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Appendix A: The X-ray diffraction signal

The signal is given by the intensity of the diffracted field,
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where ws is the measured frequency, ts is the measurement time, k, is the wavector and r¢ is the measurement
location. The field is given by,

E(r,t)= (271T)4/dw/d3kE(k,w) elkr—iwnt (A2)

The electric field is subjected to a spectro-temporal gating using the following procedure Bennett et al. [1],
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where F'x (X, X) is a gating function from the physical coordinate X to the measured one X. The signal can be
recast in the form,
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is the detector spectogram and,
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is the bare signal spectogram is. The modes initially in the vacuum state are given by the vector potential,

21h ) )
A(r,t) = Z \ /Vkae(u) (k) g, pethm=iont, (A7)

k.
and,
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where € (k,) is the average polarization of the classical probe field .
The off-resonant resonant scattering of light by matter is described by the the minimal coupling,

H, = / dre (rt) A2 (r 1), (A9)

where & is the charge density operator and A is the vector potential. When the probe field is taken to classical, the
first nonvanishing contribution to Eq.(A1) requires two interactions as depicted diagrammatically in Fig.(1). Solving
Eq.(A4) using an ideal spatial gating,



Figure 1. Diagrammatic description of off-resonant diffraction.
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as done in Bennett et al. [1], we obtain Eq.(3) of the main text,
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where NN is the number of particles and,
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Appendix B: Construction of multidimensional stochastic resonance diffraction signals
1. Second order stochastic resonance: Signal-Intensity covariance

We consider a higher order post-processing calculation than mean signal by measuring the time-resolved intensity
of the incident field. Once the intensity is measured Vs. time, its Fourier transform carries the phase fluctuations
information of each experimental realization. The frequency domain intensity is given by,

I = [ dte B, (1) (BY)

= Qﬂ/dw,w/ (w, + wp) A* (w,) A (w/ + wp) e*“‘{%"[‘*’ ]ﬂﬂ[w +wp] }
The cross-correlation of the diffraction signal with a given frequency of the intensity,
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the contribution of the last two terms comes from two separate intervals. The first when (w,w + w,,) does not overlap
with (ws 4+ Wap, ws + wep) is denoted 24,4, and second when they do will be denoted Qo
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where I [Q;nq] = [ dwE (w) E* (w + wp). The average intensity is given by,
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where I, is the frequency-integrated intensity. This leads to a difference between the average intensity and the one
correlated with the diffraction signal. In order to concentrate on the phase mixing terms which result in a higher
temporal resolution, we assume that the interval (ws + wqp, ws + wep) only contributes marginally to I, such that the
covariance Cgy reads,
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where,
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when the interval (ws + wap £ wp, ws + wep = wp) does not include the central frequency and Ao is large, 41, becomes
negligible which results in the phase-mixing terms only. When the phase fluctuations are strong and o is larger than
the pulse bandwidth such that the exponent in Eq.(B5) is rapidly decreasing and the field envelope can be considered
to be constant throughout the integration interval of Q.,,, we can estimate the integral,
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where A = w¢, — wp. This constant sum in contrast to Sg;, where averaging over many realizations with fluctuating
phase results in a trade-off between frequency and temporal resolution. The signal in this case reads,
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and Ky b= T3 Ip [Qeorr]. This signal recovers the single molecule diffraction studied in [2] and contains the full
temporal dynamics.

2. Diffraction-Field covariance

We now imagine a scenario in which the frequency dispersed expression for the electric field (including the phase)
can be stored for each realization of the stochastic field. This is possible by heterodyne measurement of the incident
field with a known reference, and then shifting the reference by 7/2. This will reveal the symmetric contribution to the
phase (cosine) and the antisymmetric (sine) and reconstruct the field, including the phase. Using this technique, we
can avoid the additional integration that emerges naturally in Eq.(B1). The first nonvanishing contribution is given
by,

Ss. (s wr,wa, Q1) = iy (Blwr; A SU (ws, Q. T A) B wns A]) (B9)

This signal results in a the phase exponent,
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When the interval (wq,ws) does not overlap (ws + wap, ws + wep), this can be factorized as,
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which suppresses the temporal evolution even further. This can be eliminated by calculating the covariance, which
recovers the phase mixing terms. We define the covariance signal as,
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The ensemble average over the stochastic degrees of freedom yields,

<emmb—soib—mwlw[wz]}> _<eix{wzb—wib}> <6—M{w[w11—w[w21}> : (B12)
A

A A



this factor does not vanish when the integration interval (wy,ws) overlaps with (ws + wep, ws + wep), Which results
in the phase mixing contributions. Assuming ws > w; and w., > 0 (without loss of generality) we have,
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where the sign flips when boundary frequencies cross. This will not change the correlation function that only depends
on the the interval length. The overall correlation function then reads,
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By tuning w; = ws + wyp and ws = ws + wep, one can probe the temporal dynamics around these two frequency
windows of width o 1/3202.This demonstrates the frequency-time resolution tradeoff for noisy pulses. The overall
signal reads,
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We verify in this case that each contribution to the signal can be controlled by pape (o). Generally w; and wy can
be chosen from different bands (or scales) such that the contribution by diagram can be explicitly written (mostly
Weq > 0 excluding the last two term),
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This is a demonstration of a possible combination for the correlation function used in Eq.(8) of the main text, one

has to determine the contributions for w., < 0 as well.
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