Mechanically Triggered Small Molecule Release from a Masked Furfuryl Carbonate

Xiaoran Hu, Tian Zeng, Corey C. Husic, Maxwell J. Robb*
Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States

*To whom correspondence should be addressed. E-mail: mrobb@caltech.edu
Table of Contents
I. General Experimental Details S2
II. Supplementary Figures S3
III. Synthetic Details S14
IV. DFT Calculations S22
V. Sonication Experiments and Fluorescence Spectroscopy S30
VI. Single Crystal X-Ray Diffraction S30
VII. References S32
VIII. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra S33

I. General Experimental Details

Reagents from commercial sources were used without further purification unless otherwise stated. Methyl acrylate was passed through a short plug of basic alumina to remove inhibitor immediately prior to use. Dry THF, diethyl ether, and DMF were obtained from a Pure Process Technology solvent purification system. All reactions were performed under a N_{2} or argon atmosphere unless specified otherwise. Column chromatography was performed on a Biotage Isolera system using SiliCycle SiliaSep HP flash cartridges.

NMR spectra were recorded using a 400 MHz Bruker Avance III HD with Prodigy Cryoprobe, a 400 MHz Bruker Avance Neo, or Varian Inova 500 or 600 MHz spectrometers. All ${ }^{1} \mathrm{H}$ NMR spectra are reported in δ units, parts per million (ppm), and were measured relative to the signals for residual chloroform (7.26 ppm), dichloromethane (5.32 ppm), methanol (3.31 ppm), or acetonitrile (1.94 ppm) in deuterated solvent. All ${ }^{13} \mathrm{C}$ NMR spectra were measured in deuterated solvents and are reported in ppm relative to the signals for chloroform (77.16 ppm) or dichloromethane (54.00 ppm). Multiplicity and qualifier abbreviations are as follows: $s=$ singlet, $d=$ doublet, $t=$ triplet, $q=q u a r t e t, ~ d d=$ doublet of doublets, $A B q$ $=A B$ quartet, $m=$ multiplet, $\mathrm{br}=$ broad .

High resolution mass spectra (HRMS) were obtained from an Agilent 6200 series time-of-flight mass spectrometer equipped with an Agilent G1978A multimode source (ESI+).

Analytical gel permeation chromatography (GPC) was performed using an Agilent 1260 series pump equipped with two Agilent PLgel MIXED-B columns ($7.5 \times 300 \mathrm{~mm}$), an Agilent 1200 series diode array detector, a Wyatt 18 -angle DAWN HELEOS light scattering detector, and an Optilab rEX differential refractive index detector. The mobile phase was THF at a flow rate of $1 \mathrm{~mL} / \mathrm{min}$. Molecular weights and molecular weight distributions were calculated by light scattering using a dn/dc value of $0.062 \mathrm{~mL} / \mathrm{g}$ (25 ${ }^{\circ} \mathrm{C}$) for poly(methyl acrylate).

Photoluminescence spectra were recorded on a Shimadzu RF-6000 spectrofluorophotometer.
Ultrasound experiments were performed using a Vibra Cell 505 liquid processor equipped with a 0.5 -inch diameter solid probe (part \#630-0217), sonochemical adapter (part \#830-00014), and a Suslick reaction vessel made by the Caltech glass shop (analogous to vessel \#830-00014 from Sonics and Materials).

II. Supplementary Figures

$t_{1 / 2}=17$ days

Chart S1. Structures of furfuryl carbonate model compounds S1, S2, and 1, and reaction half-lives determined from ${ }^{1} \mathrm{H}$ NMR spectroscopy in $3: 1(\mathrm{v} / \mathrm{v})$ acetonitrile- $d_{3}: \mathrm{MeOH}$ at room temperature.

Figure S1. Partial ${ }^{1} \mathrm{H}$ NMR spectra (500 MHz) of a $6.3 \mu \mathrm{M}$ solution of compound $\mathbf{S 1}$ in acetonitrile- d_{3} upon addition of methanol (25% by volume). The reaction half-life was estimated to be ~ 17 days.

Figure S2. Partial ${ }^{1} \mathrm{H}$ NMR spectra (500 MHz) of a $25 \mu \mathrm{M}$ solution of compound $\mathbf{S 2}$ in acetonitrile- d_{3} upon addition of methanol (25% by volume). The reaction half-life was estimated to be ~ 23 days.

Figure S3. ${ }^{1} \mathrm{H}$ NMR spectra (400 MHz) of model compound $\mathbf{1}$ in CDCl_{3} at room temperature acquired 50 h apart.

Figure S4. ${ }^{1} \mathrm{H}$ NMR spectra (400 MHz) of model compound 1 in acetontrile- d_{3} at room temperature acquired over 36 h . Some degradation occurs after extended times under these conditions.

Figure S5. Construction of a calibration curve for experimental determination of the concentration of hydroxycoumarin 2. (a) Fluorescence emission spectra ($\lambda_{\text {ex }}=330 \mathrm{~nm}$) and (b) intensity at 380 nm for solutions of 7-hydroxy-4-methylcoumarin (2) in acetonitrile/methanol (3:1 v / v) as a function of concentration. A linear regression of the data in (b) gives the calibration function, $Y=0.694^{*} X$.

Figure S6. Partial ${ }^{1} \mathrm{H}$ NMR spectra (500 MHz) of a $27 \mu \mathrm{M}$ solution of compound $\mathbf{1}$ in acetonitrile- d_{3} upon addition of water (25% by volume) at room temperature. Compound $\mathbf{1}$ is converted cleanly to furfuryl alcohol $\mathbf{1 1}$ and hydroxycoumarin 2 . The half-life of the reaction is estimated to be approximately 8 min under these conditions.

Figure S7. GPC traces as a function of ultrasonication time for PMA-1 monitored with a refractive index (RI) detector. Ultrasound-induced mechanochemical activation causes chain scission near the polymer midpoint, resulting in attenuation of the initial polymer peak ($M_{\mathrm{p}}=101 \mathrm{~kg} / \mathrm{mol}$) and an increase in a new peak ($M_{\mathrm{p}}=55 \mathrm{~kg} / \mathrm{mol}$) at approximately one-half the original molecular weight.

Figure S8. Release of hydroxycoumarin $\mathbf{2}$ from PMA-1 as a function of sonication time ($2 \mathrm{mg} / \mathrm{mL}$ polymer in 3:1 MeCN:MeOH) monitored using fluorescence spectroscopy ($\lambda_{\text {ex }}=330 \mathrm{~nm}, \lambda_{\text {em }}=380 \mathrm{~nm}$). Aliquots were removed from the sonicated solution and kept at room temperature for 20 h to allow complete decomposition of the mechanically generated furfuryl carbonate prior to measurement. Error bars represent standard deviation from three replicate experiments. Fitting the data to a first-order rate expression (eq S1) gives a projected maximum release of approximately 87%.

Figure S9. (a) Representative fluorescence spectra of a $2.0 \mathrm{mg} / \mathrm{mL}$ solution of PMA-1 in acetonitrile/methanol ($3: 1 \mathrm{v} / \mathrm{v}$) before ultrasonication (dotted line), immediately after 150 min ultrasonication at $0^{\circ} \mathrm{C}$ (dashed line), and after 150 min ultrasonication followed by incubation at room temperature for 20 h (solid line). (b) Concentrations of hydroxycoumarin 2 released from PMA-1 measured by fluorescence spectroscopy as a function of ultrasonication time. Aliquots were removed from the sonicated solution and immediately measured, and then subsequently remeasured after being kept at room temperature for 20 h to allow complete decomposition of the mechanically generated furfuryl carbonate. Error bars represent standard deviation from three replicate experiments.

