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Appendix A: The X-ray di�raction signal

The signal is given by the intensity of the di�racted �eld,

S (ωs, ts,ks, rs) =

∫
drdt,

〈
E†(trfk) (r, t)E(trfk) (r, t) e

− i
~

t∫
−∞

dτHI−(τ)
〉
, (A1)

where ωs is the measured frequency, ts is the measurement time, ks is the wavector and rs is the measurement
location. The �eld is given by,

E (r, t) =
1

(2π)
4

∫
dω

∫
d3kE (k, ω) eik·r−iωkt. (A2)

The electric �eld is subjected to a spectro-temporal gating using the following procedure Bennett et al. [1],

E(t) (r, t) = Ft (t, t̄)E (r, t) , (A3)

E(tr) (r, t) = Fr (r, r̄)E(t) (r, t) ,

E(trf) (r, t) = Ff (ω, ω̄)E(tr) (r, ω) ,

E(trfk) (r, t) = Fk

(
k, k̄

)
E(trf) (k, ω) ,

where FX
(
X, X̄

)
is a gating function from the physical coordinate X to the measured one X̄. The signal can be

recast in the form,

S (ωs, ts,ks, rs) =

∫
dω

2π
dt

∫
dk

(2π)
3 drWB (t, ω, r,k)WD (t, ω, r,k; ts, ωs, rs,ks) , (A4)

where,

WD (t, ω, r,k; ts, ωs, rs,ks) =

∫
dω

2π
|Ff (ω, ωs)|2Wt (t, ts, ω − ωs)

∫
d3k

(2π)
3 |Fk (k,ks)|2Wr (r, rs,k − ks) , (A5)

is the detector spectogram and,

WB (t, ω, r,k) =

∫
dτe−iωτ

∫
dReik·R

〈
T E†R

(
r +

R

2
, t+

τ

2

)
EL

(
r − R

2
, t− τ

2

)〉
. (A6)

is the bare signal spectogram is. The modes initially in the vacuum state are given by the vector potential,

A (r, t) =
∑
k,µ

√
2π~
V ωk

ε(µ) (k) ak,µe
ik·r−iωkt, (A7)

and,

Ap (r, t) = ε̄ (kp)

∫
dω

2π
Ap (ω) eikp·r−iωt, (A8)

where ε̄ (kp) is the average polarization of the classical probe �eld .
The o�-resonant resonant scattering of light by matter is described by the the minimal coupling,

HI =

∫
drσ̂ (r, t) Â

2
(r, t) , (A9)

where σ̂ is the charge density operator and A is the vector potential. When the probe �eld is taken to classical, the
�rst nonvanishing contribution to Eq.(A1) requires two interactions as depicted diagrammatically in Fig.(1). Solving
Eq.(A4) using an ideal spatial gating,
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Figure 1. Diagrammatic description of o�-resonant di�raction.

WD (r, rs,k,ks) = δ(3) (r − rs) , (A10)

as done in Bennett et al. [1], we obtain Eq.(3) of the main text,

S[1] (ω̄s,Q, T ; Λ) = NK

∫
dωs ω

2
sG (ωs, ω̄s)ω

2
s

∑
abc

ρac (T )

× σba [Q (ωs)]σ
∗
bc [Q (ωs)]

〈
Ap (ωs + ωba)A∗p (ωs + ωbc)

〉
Λ
. (A11)

where N is the number of particles and,

K =
|ε̂ (kp) · ε∗s|

2

72πr2c4
. (A12)
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Appendix B: Construction of multidimensional stochastic resonance di�raction signals

1. Second order stochastic resonance: Signal-Intensity covariance

We consider a higher order post-processing calculation than mean signal by measuring the time-resolved intensity
of the incident �eld. Once the intensity is measured Vs. time, its Fourier transform carries the phase �uctuations
information of each experimental realization. The frequency domain intensity is given by,

I (ωp) =

∫
dte−iωpt |Ep (t)|2 (B1)

= 2π

∫
dω
′
ω
′
(
ω
′
+ ωp

)
A∗
(
ω
′
)
A
(
ω
′
+ ωp

)
e
−iλ

{
ϕ
[
ω
′]
−ϕ

[
ω
′
+ωp

]}
.

