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Figure S1. Stability of the knotted proteins in dimer. (A) Time evolution of the
interaction energy at the dimer interface. (B) Time evolution of the RMSD for the
knotted proteins in dimer. (C) Time evolution of the intramolecular native contact
ratio for proteins. (D) Time evolution of the secondary structural change of one

subunit in the dimer.



Table S1. All pairs of interactions between residues at the dimer interface. The first
column lists all residues in the subunit B in contact with those in the subunit A
(second column). The third column describes properties of the interactions.
Background colors of green, blue and pink represent residues in the domains of

respectively al, a3 and a5 in the subunit B.

15Trp 15Trp' -1 stacking
15Trp 16Val', 19Gly', 20Phe’, 134Val' hydrophobic
16Val 15Trp' hydrophobic
19Gly 15Trp' hydrophobic
20Phe 15Trp' hydrophobic
78Pro 124Ala' hydrophaobic
79Trp 124Ala', 125Leu’ hydrophaobic
81Thr 126Thr' H-bond
82Pro 125Leu’ hydrophobic
84Leu 125Leu’ hydrophobic
106Glu 1 42Arg_;', 153His’ electrostatic
120Trp 125Leu’ hydrophobic
122Leu 122Leu’, 124Ala’, 125Lel’ hydrophobic
124Ala 78Pro', 79Trp', 124Ala' hydrophobic
125Leu 78Pro’, 79Trp', 84Leu’, 120Trp', 122Leu’, 135Leu’ hydrophobic
126Thr 81Thr' H-bond
127Leu 135Leu’ hydrophobic
128Pro 135Leu’ hydrophaobic
129His 138GIu' electrostatic
131Leu 131Leu’, 134Val', 135Leu’ hydrophaobic
134Val 15Trp', 131Leu’ hydrophobic
135Leu 127Leu’, 128Pro', 131Leu’, 135Leu’ hydrophobic
138Glu 129His' electrostatic
142Arg 106GIu’' electrostatic|
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Figure S2. Time evolution of the distance between centers of two knotted proteins

under an external force with the spring constant of 1000 kJ/mol/nm?.
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Figure S3. Mechanical response of the knotted proteins in dimer using a lower
pulling velocity of 0.00005 nm/ps. (A) Time evolution of the pulling resistant force.
(B) Time evolution of the number of contacts at the dimer interface. Inset of B shows
the final simulated snapshot illustrating that two knotted proteins have been

completely separated.
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Figure S4. Stability of the unknotted proteins in dimer. (A) Time evolutions of the
intramolecular native contact ratios for both the knotted and unknotted proteins in
dimer. (B) Time evolution of the secondary structural change for the unknotted

protein.
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Figure S5. Knot stabilizing effect on proteins in monomer and dimer. (A) Time

evolutions of the RMSD for proteins in four distinct systems, evidencing the

stabilizing effect of knot on proteins in both monomer and dimer. (B) Time evolutions

of the radius of gyration of knotted and unknotted proteins. (C) Time evolutions of the

end-to-end distances for knotted and unknotted proteins in monomer under a constant

mechanical stretching force of 400 kJ/mol/nm. Part of the mechanical stretching data

was obtained from our previous simulation work.
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Figure S6. Time sequence of the typical snapshot depicting mechanical separation of

dimeric proteins with the knot in each protein removed.
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Figure S7. Mechanical separation of a heterodimer, in which the knot of one subunit
is removed while the other is maintained. (A) Time evolution of the resistant force. (B)
Time evolution of the interfacial contact number. (C) Time evolutions of the number
of contacts between specific domains at the heterodimer interface. (D) Time

evolutions of the native contact ratio for both the knotted and the unknotted subunits.
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Figure S8. Six independent simulations of mechanical separation of two dimeric
proteins with and without a knot in each subunit. (A) Time evolutions of the pulling
resistant force for two knotted proteins in dimer. (B) Time evolutions of the pulling
resistant force for two unknotted proteins. (C) Time ewvolutions of the number of
contact at interfaces of two knotted proteins in dimer. (D) The number of contacts at

interfaces of two unknotted proteins as a function of time.
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Figure S9. Thermal denaturation of unknotted proteins in dimer. (A) Time sequence
of typical snapshots. The major secondary structural change at each step is
highlighted by coloring in red. (B) Time evolution of the secondary structural change
of each subunit in the dimer. (C) Time evolutions of the native contact ratio at the
dimer interface of both knotted and unknotted proteins. (D) Time evolutions of the

intramolecular native contact ratio for both knotted and unknotted proteins.