Figure S10. ${ }^{1} \mathrm{H}$ NMR spectra (500 MHz) of Diels-Alder adduct 7 in acetonitrile- $d_{3} /$ methanol- $d_{4}(3: 1 \mathrm{v} / \mathrm{v})$ at room temperature acquired 23 h apart. The spectrum after 23 h (top) is essentially unchanged compared to the original spectrum acquired immediately after sample preparation (bottom) demonstrating the stability of the adduct under these conditions.

Diels-Alder adduct 7 in acetonitrile- $d_{3} / \mathrm{D}_{2} \mathrm{O}(3: 1)$ after 23 h at room temperature

Figure S11. ${ }^{1} \mathrm{H}$ NMR spectra (500 MHz) of Diels-Alder adduct 7 in acetonitrile- $d_{3} / \mathrm{D}_{2} \mathrm{O}(3: 1 \mathrm{v} / \mathrm{v})$ at room temperature acquired 23 h apart. The spectrum after 23 h (top) is essentially unchanged compared to the original spectrum acquired immediately after sample preparation (bottom) demonstrating the stability of the adduct under these conditions.

Figure S12. ${ }^{1} \mathrm{H}$ NMR spectra (500 MHz) of Diels-Alder adduct $\mathbf{7}$ in methanol- d_{4} at room temperature acquired 23 h apart. The spectrum after 23 h (top) is essentially unchanged compared to the original spectrum acquired immediately after sample preparation (bottom) demonstrating the stability of the adduct under these conditions.

III. Synthetic Details

Scheme S1. Synthesis of 4-Methylcoumarin 7-Chloroformate (8).

4-methylcoumarin 7-chloroformate (8). A flame-dried round bottom flask equipped with a stir bar under nitrogen was charged with triphosgene ($0.50 \mathrm{~g}, 1.7 \mathrm{mmol}$) and anhydrous THF (20 mL). The solution was cooled to $0{ }^{\circ} \mathrm{C}$ in an ice bath, followed by the dropwise addition of a solution of 7-hydroxy-4methylcoumarin ($0.88 \mathrm{~g}, 5.0 \mathrm{~mol}$) and anhydrous pyridine ($0.40 \mathrm{~mL}, 5.0 \mathrm{mmol}$) dissolved in anhydrous THF $(35 \mathrm{~mL})$. A white precipitate formed quickly upon addition. The reaction was allowed to warm to rt and stirred for 18 h . The slurry was filtered through a silica plug under an inert atmosphere of nitrogen to remove the insoluble bis-coumarin carbonate byproduct. The crude mixture was dried, taken up into DCM $(20 \mathrm{~mL})$, and filtered twice under nitrogen to remove insoluble solids comprising mostly the hydroxycoumarin starting material. The filtrate was concentrated under reduced pressure to provide the title compound as a white powder ($0.91 \mathrm{~g}, 76 \%$), which was stored in a glovebox under nitrogen. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.66(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.33(\mathrm{q}, \mathrm{J}=1.2 \mathrm{~Hz}$, $1 \mathrm{H}), 2.45(\mathrm{~d}, \mathrm{~J}=1.3 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 160.1,154.3,153.2,151.7,149.2,126.1$, 119.2, 116.8, 115.5, 109.8, 18.9 ppm . $\mathrm{HRMS}(E S I, m / z)$: calcd for $\left[\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{ClO}_{4}\right]^{+}(\mathrm{M}+\mathrm{H})^{+}$, 239.0106; found, 239.0097.

Scheme S2. Synthesis of Model Furfuryl Carbonate S1.

Furan-2-ylmethyl (4-methyl-2-oxo-2H-chromen-7-yl) carbonate (S1). A flame-dried round bottom flask was charged with furfuryl alcohol ($14.2 \mathrm{mg}, 0.145 \mathrm{mmol}$) and anhydrous DCM (5 mL). The solution was cooled to $0{ }^{\circ} \mathrm{C}$ in an ice bath followed by the dropwise addition of anhydrous pyridine ($12.3 \mu \mathrm{~L}, 0.152$ $\mathrm{mmol})$ and then a solution of coumarin chloroformate $8(36.2 \mathrm{mg}, 0.152 \mathrm{mmol})$ in anhydrous DCM (5 mL). The solution was allowed to warm to rt slowly, resulting in the formation of a white precipitate. The mixture was then diluted with DCM (20 mL) and washed with brine ($2 \times 20 \mathrm{~mL}$). The combined organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, concentrated under reduced pressure, and purified by flash chromatography (5-35\% EtOAc/hexanes) to yield the title compound as an off-white solid (43 mg , quant). $R_{f}=0.64$ (1:1 EtOAc:hexanes). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.61(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{dd}, \mathrm{J}=1.9,0.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{dd}, J=8.7,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.54(\mathrm{dd}, J=3.2,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.41(\mathrm{dd}, J=3.3$,
$1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.28(\mathrm{q}, \mathrm{J}=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{~s}, 2 \mathrm{H}), 2.44(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta: 160.6,154.3,153.3,152.8,151.9,148.0,144.1,125.6,118.2,117.5,114.9,112.2,110.9,110.1,62.5$, 18.9 ppm. HRMS (ESI, $m / z)$: calcd for $\left[\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{O}_{6}\right]^{+}(\mathrm{M}+\mathrm{H})^{+}, 301.0707$; found, 301.0702.

Scheme S3. Synthesis of Model Furfuryl Carbonate S2.

(5-(hydroxymethyl)furan-2-yl)methyl 2-bromo-2-methylpropanoate (9). A round bottom flask equipped with a stir bar was charged with methanol (7.5 mL) and THF (2.5 mL) and cooled to $0^{\circ} \mathrm{C}$ in an ice bath. NaBH_{4} ($159 \mathrm{mg}, 4.20 \mathrm{mmol}$) was added followed by the slow addition of 5-hydroxymethyl-2-furaldehyde $(478 \mathrm{mg}, 3.79 \mathrm{mmol})$. The reaction mixture was allowed to warm to rt slowly and stirred for 3 h . The mixture was then washed with $10 \% \mathrm{NH}_{4} \mathrm{Cl}(100 \mathrm{~mL})$, extracted with EtOAc ($2 \times 100 \mathrm{~mL}$). The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure to yield 2,5bis(hydroxymethyl)furan as a white solid (410 mg), which was used in the next step without further purification.

