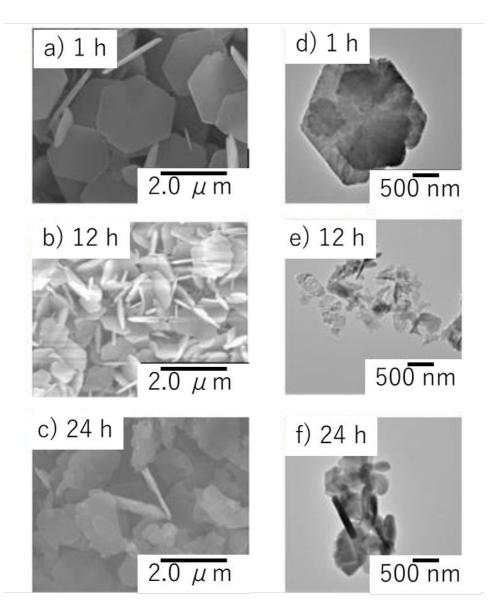
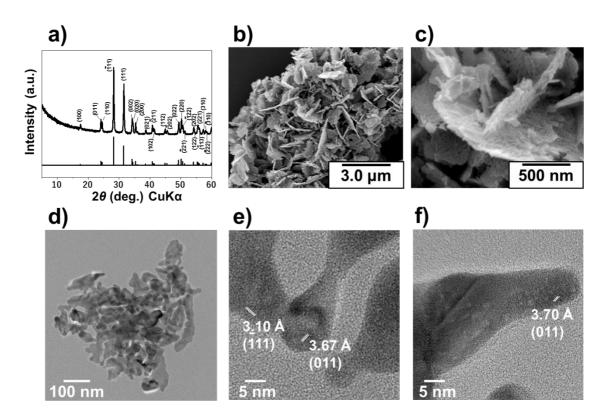
Supporting Information

Single Crystal ZrO₂ Nanosheets Formed by Thermal Transformation for Solid Oxide Fuel Cells and Oxygen Sensors

Tetsuya Yamada^{1*}, Yuta Kubota², Yuki Makinose³, Norihiro Suzuki⁴, Kazuya Nakata⁴, Chiaki Terashima⁴, Nobuhiro Matsushita², Kiyoshi Okada⁵, Akira Fujishima⁴ and

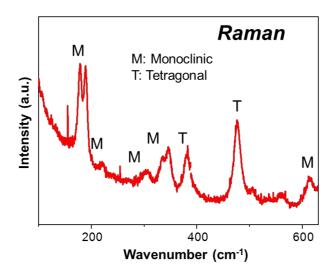

Ken-ichi Katsumata^{4*}

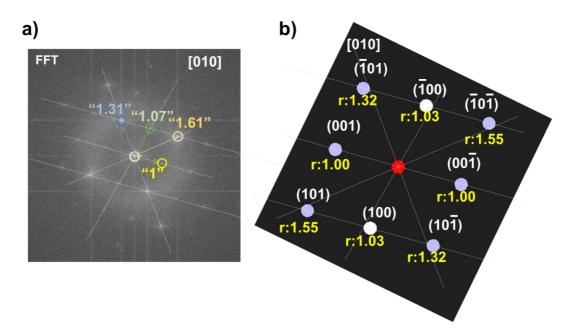
- ¹ Department of Electronic Chemistry, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama, Kanagawa 226-8503, Japan
- ² Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
- ³ Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan
- ⁴ Photocatalysis International Research Center, Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan

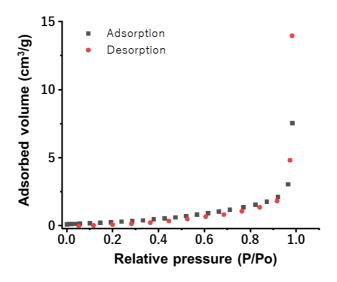

⁵ Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan

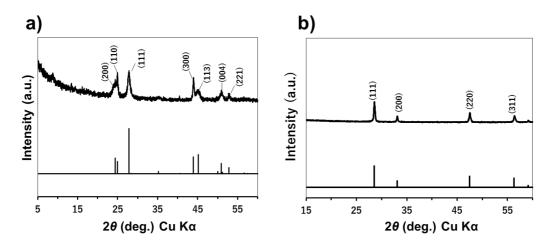
*Corresponding author: Ken-ichi Katsumata, Ph.D. and Tetsuya Yamada, Ph.D.

E-mail: k.katsumata@rs.tus.ac.jp; yamada94@iis.u-tokyo.ac.jp


Figure S1. SEM images of the samples prepared by ionothermal at different heating time; (a) 1 h (b) 12 h, (c) 24 h. TEM image of the samples prepared by ionothermal at different heating time; (d) 1 h (e) 12 h, (f) 24 h


Figure S2. a) XRD pattern of ZrO₂ sample after thermal transformation without ionic liquid, including reference pattern ICDD #01-081-1314; b,c) SEM images of the ZrO₂ after thermal transformation; d-f) TEM images of the ZrO₂ after thermal transformation.


Figure S3. XRD pattern of ZrO₂ sample after thermal transformation in an ionic liquid, including reference pattern ICDD #01-081-1314.


Figure S4. Raman spectrum of powder of ZrO₂ nanosheet. M indicates the peaks attribute to monoclinic phase. T indicates the peak attribute to tetragonal phase.

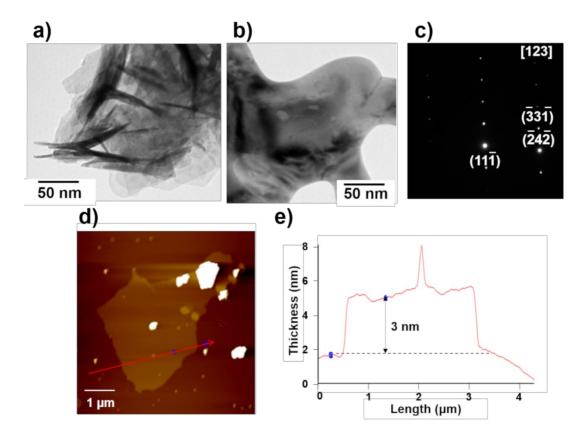

Figure S5 a) FFT analysis of the Figure 2c; b) The simulated FFT pattern from the direction of [010]. The r indicates a relative length from origin defining the distance from the origin to closest spot to be 1.

Figure S6 Nitrogen physisorption isotherms of ZrO₂ nanosheets. Adsorbed amounts of gas are measured as a function of relative pressure. The black plots and red plots show the adsorption and desorption, respectively.

Figure S7 a) XRD pattern of CeF_3 obtained after ionothermal treatment; b) XRD pattern of CeO_2 obtained after thermal transformation in ionic liquid. Bottom pattern are references, ICDD # 01-089-1933 (CeF_3) and ICDD # 00-034-0394 (CeO_2)

Figure S8. a) TEM image of CeF₃ synthesized by ionothermal treatment; b) TEM image of a CeO₂ nanosheet; c) SAED pattern of one CeO₂ nanosheet; d) AFM image of a CeO₂ nanosheet; e) Thickness profile for the direction indicated by the arrow in d).