The cross-correlation of the di�raction signal with a given frequency of the intensity,

SSI (ωs, ωp,Q, T ) =
〈
I [ωp; Λ]S[1] (ωs,Q, T ; Λ)

〉
Λ
/2πκ1 (B2)

=
∑
abc

σba (Q)σ∗bc (Q)As
abA

s∗
cbe

iωcaT

×
∫
dωE (ω)E∗ (ω + ωp)〈

eiλ{ϕ
s
ab−ϕ

s
cd−ϕ[ω]+ϕ[ω+ωp]}

〉
,

the contribution of the last two terms comes from two separate intervals. The �rst when (ω, ω + ωp) does not overlap
with (ωs + ωab, ωs + ωcb) is denoted Ωind, and second when they do will be denoted Ωcorr,

∫
dωE (ω)E∗ (ω + ωp)

〈
eiλ{ϕ

s
ab−ϕ

s
cd−ϕ[ω]+ϕ[ω+ωp]}

〉
= e−λ

2σ2[|ωp|+|ωac|]I [Ωind] (B3)

+

∫
Ωcorr

dωE (ω)E∗ (ω + ωp) e
−λ2σ2[|ωs+ωab−ω|+|ωs+ωcb−ωp−ω|],

where I [Ωind] =
∫

Ωind

dωE (ω)E∗ (ω + ωp). The average intensity is given by,

〈I [ωp; Λ]〉Λ = Ipe
−λ2σ2|ωp|, (B4)

where Ip is the frequency-integrated intensity. This leads to a di�erence between the average intensity and the one
correlated with the di�raction signal. In order to concentrate on the phase mixing terms which result in a higher
temporal resolution, we assume that the interval (ωs + ωab, ωs + ωcb) only contributes marginally to Ip such that the
covariance CSI reads,

CSI (ωs, ωp,Q, T ) =
[〈
I [ωp; Λ]S[1] (ωs,Q, T ; Λ)

〉
Λ
− 〈I [ωp; Λ]〉Λ

〈
S[1] (ωs,Q, T ; Λ)

〉
λ

]
/2πκ1 (B5)

=
∑
abc

σba (Q)σ∗bc (Q)As
abA

s∗
cbe

iωcaT

×

 ∫
Ωcorr

dωE (ω)E∗ (ω + ωp)

×e−λ
2σ2[|ωs+ωab−ω|+|ωs+ωcb−ωp−ω|] + δIp [Ωcorr]

]
,

where,

δIp = I [Ωind] e
−λ2σ2[|ωp|+|ωac|] − Ipe−λ

2σ2|ωp|. (B6)
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when the interval (ωs + ωab ± ωp, ωs + ωcb ± ωp) does not include the central frequency and λσ is large, δIp becomes
negligible which results in the phase-mixing terms only. When the phase �uctuations are strong and σ is larger than
the pulse bandwidth such that the exponent in Eq.(B5) is rapidly decreasing and the �eld envelope can be considered
to be constant throughout the integration interval of Ωcorr, we can estimate the integral,

∫
dωE (ω + ωs + ωab)

× E∗ (ω + ωp + ωs + ωab) e
−λ2σ2|ω−∆|

≈ Ip [Ωcorr]
2

λ2σ2
, (B7)

where ∆ = ωca − ωp. This constant sum in contrast to SSI , where averaging over many realizations with �uctuating
phase results in a trade-o� between frequency and temporal resolution. The signal in this case reads,

CSI (ωs, ωp,Q, T ) = κ−1
2 CovΛ

{
I [ωp; Λ]S[1] (ωs,Q, T ; Λ)

}
(B8)

=
∑
abc

σba (Q)σ∗bc (Q)As
abA

s∗
cbe

iωcaT ,

and κ−1
2 = πκ1

σ2λ2 Ip [Ωcorr]. This signal recovers the single molecule di�raction studied in [2] and contains the full
temporal dynamics.

2. Di�raction-Field covariance

We now imagine a scenario in which the frequency dispersed expression for the electric �eld (including the phase)
can be stored for each realization of the stochastic �eld. This is possible by heterodyne measurement of the incident
�eld with a known reference, and then shifting the reference by π/2. This will reveal the symmetric contribution to the
phase (cosine) and the antisymmetric (sine) and reconstruct the �eld, including the phase. Using this technique, we
can avoid the additional integration that emerges naturally in Eq.(B1). The �rst nonvanishing contribution is given
by,

SS;EE (ωs, ω1, ω2,Q, T ) = κ−1
2

〈
E [ω1; Λ]S[1] (ωs,Q, T ; Λ)E∗ [ω2; Λ]

〉
Λ
, (B9)

This signal results in a the phase exponent,

〈
eiλ(ϕs

ab−ϕ
s
cb+ϕ[ω1]−ϕ[ω2])

〉
Λ
.