A round bottom flask equipped with a stir bar was charged with 2,5-bis(hydroxymethyl)furan ($410 \mathrm{mg}, 3.2$ $\mathrm{mmol})$, triethylamine ($0.49 \mathrm{~mL}, 3.5 \mathrm{mmol}$), and DCM (20 mL), followed by the dropwise addition of α bromoisobutyryl bromide ($396 \mu \mathrm{~L}, 3.20 \mathrm{mmol}$). The reaction was allowed to warm to rt slowly and stirred for 3 h . The mixture was filtered through a plug of silica gel eluting with EtOAc:hexanes (4:1), the filtrate was concentrated under reduced pressure, and the crude product was purified by column chromatography ($25-50 \%$ EtOAc/Hexanes) to yield the title compound as a colorless oil (405 mg , 39\% over two steps). $R_{f}=0.26$ (1:4 EtOAc:hexanes). $\left.{ }^{1} \mathrm{H} \mathrm{NMR} \mathrm{(400} \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 6.40(\mathrm{~d}, \mathrm{~J}=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.27$ (d, J = $3.2 \mathrm{~Hz}, 1 \mathrm{H}$), $5.13(\mathrm{~s}, 2 \mathrm{H}), 4.60(\mathrm{~s}, 2 \mathrm{H}), 1.92(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 171.5$, 155.0, 148.9, 111.9, 108.9, 59.7, 57.7, 55.7, 30.8 ppm . HRMS (ESI, m / z): calcd for $\left[\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{BrNO}_{4}\right]^{+}(\mathrm{M}+\mathrm{H})^{+}$, 294.0335; found, 294.0327.

(5-(()((4-methyl-2-oxo-2H-chromen-7-yl)oxy)carbonyl)oxy)methyl)furan-2-yl)methyl 2-bromo-2methylpropanoate (S2). Furfuryl alcohol $9(46.0 \mathrm{mg}, 0.166 \mathrm{mmol})$ and pyridine ($21.5 \mu \mathrm{~L}, 0.267 \mathrm{mmol}$) were combined with anhydrous DCM (2 mL) in a two-neck round bottom flask. The solution was cooled to $0^{\circ} \mathrm{C}$ in an ice bath followed by the dropwise addition a solution of coumarin chloroformate $\mathbf{8}(60.0 \mathrm{mg}$, 0.251 mmol) dissolved in anhydrous DCM (4 mL). The reaction mixture was allowed to warm to rt and stirred for 2 h . The mixture was then concentrated under reduced pressure and the crude product was purified by column chromatography ($10-60 \%$ EtOAc/hexanes) to yield the title compound as a colorless oil ($76 \mathrm{mg}, 96 \%$). $R_{f}=0.16$ (1:4 EtOAc:hexanes). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.62(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.23$ (d, $J=2.3 \mathrm{~Hz}, 1 \mathrm{H}$), $7.17(\mathrm{dd}, J=8.7,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.52(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.46(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.28(\mathrm{q}, J=$ $1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{~s}, 2 \mathrm{H}), 5.17(\mathrm{~s}, 2 \mathrm{H}), 2.44(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.94(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(100 \mathrm{MHz}$, CDCl_{3}) $8: 171.4,160.5,154.3,153.3,152.7,151.9,150.4,148.8,125.7,118.2,117.5,114.9,113.2,112.0$, 110.1, 62.4, 59.6, 55.6, 30.8, 18.9 ppm. HRMS (ESI, m / z): calcd for $\left[\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{BrO}_{8}\right]^{+}(\mathrm{M}+\mathrm{H})^{+}$, 479.0336; found, 479.0337.

Scheme S4. Synthesis of Furfuryl Carbonate 1 and Furfuryl Methyl Ether 3.

1-(5-(hydroxymethyl)furan-2-yl)ethan-1-ol (10). A 1 L round bottom flask equipped with a stir bar was charged with 5-(hydroxymethyl)furan-2-carbaldehyde ($6.92 \mathrm{~g}, 54.9 \mathrm{mmol}$) and diethyl ether (300 mL). The solution was cooled to $-30^{\circ} \mathrm{C}$, followed by the slow addition of methylmagnesium bromide (3 M in diethyl ether, $42 \mathrm{~mL}, 130 \mathrm{mmol})$. The mixture was allowed to warm to rt and stirred for 12 h , after which the
reaction was cooled to $0^{\circ} \mathrm{C}$ and quenched with $10 \% \mathrm{NH}_{4} \mathrm{Cl}(200 \mathrm{~mL})$. The reaction mixture was extracted with EtOAc ($3 \times 100 \mathrm{~mL}$) and the combined organic phase was dried over MgSO_{4}, filtered, and concentrated under reduced pressure to provide the title compound as a viscous yellow oil ($7.60 \mathrm{~g}, 97 \%$). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 6.23(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.18(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.87(\mathrm{q}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.59$ (d, J=2.9 Hz, 2H), 1.97 (br s, 1H), 1.78 (br s, 1H), $1.54(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(100 \mathrm{MHz}$, CDCl_{3}) δ : $157.8,153.5,108.6,106.1,63.8,57.7,21.3 \mathrm{ppm}$. HRMS (ESI, m / z): calcd for $\left[\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{O}_{2}\right]^{+}(\mathrm{M}-\mathrm{OH})^{+}$, 125.0597; found, 125.0595.

(5-(1-hydroxyethyl)furan-2-yl)methyl 2-bromo-2-methylpropanoate (11). A 500 mL three neck flask was equipped with a stir bar was charged with $10(2.74 \mathrm{~g}, 19.3 \mathrm{mmol})$, triethylamine ($3.00 \mathrm{~mL}, 21.6 \mathrm{mmol}$), and DCM (150 mL). The mixture was cooled to $0{ }^{\circ} \mathrm{C}$ in an ice bath followed by the dropwise addition of a solution of α-bromoisobutyryl bromide ($2.60 \mathrm{~mL}, 21.0 \mathrm{mmol}$) dissolved in DCM (50 mL) over 2 h . The reaction mixture was stirred under nitrogen and allowed to warm to rt slowly. After 20 h , the reaction mixture was filtered through a plug of silica gel, washed with 1:1 EtOAc:hexanes, concentrated, then purified by column chromatography ($2-35 \%$ EtOAc/hexanes) to yield the title compound as a viscous colorless liquid ($4.35 \mathrm{~g}, 77 \%$). $R_{f}=0.33$ (1:4 EtOAc:hexanes). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 6.38$ (d, J=3.2 $\mathrm{Hz}, 1 \mathrm{H}), 6.21(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{~s}, 2 \mathrm{H}), 4.87(\mathrm{q}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.93(\mathrm{~s}, 6 \mathrm{H}), 1.54(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H})$ ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 171.5,158.7,148.3,111.7,106.3,63.8,59.8,55.8,30.8,21.4 \mathrm{ppm}$. HRMS (ESI, m / z): calcd for $\left[\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{BrO}_{3}\right]^{+}(\mathrm{M}-\mathrm{OH})^{+}, 273.0121$; found, 273.0119.

