Supporting Information

Enhanced Tunneling in a Hybrid of Single-Walled Carbon Nanotubes and Graphene

Yongping Liao,^{†,||} Kimmo Mustonen,^{*,‡,||} Semir Tulić,[‡] Viera Skákalová,[‡] Sabbir

A. Khan,[¶] Patrik Laiho,[†] Qiang Zhang,[†] Changfeng Li,[§] Mohammad R.A.

Monazam,[‡] Jani Kotakoski,[‡] Harri Lipsanen,[§] and Esko I. Kauppinen^{*,†}

†Aalto University School of Science, Department of Applied Physics, P.O. Box 15100, FI-00076 Aalto, Finland

‡University of Vienna, Faculty of Physics, 1090 Vienna, Austria

 $\P Niels \ Bohr \ Institute, \ University \ of \ Copenhagen, \ 2100 \ Copenhagen, \ Denmark$

§Nanoscience and Advanced Materials Group, Department of Micro- and Nanosciences, Micronova, Aalto University, P.O. Box 13500, FI-00076 Aalto, Finland ||Contributed equally to this work.

E-mail: kimmo.mustonen@univie.ac.at; esko.kauppinen@aalto.fi

Figure S1: **The inverted approach: graphene on SWCNTs**. (a) A schematic of a hybrid with a graphene monolayer encapsulating SWCNTs on a quartz substrate. (b) The optical absorption spectra of the inverted graphene-SWCNT hybrid film. (c) A comparison against the data reproduced from Figure 1e-f.

Figure S2: **Supporting STEM data.** MAADF overview (a) and closeup of ribbon-like SWCNT bundles on graphene. (c) A line-profile showing the scattering intensity along the line drawn in sub-panel (a). The intensity is plotted with respect to that of a single tube. (d) A tube with an encapsulated active catalyst particle and another, inactive, suspended next to it. (e) Electron energy loss spectrum acquired from the inactive particle showing it is iron.

Figure S3: **STEM/MAADF images of SWCNT networks on graphene.** (a) 120 s deposition and (b) 600 s deposition. Note how the morphology changes from one dominated by X-junctions to emergence of Y-junctions when the layer thickness is increased.

Figure S4: **SEM images of doped SWCNTs.** (a) On SiO₂ and (b) on graphene. The scale bars are 1 μ m

Figure S5: **AFM characterization.** (a) A 20 μ m × 20 μ m AFM image of a TP deposited SWCNT film on SiO₂ and (b) line profiles showing the z-height. (c) A similar scan on graphene and (e) and (d) the line profiles. The line density and mean height are given in (e-f), the inset in in (f) representing the mean of total.

Figure S6: MoS_2 substrate. (a) An artistic rendition of SWCNTs on MoS_2 . (b) Photographs of MoS_2 and SWCNTs on MoS_2 (quartz substrate). (c) A SEM image of TP deposited SWCNTs on MoS_2 . (d) Optical absorption spectra of the films, showing the dominant excitations in MoS_2 . (e) Optical transmittance vs. sheet resistance of SWCNTs on MoS_2 compared to SWCNTs and SWCNTs on graphene (the data points are rearranged from Figure 1e-f).