Supporting Information ## Electrochemical Reduction of Carbon Dioxide on Au Nanoparticles: an in-Situ FTIR Study Shuai Chen, Aicheng Chen* Electrochemical Technology Centre, Department of Chemistry, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada * Corresponding author: aicheng@uoguelph.ca **Figure S1.** A photograph of the in-Situ electrochemical FTIR cell setup. **Figure S2**. The reference spectra collected at the potential of 0.2 V vs RHE in a 0.1M Na_2SO_4 saturated with CO_2 , where either H_2O or D_2O was used as the solvent. Figure S3. XRD patterns of Ti/Au (blue) and Ti plate (red). Figure S4. Steady current densities at 50 s from Fig. 3(c) at various applied potentials. **Figure S5**. CO_2 consumption peaks in H_2O (a) and in D_2O (b) at 2344 cm⁻¹ from SNIFTIR spectra on the Au electrode following saturation with CO_2 in a 0.10 M Na_2SO_4 solution every eight seconds, from 0 second to 80 seconds under an applied potential of -0.50 V. $\Delta R/R = (R_{E2}-R_{E1})/R_{E1}$, where the reference spectrum R_{E1} was taken at E = 0.20 V. **Figure S6**. CO_2 consumption peak areas at 2344 cm⁻¹ from SNIFTIR spectra every eight seconds, from 0 second to 80 seconds on the Au following saturation with CO_2 in a 0.10 M Na_2SO_4 solution in H_2O , under an applied potential -0.50 V. **Table S1**. Peak positions (cm $^{-1}$) present in 0.10 M Na₂SO₄ with H₂O and D₂O and their assignments. | Wavenumber (cm ⁻¹) | Peak assignment | Wavenumber (cm ⁻¹) | Peak assignment | | |--------------------------------|-----------------------------------|--------------------------------|-------------------------------------|--------------------------------------| | 3300 | v _{ss} (HOH) | 2520 | $v_{ss}(DOD)$ | H ₂ O
D ₂ O | | 1645 | v _{sb} (HOH) | 1190 | v_{sb} (DOD) | | | 2344 | v_{as} (OCO) (CO ₂) | 2341 | $v_{as}(OCO)(CO_2)$ | CO ₂ | | 1560 | v _{as} (COO-) | 1560 | v _{as} (COO-) | COO-
(Adsorbed) | | 1410 | v _{ss} (COO) | 1410 | v_{ss} (COO $$) | | | 1460 | v _{ss} (OCO) | 1460 | v _{ss} (OCO) | HCO ₃ | | 1360 | v _{ss} (OCO) | 1366 | v_{ss} (OCO) | DCO ₃ | | 1100 | $v_{ss}SO_4$ | 1095 | v _{ss} (SO ₄) | SO ₄ ² - | | 1640 | v _{as} (COO-) | 1627 | v _{as} (COO-) | HCOO- | | 1298 | v _{ss} (COO-) | 1283 | ν _{ss} (COO ⁻) | DCOO- | | 1350 | ν _b (CH) | 986 | $v_b^{}(CD)$ | |