(5-(1-(()(4-methyl-2-oxo-2H-chromen-7-yl)oxy)carbonyl)oxy)ethyl)furan-2-yl)methyl 2-bromo-2methylpropanoate (1). A two-neck round bottom flask equipped with a stir bar was charged with 11 (58.5 $\mathrm{mg}, 0.201 \mathrm{mmol})$, pyridine ($19.0 \mu \mathrm{~L}, 0.236 \mathrm{mmol}$), and DCM (4 mL). The solution was cooled to $0^{\circ} \mathrm{C}$ in an ice bath followed by the dropwise addition of a solution of coumarin chloroformate 8 ($53.5 \mathrm{mg}, 0.224$ mmol) dissolved in DCM (6 mL). The reaction was allowed to warm slowly to rt and stirred for 3 h . The reaction mixture was washed quickly with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure to yield a viscous oil. The crude oil was dispersed in DCM/hexanes (1:2, 3 mL), then filtered to remove insoluble byproducts consisting mostly of 7-hydroxy-4-methylcoumarin and the biscoumarin carbonate. The filtrate was concentrated under reduced pressure to provide the title compound as a viscous colorless liquid ($93 \mathrm{mg}, 94 \%$). Compound 1 is relatively stable in solvents such as DCM,
chloroform, and hexanes, but decomposes quickly in acidic and protic solvents. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta: 7.61(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{dd}, J=8.7,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.43(\mathrm{~s}, 2 \mathrm{H}), 6.28(\mathrm{~d}, J=1.3$ $\mathrm{Hz}, 1 \mathrm{H}), 5.88(\mathrm{q}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.17\left(\mathrm{ABq}, \Delta \mathrm{v}_{\mathrm{AB}}=5.8 \mathrm{~Hz}, J_{\mathrm{AB}}=13.6 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.43(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.94(\mathrm{~s}$, $6 \mathrm{H}), 1.74(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 171.4,160.6,154.3,153.3,152.6,152.3$, 152.0, 149.6, 125.6, 118.1, 117.5, 114.8, 111.7, 110.2, 110.1, $70.7,59.6,55.7,30.8,18.9,18.1$ ppm. HRMS (ESI, m / z): calcd for $\left[\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{BrNO}_{8}\right]^{+}\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}$, 501.0758; found, 501.0750.

(5-(1-methoxyethyl)furan-2-yl)methyl 2-bromo-2-methylpropanoate (3). Compound 1 ($80.2 \mathrm{mg}, 0.163$ mmol) was dissolved in methanol (1 mL) in a 2 ml vial and stirred at rt . After 16 h , the reaction mixture was concentrated under reduced pressure and the crude product was purified by flash chromatography ($1-25 \%$ EtOAc/hexanes) to provide the title compound as a colorless viscous oil ($43 \mathrm{mg}, 87 \%$). $R_{f}=0.31$ (1:19 EtOAc:hexanes). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 6.38(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.23(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.13$ (ABq, $\left.\Delta \mathrm{v}_{\mathrm{AB}}=7.5 \mathrm{~Hz}, J_{\mathrm{AB}}=13.0 \mathrm{~Hz}, 2 \mathrm{H}\right), 4.34(\mathrm{q}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.28(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.92(\mathrm{~d}, J=0.8 \mathrm{~Hz}$, 6 H), 1.49 (dd, J = 6.6, $0.9 \mathrm{~Hz}, 3 \mathrm{H}$) ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 171.4,156.5,148.4,111.5,108.0$, $72.1,59.8,56.3,55.7,30.8,30.8,19.5 \mathrm{ppm}$. HRMS (ESI, m / z): calcd for $\left[\mathrm{C}_{12} \mathrm{H}_{21} \mathrm{BrNO}_{4}\right]^{+}\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}$, 322.0648; found, 322.0654 .

Scheme S5. Synthesis of Poly(Methyl Acrylate) Polymers PMA-1 and PMA-control.

7-(1-hydroxyethyl)-2-(2-hydroxyethyl)-1,3-dioxo-1,2,3,3a,7,7a-hexahydro-4H-4,7-epoxyisoindol-4yl)methyl 2-bromo-2-methylpropanoate (($\mathbf{\pm})-\mathbf{1 2}$). Compound 11 ($4.15 \mathrm{~g}, 14.3 \mathrm{mmol}$) was combined with N -(2-hydroxyethyl)maleimide ${ }^{1}(3.51 \mathrm{~g}, 24.9 \mathrm{mmol})$ and chloroform (4 mL) in a 20 mL vial and stirred at 55 ${ }^{\circ} \mathrm{C}$ for 14 h . The crude reaction mixture was separated by column chromatography ($2-4 \%$ methanol/DCM) and a single diastereomer of the title compound was isolated as a white solid ($2.19 \mathrm{~g}, 35 \%$). The absolute configuration of compound 12 was confirmed by single crystal X-ray diffraction. $R_{f}=0.28$ (1:24 methanol:DCM). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 6.43(\mathrm{~d}, \mathrm{~J}=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.38(\mathrm{~d}, \mathrm{~J}=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.81(\mathrm{ABq}$, $\left.\Delta v_{A B}=78 \mathrm{~Hz}, J_{A B}=12.8 \mathrm{~Hz}, 2 \mathrm{H}\right), 4.34(\mathrm{q}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.73-3.50(\mathrm{~m}, 6 \mathrm{H}), 1.95(\mathrm{~s}, 6 \mathrm{H}), 1.43(\mathrm{~d}, J=6.6 \mathrm{~Hz}$, $3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 175.5,175.0,171.2,135.7,135.0,95.0,89.4,66.7,63.2,60.6$, 55.5, 49.5, 47.7, 41.5, 30.8, 30.8, 18.7 ppm . HRMS (ESI, m / z): calcd for $\left[\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{BrNO}_{7} \mathrm{Na}\right]^{+}(\mathrm{M}+\mathrm{Na})^{+}$, 454.0472; found, 454.0470 .

2-(2-((2-bromo-2-methylpropanoyl)oxy)ethyl)-7-(1-hydroxyethyl)-1,3-dioxo-1,2,3,3a,7,7a-hexahydro-4H-4,7-epoxyisoindol-4-yl)methyl 2-bromo-2-methylpropanoate ((\pm)-4). A three-neck round bottom flask equipped with a stir bar was charged with 12 ($1.08 \mathrm{~g}, 2.50 \mathrm{mmol}$), triethylamine ($0.39 \mathrm{~mL}, 2.8 \mathrm{mmol}$), and DCM (50 mL). The solution was cooled to $0^{\circ} \mathrm{C}$ in an ice bath followed by the dropwise addition of α bromoisobutyryl bromide ($0.33 \mathrm{~mL}, 2.7 \mathrm{mmol}$). The solution was allowed to warm to rt slowly and stirred for an additional 16 h . The reaction mixture was washed with $\mathrm{NH}_{4} \mathrm{Cl}(100 \mathrm{~mL})$ and brine (100 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and the organic fraction was concentrated under reduced pressure. The crude product was purified by column chromatography (35-55\% EtOAc/hexanes) to provide the title compound as a colorless, sticky oil ($1.07 \mathrm{~g}, 74 \%$). $R_{f}=0.29$ (1:1 EtOAc/hexanes). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ס: 6.46 (d, $J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.41(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.80\left(\mathrm{ABq}, \Delta \mathrm{v}_{\mathrm{AB}}=84 \mathrm{~Hz}, J_{\mathrm{AB}}=12.8 \mathrm{~Hz}, 2 \mathrm{H}\right), 4.33(\mathrm{q}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H})$, 4.22 (dd, $J=5.7,4.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.73-3.62(\mathrm{~m}, 3 \mathrm{H}), 3.58(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.96(\mathrm{~s}, 5 \mathrm{H}), 1.90(\mathrm{~s}, 6 \mathrm{H}), 1.44$ (d, $J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 174.5,174.0,171.5,171.2,135.7,135.1,95.0,89.4$,
$66.8,63.2,62.6,55.6,55.5,49.6,47.8,37.6,30.81,30.80,30.79,30.77,18.7 \mathrm{ppm}$. HRMS (ESI, m / z): calcd for $\left[\mathrm{C}_{21} \mathrm{H}_{31} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{8}\right]^{+}\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}$, 599.0421; found, 599.0420.