When the interval (ω1, ω2) does not overlap (ωs + ωab, ωs + ωcb), this can be factorized as,

〈
eiλ(ϕs

ab−ϕ
s
cb)
〉〈

eiλ{ϕ[ω1]−ϕ[ω2]}
〉

= e−λ
2σ2|ωca|e−λ

2σ2|ω1−ω2|, (B10)

which suppresses the temporal evolution even further. This can be eliminated by calculating the covariance, which
recovers the phase mixing terms. We de�ne the covariance signal as,

CS;EE (ωs, ω1, ω2,Q, T ) = κ−1
2

〈
E [ω1; Λ]S[1] (ωs,Q, T ; Λ)E∗ [ω2; Λ]

〉
Λ

(B11)

− κ−1
2 〈E [ω1; Λ]E∗ [ω2; Λ]〉Λ

〈
S[1] (ωs,Q, T ; Λ)

〉
Λ
.

The ensemble average over the stochastic degrees of freedom yields,

〈
eiλ{ϕ

s
ab−ϕ

s
cb−ϕ[ω1]+ϕ[ω2]}

〉
Λ
−
〈
eiλ{ϕ

s
ab−ϕ

s
cb}
〉

Λ

〈
e−iλ{ϕ[ω1]−ϕ[ω2]}

〉
Λ
, (B12)
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this factor does not vanish when the integration interval (ω1, ω2) overlaps with (ωs + ωab, ωs + ωcb), which results
in the phase mixing contributions. Assuming ω2 > ω1 and ωca > 0 (without loss of generality) we have,

ϕsab − ϕscd − ϕ [ω1] + ϕ [ω2] =

ω1∫
dωφ

ωs+ωab

−
ω2∫
dωφ

ωs+ωcb

, (B13)

where the sign �ips when boundary frequencies cross. This will not change the correlation function that only depends
on the the interval length. The overall correlation function then reads,

µabc (σ) =

{
e−λ

2σ2|ω1−ωs−ωab|e−λ
2σ2|ω2−ωs−ωcb|; ωca > 0

e−λ
2σ2|ω2−ωs−ωab|e−λ

2σ2|ω1−ωs−ωcb|; ωca < 0
. (B14)

By tuning ω1 = ωs + ωab and ω2 = ωs + ωcb, one can probe the temporal dynamics around these two frequency
windows of width ∝ 1/λ2σ2.This demonstrates the frequency-time resolution tradeo� for noisy pulses. The overall
signal reads,

CS;EE (ωs, ω1, ω2,Q, T ) = κ−1
2

{〈
E [ω1; Λ]S[1] (ωs,Q, T ; Λ)E∗ [ω2; Λ]

〉
Λ
− 〈E [ω1; Λ]E∗ [ω2; Λ]〉Λ

〈
S[1] (ωs,Q, T ; Λ)

〉
Λ

}
(B15)

= |As|2 µggg |σgg (Q)|2︸ ︷︷ ︸
(a)

+
∑
e

µgeg
∣∣As

ge

∣∣2 |σeg (Q)|2︸ ︷︷ ︸
(b)

+
∑
e1e2

µe1ge2A
s
e1g

As∗
e2g

σe1g (Q)σ∗e2g (Q)︸ ︷︷ ︸
(d)

eiωe1e2
T

+
∑

e1e2e3

µe1e2e3A
s
e1e2

As∗
e3e2

σe1e2 (Q)σ∗e3e2 (Q)︸ ︷︷ ︸
(c)

eiωe1e3
T

+ 2Re


∑
e1

eiωe1gT

µe1ggAs
e1g

As∗
ggσe1g (Q)σ∗gg (Q)︸ ︷︷ ︸

(e & h)

+
∑
e2

µe1e2gA
s
e1e2

As∗
ge2

σe1e2 (Q)σ∗ge2 (Q)︸ ︷︷ ︸
(f & g)


 .

We verify in this case that each contribution to the signal can be controlled by µabc (σ). Generally ω1 and ω2 can
be chosen from di�erent bands (or scales) such that the contribution by diagram can be explicitly written (mostly
ωca > 0 excluding the last two term),



µggg = e−λ
2σ2|ω1−ωs|e−λ

2σ2|ω2−ωs|; a

µgeg = e−λ
2σ2|ω1−ωs−ωge|e−λ

2σ2|ω2−ωs−ωge|; b

µe1e2e3 = e−λ
2σ2|ω1−ωs−ωe1e2 |e−λ

2σ2|ω2−ωs−ωe3e2 |; c, e1 < e3

µe1ge2 = e−λ
2σ2|ω1−ωs−ωe1g|e−λ

2σ2|ω2−ωs−ωe2g|; d, e1 < e2

µe1gg = e−λ
2σ2|ω2−ωs−ωe1g|e−λ2σ2|ω1−ωs|; (e & h)

µe1e2g = e−λ
2σ2|ω2−ωs−ωe1e2 |e−λ

2σ2|ω1−ωs−ωge2 |; (f & g)

. (B16)

This is a demonstration of a possible combination for the correlation function used in Eq.(8) of the main text, one
has to determine the contributions for ωca < 0 as well.
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