}-R_{E1})/R_{E1}$, where the reference spectrum R_{E1} was taken at E = 0.20 V.

Figure S6. CO_2 consumption peak areas at 2344 cm⁻¹ from SNIFTIR spectra every eight seconds, from 0 second to 80 seconds on the Au following saturation with CO_2 in a 0.10 M Na_2SO_4 solution in H_2O , under an applied potential -0.50 V.

Table S1. Peak positions (cm $^{-1}$) present in 0.10 M Na₂SO₄ with H₂O and D₂O and their assignments.

Wavenumber (cm ⁻¹)	Peak assignment	Wavenumber (cm ⁻¹)	Peak assignment	
3300	v _{ss} (HOH)	2520	$v_{ss}(DOD)$	H ₂ O D ₂ O
1645	v _{sb} (HOH)	1190	v_{sb} (DOD)	
2344	v_{as} (OCO) (CO ₂)	2341	$v_{as}(OCO)(CO_2)$	CO ₂
1560	v _{as} (COO-)	1560	v _{as} (COO-)	COO- (Adsorbed)
1410	v _{ss} (COO)	1410	v_{ss} (COO $$)	
1460	v _{ss} (OCO)	1460	v _{ss} (OCO)	HCO ₃
1360	v _{ss} (OCO)	1366	v_{ss} (OCO)	DCO ₃
1100	$v_{ss}SO_4$	1095	v _{ss} (SO ₄)	SO ₄ ² -
1640	v _{as} (COO-)	1627	v _{as} (COO-)	HCOO-
1298	v _{ss} (COO-)	1283	ν _{ss} (COO ⁻)	DCOO-
1350	ν _b (CH)	986	$v_b^{}(CD)$	