2-(-4-(((2-bromo-2-methylpropanoyl)oxy)methyl)-7-(-1-hydroxyethyl)-1,3-dioxo-1,3,3a,4,7,7a-
hexahydro-2H-4,7-epoxyisoindol-2-yl)ethyl pivalate (($\pm \mathbf{)}-5)$. A two-neck round bottom flask equipped with a stir bar was charged with $12(410 \mathrm{mg}, 0.95 \mathrm{mmol})$, triethylamine ($0.21 \mathrm{~mL}, 1.5 \mathrm{mmol}$), and DCM (15 mL). The solution was cooled to $0^{\circ} \mathrm{C}$ in an ice bath followed by the dropwise addition of pivaloyl chloride ($0.18 \mathrm{~mL}, 1.5 \mathrm{mmol}$). The solution was allowed to warm to rt slowly and stirred for an additional 23 h . The reaction mixture was filtered through a plug of silica gel and the filtrate was concentrated under reduced pressure. The crude product was purified by column chromatography (30-55\% EtOAc/hexanes) to provide the title compound as a colorless viscous oil ($315 \mathrm{mg}, 64 \%$). $R_{f}=0.56$ (1:1 EtOAc:hexanes). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 6.42(\mathrm{~d}, \mathrm{~J}=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.37(\mathrm{~d}, \mathrm{~J}=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.80\left(\mathrm{ABq}, \Delta \mathrm{v}_{\mathrm{AB}}=106 \mathrm{~Hz}, J_{\mathrm{AB}}=12.5 \mathrm{~Hz}\right.$, $2 \mathrm{H}), 4.33(\mathrm{q}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{t}, J=5.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.66(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.63-3.59(\mathrm{~m}, 2 \mathrm{H}), 3.57(\mathrm{~d}, J$ $\left.=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.96(\mathrm{~s}, 6 \mathrm{H}), 1.44(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.17(\mathrm{~s}, 8 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(125 \mathrm{MHz}, \mathrm{CDCl})^{2}\right) \delta:$ $178.3,174.5,174.0,171.2,135.7,135.0,94.9,89.3,66.8,63.2,61.0,55.5,49.5,47.7,38.8,38.0,30.80$, 30.75, 27.3, 18.6 ppm. HRMS (ESI, m / z): calcd for $\left[\mathrm{C}_{22} \mathrm{H}_{31} \mathrm{BrN}_{2} \mathrm{O}_{8}\right]^{+}(\mathrm{M}+\mathrm{H})^{+}, 516.1228$; found, 516.1228.

(2-(2-((2-bromo-2-methylpropanoyl)oxy)ethyl)-7-(-1-(()(4-methyl-2-oxo-2H-chromen-7-yl)oxy)carbonyl)oxy)ethyl)-1,3-dioxo-1,2,3,3a,7,7a-hexahydro-4H-4,7-epoxyisoindol-4-yl)methyl 2-bromo-2-methylpropanoate ((\pm)6). A two-neck round bottom flask equipped with a stir bar was charged with 4 ($68.8 \mathrm{mg}, 0.118 \mathrm{mmol}$), pyridine ($30.0 \mu \mathrm{~L}, 0.372 \mathrm{mmol}$), and DCM (25 mL). The solution was cooled to $0^{\circ} \mathrm{C}$ in an ice bath followed by the dropwise addition of a solution of coumarin chloroformate 8 (81.0
$\mathrm{mg}, 0.339 \mathrm{mmol}$) dissolved in DCM (5 mL). The reaction was allowed to warm slowly to rt and stirred for 20 h . The reaction mixture was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The crude produce was purified by column chromatography (35-55\% EtOAc/Hexanes) to provide the title compound as a white foaming solid ($76 \mathrm{mg}, 82 \%$). $R_{f}=0.35$ (1:1 EtOAc:hexanes). ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl ${ }_{3}$) $\delta: 7.62(d, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~s}, 1 \mathrm{H}), 7.21(\mathrm{dd}, J=8.7,2.3 \mathrm{~Hz}, 1 \mathrm{H}), \delta 6.53-6.46$ $(\mathrm{m}, 2 \mathrm{H}), 6.28(\mathrm{q}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.46(\mathrm{q}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.82\left(\mathrm{ABq}, \Delta \mathrm{v}_{\mathrm{AB}}=95 \mathrm{~Hz}, J_{\mathrm{AB}}=12.8 \mathrm{~Hz}, 2 \mathrm{H}\right), 4.24(\mathrm{t}$, $J=5.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.77-3.56(\mathrm{~m}, 4 \mathrm{H}), 2.44(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.95(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 6 \mathrm{H}), 1.91(\mathrm{~s}, 6 \mathrm{H}), 1.64(\mathrm{~d}, J=$ $6.7 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 173.7,173.5,171.5,171.2,160.5,154.3,153.3,152.2$, $151.9,135.6,135.2,125.6,118.2,117.5,114.9,110.1,92.6,89.5,73.9,63.1,62.5,55.7,55.5,49.4,48.4$, 37.8, 30.80, 30.78, 18.9, 16.0 ppm. HRMS (ESI, m / z): calcd for $\left[\mathrm{C}_{32} \mathrm{H}_{37} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{12}\right]^{+}\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}$, 801.0687; found, 801.0684.

(\pm) $\mathbf{7}$
2-(-4-(((2-bromo-2-methylpropanoyl)oxy)methyl)-7-(-1-((()4-methyl-2-oxo-2H-chromen-7-yl)oxy)carbonyl)oxy)ethyl)-1,3-dioxo-1,3,3a,4,7,7a-hexahydro-2H-4,7-epoxyisoindol-2-yl)ethyl pivalate ((\pm)-7). A two-neck round bottom flask equipped with a stir bar was charged with 5 ($74.6 \mathrm{mg}, 0.144 \mathrm{mmol}$), pyridine ($23.4 \mu \mathrm{~L}, 0.291 \mathrm{mmol}$), and $\mathrm{DCM}(25 \mathrm{~mL})$. The solution was cooled to $0^{\circ} \mathrm{C}$ in an ice bath followed by the dropwise addition of a solution of coumarin chloroformate $8(69.0 \mathrm{mg}, 0.289 \mathrm{mmol})$ dissolved in DCM (10 mL). The reaction was allowed to warm slowly to rt and stirred for 16 h . The reaction mixture was washed with $10 \% \mathrm{NH}_{4} \mathrm{Cl}$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The crude produce was purified by column chromatography (35-60\% EtOAc/Hexanes) to provide the title compound as a white foaming solid (103 mg, quant). $R_{f}=0.56$ (1:1 EtOAc:hexanes). ${ }^{1} \mathrm{H} \mathrm{NMR}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta: 7.62(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.21(\mathrm{dd}, J=8.7,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.47-6.42(\mathrm{~m}, 2 \mathrm{H}), 6.29$ $(\mathrm{q}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.46(\mathrm{q}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.82\left(\mathrm{ABq}, \Delta \mathrm{v}_{\mathrm{AB}}=120 \mathrm{~Hz}, J_{\mathrm{AB}}=12.5 \mathrm{~Hz}, 2 \mathrm{H}\right), 4.13(\mathrm{t}, J=5.2 \mathrm{~Hz}$, $2 \mathrm{H}), 3.76-3.55(\mathrm{~m}, 4 \mathrm{H}), 2.45(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.96(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 6 \mathrm{H}), 1.65(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.18(\mathrm{~s}, 9 \mathrm{H})$ ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 178.4,173.7,173.5,171.2,160.5,154.3,153.3,152.2,151.9,135.5$, $135.1,125.6,118.2,117.5,114.9,110.0,92.6,89.5,73.9,63.2,61.0,55.5,49.3,48.3,38.9,38.2,30.79$, 30.76, 27.3, 18.9, 16.0 ppm . $\mathrm{HRMS}(\mathrm{ESI}, m / z)$: calcd for $\left[\mathrm{C}_{33} \mathrm{H}_{37} \mathrm{BrNO}_{12}\right]^{+}(\mathrm{M}+\mathrm{H})^{+}$, 718.1494; found, 718.1500.

