Supporting Information

Electrochemical Reduction of Carbon Dioxide on Au Nanoparticles: an in-Situ FTIR Study

Shuai Chen, Aicheng Chen*
Electrochemical Technology Centre, Department of Chemistry, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada

* Corresponding author: aicheng@uoguelph.ca

Figure S1. A photograph of the in-Situ electrochemical FTIR cell setup.

Figure S2. The reference spectra collected at the potential of 0.2 V vs RHE in a $0.1 \mathrm{M} \mathrm{Na}_{2} \mathrm{SO}_{4}$ saturated with CO_{2}, where either $\mathrm{H}_{2} \mathrm{O}$ or $\mathrm{D}_{2} \mathrm{O}$ was used as the solvent.

Figure S3. XRD patterns of Ti/Au (blue) and Ti plate (red).

Figure S4. Steady current densities at 50 s from Fig. 3(c) at various applied potentials.

Figure S5. CO_{2} consumption peaks in $\mathrm{H}_{2} \mathrm{O}$ (a) and in $\mathrm{D}_{2} \mathrm{O}\left(\right.$ b) at $2344 \mathrm{~cm}^{-1}$ from SNIFTIR spectra on the Au electrode following saturation with CO_{2} in a $0.10 \mathrm{M} \mathrm{Na}_{2} \mathrm{SO}_{4}$ solution every eight seconds, from 0 second to 80 seconds under an applied potential of $-0.50 \mathrm{~V} . \Delta \mathrm{R} / \mathrm{R}=\left(\mathrm{R}_{\mathrm{E} 2}-\mathrm{R}_{\mathrm{E} 1}\right) / \mathrm{R}_{\mathrm{E1}}$, where the reference spectrum $\mathrm{R}_{\mathrm{E} 1}$ was taken at $\mathrm{E}=0.20 \mathrm{~V}$.

Figure S6. CO_{2} consumption peak areas at $2344 \mathrm{~cm}^{-1}$ from SNIFTIR spectra every eight seconds, from 0 second to 80 seconds on the Au following saturation with CO_{2} in a $0.10 \mathrm{M} \mathrm{Na}_{2} \mathrm{SO}_{4}$ solution in $\mathrm{H}_{2} \mathrm{O}$, under an applied potential -0.50 V .

Table S1. Peak positions $\left(\mathrm{cm}^{-1}\right)$ present in $0.10 \mathrm{M} \mathrm{Na}_{2} \mathrm{SO}_{4}$ with $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{D}_{2} \mathrm{O}$ and their assignments.

$\begin{gathered} \text { Wavenumber } \\ \left(\mathrm{cm}^{-1}\right) \end{gathered}$	Peak assignment	$\begin{gathered} \text { Wavenumber } \\ \left(\mathrm{cm}^{-1}\right) \end{gathered}$	Peak assignment	
3300	$\nu_{\text {ss }}(\mathrm{HOH})$	2520	$\nu_{\text {ss }}(\mathrm{DOD})$	$\begin{aligned} & \mathrm{H}_{2} \mathrm{O} \\ & \mathrm{D}_{2} \mathrm{O} \end{aligned}$
1645	$v_{\text {sb }}(\mathrm{HOH})$	1190	$v_{\mathrm{sb}}(\mathrm{DOD})$	
2344	$v_{\text {as }}(\mathrm{OCO})\left(\mathrm{CO}_{2}\right)$	2341	$v_{\mathrm{as}}(\mathrm{OCO})\left(\mathrm{CO}_{2}\right)$	CO_{2}
1560	$v_{\text {as }}\left(\mathrm{COO}^{-}\right)$	1560	$\nu_{\text {as }}(\mathrm{COO}-)$	COO^{-} (Adsorbed)
1410	$v_{\text {ss }}\left(\mathrm{COO}^{-}\right)$	1410	$v_{\text {ss }}\left(\mathrm{COO}^{-}\right)$	
1460	$v_{\text {ss }}(\mathrm{OCO})$	1460	$v_{\text {ss }}(\mathrm{OCO})$	$\begin{aligned} & \mathrm{HCO}_{3}^{-} \\ & \mathrm{DCO}_{3}^{-} \end{aligned}$
1360	$v_{\text {ss }}(\mathrm{OCO})$	1366	$v_{\text {ss }}(\mathrm{OCO})$	
1100	$\nu_{\text {ss }} \mathrm{SO}_{4}$	1095	$v_{\mathrm{ss}}\left(\mathrm{SO}_{4}\right)$	$\mathrm{SO}_{4}{ }^{2-}$
1640	$v_{\text {as }}\left(\mathrm{COO}^{-}\right)$	1627	$\nu_{\text {as }}\left(\mathrm{COO}^{-}\right)$	DCOO^{-}
1298	$v_{\mathrm{ss}}\left(\mathrm{COO}^{-}\right)$	1283	$v_{\text {ss }}\left(\mathrm{COO}^{-}\right)$	
1350	$v_{b}(\mathrm{CH})$	986	$v_{\mathrm{b}}(\mathrm{CD})$	