Poly(methyl acrylate) containing a chain-centered mechanophore (PMA-1). A 10 mL Schlenk flask equipped with a stir bar was charged with bis-initiator $6(7.2 \mathrm{mg}, 9.2 \mu \mathrm{~mol})$, DMSO (1.2 mL), methyl acrylate ($1.2 \mathrm{~mL}, 13 \mathrm{mmol}$), and Me Me_{6} TREN ($4.6 \mathrm{mg}, 20 \mu \mathrm{~mol}$). The flask was sealed, the solution was deoxygenated with three freeze-pump-thaw cycles, and then backfilled with nitrogen. The flask was opened briefly under a flow of N_{2}, and freshly cut copper wire (1.0 cm length, 20 gauge) was added on top of the frozen mixture. The flask was resealed, evacuated for an additional 15 min , warmed to rt , and then backfilled with nitrogen. After stirring at rt for 90 min , the flask was opened to air and the solution was diluted with DCM. The polymer solution was precipitated into cold methanol ($2 x$) and the isolated material was dried under vacuum to yield 0.60 g of PMA-1 (52\%). $M_{\mathrm{n}}=100 \mathrm{~kg} / \mathrm{mol}, ~ Đ=1.06$.

Poly(methyl acrylate) control polymer containing the mechanophore at the end of the polymer chain (PMA-control). A 10 mL Schlenk flask equipped with a stir bar was charged with initiator $\mathbf{7}$ (8.5 mg, $11.8 \mu \mathrm{~mol})$, DMSO (1.6 mL), methyl acrylate ($1.6 \mathrm{~mL}, 18 \mathrm{mmol}$), and Me ${ }_{6}$ TREN ($5.1 \mathrm{mg}, 22 \mu \mathrm{~mol}$). The flask was sealed, the solution was deoxygenated with three freeze-pump-thaw cycles, and then backfilled with nitrogen. The flask was opened briefly under a flow of N_{2}, and freshly cut copper wire (1.1 cm length, 20 gauge) was added on top of the frozen mixture. The flask was resealed, evacuated for an additional 15 min, warmed to rt, and then backfilled with nitrogen. After stirring at rt for 2 h , the flask was opened to air and the solution was diluted with DCM. The polymer solution was precipitated into cold methanol ($2 x$) and the isolated material was dried under vacuum to yield 0.82 g of PMA-control (54\%). $\mathrm{Mn}=86 \mathrm{~kg} / \mathrm{mol}$, $\emptyset=1.14$.

IV. DFT Calculations

Calculation of Activation Energies. Activation energies for model furfuryl carbonates were calculated using Spartan '18 Parallel Suite. All calculations were run with a solvent dielectric constant of 37.22 . Equilibrium geometries and corresponding energies of each furfuryl carbonate reactant were calculated at the M06-2X/6-311+G** level of theory with a fine integration grid (99,590). Transition state geometries were approximated using an initial energy profile at the HF/6-31+G* level of theory by lengthening the C-O bond involved in the desired fragmentation reaction. The energy maximum from each profile was then chosen as the starting point for a transition state geometry optimization, which was conducted at the same level of theory. Subsequent geometry optimizations were performed at the M06-2X/6-311+G** level of theory and the optimized structures were subjected to a final energy and frequency calculation at the M06-2X/6-311+G** level of theory using a fine integration grid $(99,590)$. Each structure returned a single imaginary vibrational frequency corresponding to the expected bond-breaking mode.

Optimized geometry coordinates determined for reactants:

FC1

C	-0.303960	0.000000	-3.851185
C	1.002871	0.000000	-3.500222
C	1.034228	0.000000	-2.061389
C	-0.261224	0.000000	-1.664226
O	-1.088868	0.000000	-2.737272
C	-0.938273	0.000000	-0.337762
O	0.100577	0.000000	0.643769
C	-0.315729	0.000000	1.909046
O	0.745070	0.000000	2.698818
O	-1.466402	0.000000	2.263765
C	0.463373	0.000000	4.108581
H	-0.825261	0.000000	-4.793982
H	1.846256	0.000000	-4.172237
H	1.899879	0.000000	-1.419156
H	-1.563748	0.887950	-0.216277
H	-1.563748	-0.887950	-0.216277
H	-0.099543	0.893595	4.375346
H	1.434044	0.000000	4.595312
H	-0.099543	-0.893595	4.375346

Gibbs free energy: -572.283489 hartrees

FC2			
C	0.019327	0.000000	-3.098191
C	1.307178	0.000000	-2.674464
C	1.271559	0.000000	-1.234255
C	-0.039456	0.000000	-0.899003
O	-0.814993	0.000000	-2.014158
C	-0.782857	0.000000	0.391271
O	0.204520	0.000000	1.425364
C	-0.275829	0.000000	2.667298
O	0.743286	0.000000	3.510586
O	-1.443069	0.000000	2.963487
C	0.389766	0.000000	4.903960
C	-0.627821	0.000000	-4.434814
H	2.180755	0.000000	-3.307440
H	2.105893	0.000000	-0.551557
H	-1.413977	0.887720	0.482497
H	-1.413977	-0.887720	0.482497
H	-0.186149	0.893532	5.141647
H	1.334137	0.000000	5.439979
H	-0.186149	-0.893532	5.141647
H	0.139180	0.000000	-5.208646

```
H
H -1.255662 0.884678 -4.563854
```

Gibbs free energy: -611.569904 hartrees

FC3			
C	0.625870	0.060233	-3.079388
C	-0.637531	-0.421937	-2.982456
C	-0.958334	-0.466695	-1.578856
C	0.141027	-0.011012	-0.934275
O	1.112139	0.314046	-1.827252
C	0.489080	0.196547	0.504506
O	-0.676679	-0.235035	1.232016
C	-0.838989	0.275808	2.450477
O	-1.929208	-0.255985	2.982270
O	-0.120637	1.085376	2.979217
C	-2.251437	0.195065	4.308507
C	1.709154	-0.601630	0.937563
C	1.534882	0.347566	-4.218350
H	-1.267337	-0.711777	-3.809040
H	-1.876857	-0.792916	-1.118582
H	0.643752	1.260760	0.698978
H	-3.160018	-0.334074	4.579274
H	-2.420655	1.270945	4.304919
H	-1.442508	-0.055861	4.993306
H	1.532383	-1.666656	0.776346
H	1.923473	-0.420230	1.991323
H	2.572651	-0.292093	0.347233
H	1.031381	0.101527	-5.152617
H	1.814767	1.403443	-4.238781
H	2.449632	-0.245416	-4.146337

Gibbs free energy: -650.852643 hartrees

Optimized geometry coordinates determined for transition states:
FC1 ${ }^{\ddagger}$

C	0.807087	-0.525235	-3.625484
C	-0.298591	-1.351652	-3.575368
C	-1.020797	-0.941339	-2.453887
C	-0.318154	0.120863	-1.884591
O	0.813913	0.349744	-2.636250
C	-0.558765	0.880686	-0.767001
O	0.534195	-0.161589	0.879163
C	0.185223	0.356413	1.981180

O	0.863144	-0.187339	3.041701
O	-0.648772	1.241098	2.177478
C	0.537601	0.328115	4.330811
H	1.634844	-0.474804	-4.317561
H	-0.531535	-2.141233	-4.271044
H	-1.948959	-1.340932	-2.072691
H	0.038193	1.757277	-0.555307
H	-1.490749	0.749267	-0.235528
H	0.741546	1.398281	4.383651
H	1.172643	-0.206462	5.034309
H	-0.512067	0.148841	4.566420

Gibbs free energy: -572.236649 hartrees

Freq $\left(\mathrm{cm}^{-1}\right)$	Intensity
-292	1240.07
5	0.44
43	10.26
57	3.00
114	19.83
121	15.31
155	1.40
195	0.68
292	107.58
336	8.95
345	15.72
568	26.21
581	291.61
660	7.39
698	42.03
721	124.00
808	25.46
820	65.35
836	57.87
896	69.59
936	53.32
945	178.25
950	31.74
966	26.49
978	78.49
1025	797.43

FC2 ‡			
C	-0.089307	-0.457224	-2.978056
C	0.864223	-1.442826	-2.775394
C	1.473224	-1.149423	-1.554719
C	0.871185	0.006906	-1.068962

O	-0.094158	0.407101	-1.967838
C	1.059359	0.721824	0.094100
O	-0.324984	-0.112644	1.498072
C	-0.205194	0.480796	2.616311
O	-1.053341	-0.037013	3.555118
O	0.548098	1.407782	2.906643
C	-0.999200	0.559454	4.850452
C	-1.042407	-0.221496	-4.083352
H	1.070883	-2.259486	-3.448611
H	2.264186	-1.689069	-1.054948
H	1.897470	0.464482	0.726443
H	0.606006	1.695329	0.218330
H	-0.008085	0.440691	5.289691
H	-1.737657	0.032125	5.450652
H	-1.247966	1.620019	4.799197
H	-0.933859	-0.997994	-4.837671
H	-2.065509	-0.224375	-3.700130
H	-0.852967	0.755039	-4.535328

Gibbs free energy: -611.528848 hartrees

Freq $\left(\mathrm{cm}^{-1}\right)$	Intensity
-332	1715.91
22	0.80
42	3.85
58	4.84
105	7.80
114	10.44
130	17.19
157	0.39
196	0.57
219	54.29
283	16.48
334	8.66
340	53.72
404	7.98
574	381.59
635	14.03
640	15.99
663	8.81
703	8.55
742	66.36
827	34.88
835	62.01
846	31.94
952	39.97
952	140.97
957	7.64

981	53.91
1014	348.75
1028	370.60
1053	376.47
1055	35.65
1068	29.97
1143	274.18
1182	2.02
1216	161.08
1237	55.22
1264	831.04
1330	1088.25
1365	67.74
1397	50.62
1423	54.68
1455	18.85
1463	27.10
1480	191.77
1483	29.70
1494	14.16
1497	9.29
1550	1060.89
1627	1041.18
1693	659.96
3069	2.63
3074	58.99
3137	0.20
3150	33.18
3178	18.78
3184	2.35
3208	3.26
3272	3.00
3289	11.83
3319	10.77

FC3 ‡			
C	0.073604	-0.834324	-2.979311
C	-0.869568	-1.766528	-2.596366
C	-1.385115	-1.320899	-1.370519
C	-0.737277	-0.135217	-1.071603
O	0.160097	0.143795	-2.074375
C	-0.847487	0.729874	0.015097
O	0.581266	-0.098879	1.385189
C	0.270574	0.178566	2.584081
O	1.183177	-0.316826	3.475021
O	-0.706692	0.808274	2.988891
C	0.929207	-0.050229	4.853305

C	0.953177	-0.744765	-4.165913
C	-0.295783	2.103570	-0.005012
H	-1.136816	-2.651513	-3.151222
H	-2.143208	-1.784077	-0.755986
H	-1.637803	0.502012	0.720133
H	0.920061	1.023505	5.044726
H	1.743875	-0.518718	5.401374
H	-0.023924	-0.480650	5.162460
H	0.772576	-1.593836	-4.822418
H	0.756368	0.182168	-4.709369
H	2.000866	-0.742062	-3.856617
H	0.661026	2.146153	-0.523101
H	-0.210336	2.493176	1.006863
H	-1.011866	2.727429	-0.555329

Gibbs free energy: -650.817542 hartrees

Freq $\left(\mathrm{cm}^{-1}\right)$	Intensity
-314	1314.96
35	4.29
46	0.93
49	0.87
85	5.10
109	13.52
128	23.22
142	4.53
165	3.11
188	5.00
206	4.94
217	35.12
259	23.56
334	7.12
349	5.53
375	120.06
484	31.17
583	248.25
632	13.10
639	9.41
677	4.95
702	8.00
729	27.25
832	69.45
836	57.71
898	75.99
945	18.40
951	147.63
968	21.29
996	45.50

1006	25.67
1025	476.55
1042	72.45
1055	7.48
1070	184.33
1144	239.85
1146	45.80
1181	1.93
1211	306.57
1216	52.39
1254	553.18
1320	94.62
1334	1039.92
1384	10.84
1395	90.42
1400	53.61
1435	46.15
1456	20.66
1458	9.70
1470	49.21
1481	171.41
1482	45.70
1489	45.53
1497	6.98
1555	1183.75
1635	884.46
1686	666.18
3049	4.69
3072	0.79
3073	54.26
3138	0.63
3141	8.78
3149	36.66
3179	20.06
3179	9.75
3194	1.57
3239	270
3288	

CoGEF calculations. CoGEF calculations were performed using Spartan '18 Parallel Suite according to previously reported methods. ${ }^{2,3}$ Ground state energies were calculated using DFT at the B3LYP/6-31G* level of theory. Starting from the equilibrium geometry of the unconstrained molecule (relative energy = $0 \mathrm{~kJ} / \mathrm{mol}$), the distance between the terminal methyl groups of the truncated structure was increased in
increments of $0.05 \AA$ And the energy was minimized at each step. The maximum force associated with the retro-Diels-Alder reaction was calculated from the slope of the curve immediately prior to bond cleavage.

V. Sonication Experiments and Fluorescence Spectroscopy

General procedure for ultrasonication experiments. An oven-dried sonication vessel was fitted with rubber septa, placed onto the sonication probe, and allowed to cool under a stream of dry argon. The vessel was charged with a solution of the polymer in anhydrous acetonitrile/methanol ($3: 1 \mathrm{v} / \mathrm{v}, 2.0 \mathrm{mg} / \mathrm{mL}$, 20 mL) and submerged in an ice bath. The solution was sparged continuously with argon beginning 20 min prior to sonication and for the duration of the sonication experiment. Pulsed ultrasound ($1 \mathrm{~s} \mathrm{on} / 2 \mathrm{~s}$ off, 20% amplitude, $20 \mathrm{kHz}, 8.2 \mathrm{~W} / \mathrm{cm}^{2}$) was then applied to the system. For PMA-1, aliquots (1.0 mL) were removed at $0,15,35,60,90,120$ and 150 min (sonication "on" time) and filtered through a $0.45 \mu \mathrm{~m}$ syringe filter prior to analysis by GPC and fluorescence spectroscopy. Ultrasonic intensity was calibrated using the method described by Berkowski et al. ${ }^{4}$

Analysis of sonicated polymer samples by fluorescence spectroscopy. Aliquots from the sonication experiments were added to a quartz microcuvette (Starna 18F-Q-10-GL14-S) and emission spectra were recorded at $340-500 \mathrm{~nm}$ using an excitation wavelength of $\lambda_{\mathrm{ex}}=330 \mathrm{~nm}$. Samples were then allowed to incubate at room temperature for approximately 20 h to allow for the complete decomposition of any furfuryl carbonate, and the emission spectra were remeasured with the same instrument parameters.

The photograph of the sonicated samples, shown in the inset of Figure 3b in the main text, was acquired using a Canon 5D Mark IV DSLR camera at a focal length of 70 mm using the following settings: $1 / 4 \mathrm{~s}$ exposure, $\mathrm{f} / 4.0$, ISO 4000 . The photograph was taken in a dark room with the samples illuminated by a 365 nm UV lamp. In order to capture visible photoluminescence of the released coumarin 2, each ultrasonicated sample was diluted $6 x$ with a mixture of acetonitrile/methanol/water 3:1:0.2 (by volume) prior to imaging. Addition of water to solutions of hydroxycoumarin $\mathbf{2}$ in alcoholic solvents shifts the fluorescence emission to visible wavelengths. ${ }^{5}$

VI. Single Crystal X-Ray Diffraction

Crystals for X-ray diffraction analysis were grown by slow diffusion of hexanes into a solution of compound 12 in chloroform/toluene (1:9 v:v). A crystal was mounted on a polyimide MiTeGen loop with STP Oil Treatment and placed under a nitrogen stream. Low temperature (200K; there were crystal issues at lower temperatures) X-ray data were collected with a Bruker AXS D8 VENTURE KAPPA diffractometer running at 50 kV and $1 \mathrm{~mA}\left(\mathrm{Cu} K_{\alpha}=1.54178 \AA \AA\right.$ P PHOTON II CPAD detector and Helios focusing multilayer mirror optics). All diffractometer manipulations, including data collection, integration, and scaling were carried
out using the Bruker APEX3 software. An absorption correction was applied using SADABS. The space group was determined and the structure solved by intrinsic phasing using XT. Refinement was full-matrix least squares on F^{2} using $X L$. All non-hydrogen atoms were refined using anisotropic displacement parameters. Hydrogen atoms were placed in idealized positions and refined using a riding model. The water molecule was refined as a rigid body. The isotropic displacement parameters of all hydrogen atoms were fixed at 1.2 times (1.5 times for methyl groups) the $U_{e q}$ value of the bonded atom. Special refinement details: Compound 12 crystallizes in the orthorhombic space group $P n a 2_{1}(\# 33)$ with two molecules and one water molecule in the asymmetric unit. The structure was refined as a two component ($0.55: 0.45$) inversion twin. In one molecule the Br is disordered with a CH_{3} group (0.69:0.31).

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=67.679^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
v19226
C17 H23 Br N O7.50
441.27

200 K
1.54178 Å

Orthorhombic
Pna2 1
$\begin{array}{ll}\mathrm{a}=12.858(2) \AA & \alpha=90^{\circ} \\ \mathrm{b}=10.2977(15) \AA & \beta=90^{\circ} \\ \mathrm{c}=29.000(4) \AA & \gamma=90^{\circ}\end{array}$
3839.8(10) \AA^{3}

8
$1.527 \mathrm{~g} / \mathrm{cm}^{3}$
$3.291 \mathrm{~mm}^{-1}$
1816
$0.25 \times 0.10 \times 0.10 \mathrm{~mm}^{3}$
3.048 to 81.319°.
$-16 \leq \mathrm{h} \leq 13,-11 \leq \mathrm{k} \leq 13,-36 \leq 1 \leq 36$
31123
$8177[\mathrm{R}($ int $)=0.0720]$
99.9 \%

Semi-empirical from equivalents
1.0000 and 0.7949

Full-matrix least-squares on F^{2}
8177 / 6/500

Goodness-of-fit on F^{2}
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]
R indices (all data)
Absolute structure parameter [Flack]
Absolute structure parameter [Hooft]
Extinction coefficient
Largest diff. peak and hole
1.076
$\mathrm{R} 1=0.0667, \mathrm{wR} 2=0.1871$
$R 1=0.0870, \mathrm{wR} 2=0.2044$
0.45(4)
0.46(1)
n/a
0.713 and -0.691 e. \AA^{-3}

VII. References

(1) Heo, Y.; Sodano, H. A. Self-Healing Polyurethanes with Shape Recovery. Adv. Funct. Mater. 2014, 24, 5261-5268.
(2) Beyer, M. K. The mechanical strength of a covalent bond calculated by density functional theory. J. Chem. Phys. 2000, 112, 7307-7312.
(3) Kryger, M. J.; Munaretto, A. M.; Moore, J. S. Structure-Mechanochemical Activity Relationships for Cyclobutane Mechanophores. J. Am. Chem. Soc. 2011, 133, 18992-18998.
(4) Berkowski, K. L.; Potisek, S. L.; Hickenboth, C. R.; Moore, J. S. Ultrasound-Induced Site-Specific Cleavage of Azo-Functionalized Poly(ethylene glycol). Macromolecules 2005, 38, 8975-8978.
(5) Cohen, B.; Huppert, D. Excited State Proton-Transfer Reactions of Coumarin 4 in Protic Solvents. J. Phys. Chem. A 2001, 105, 7157-7164.

м m ∞ ○ -	- ¢ ¢ ¢ ¢ ¢ ¢ ¢ -
	$\stackrel{\sim}{\sim} \stackrel{\sim}{\sim} \stackrel{\text { N }}{\sim}$ NOO
	, 1

${ }^{13} \mathrm{C}$ ($100 \mathrm{MHz}, \mathrm{CDCl} 3$)

${ }^{1} \mathrm{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\begin{array}{lll}\wedge & 0 & 0 \\ 0 & 0 & 0 \\ & 0 & 0 \\ 1 & 1 & 1\end{array}$
$\begin{array}{ll}\infty & \infty \\ 0 & \infty \\ 0 & \leftarrow \\ 1 & \leftarrow\end{array}$

${ }^{13} \mathrm{C}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

	$\begin{aligned} & \bullet \stackrel{N}{1} \\ & \stackrel{\rightharpoonup}{N} \\ & \stackrel{N}{\sim} \end{aligned}$	$\stackrel{+}{\stackrel{1}{+}}$		$\begin{array}{ll} 0 & 0 \\ \text { Ni } \\ \text { O } \end{array}$	$\stackrel{N}{N}$			$\begin{aligned} & \infty \quad 0 \\ & \infty \\ & \sim \end{aligned}$
ソト	V	\|	111			$\>$		11

(\pm)-6
${ }^{13} \mathrm{C}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

10	\bigcirc	σ	09
「	10	∞	$\vdash^{-\infty}$
N	10	\pm	등
		।	1

N N
00
0
0
0

${ }^{13} \mathrm{C}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

0
1
1
1

∞	N
	in
	1

$\stackrel{?}{\stackrel{m}{N}}$

${ }^{1} \mathrm{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

