Principles of $\mathbf{t R N A}{ }^{\text {Ala }}$ selection by alanyl-tRNA synthetase based on the critical G3•U70 base pair

Amit Kumar ${ }^{1}$, Johan Åqvist ${ }^{*}$, Priyadarshi Satpati1 ${ }^{\text {* }}$

${ }^{1}$ Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India

${ }^{2}$ Department of Cell and Molecular Biology, Uppsala University, Biomedical Center, Box 596, SE-751 24 Uppsala, Sweden

[^0]

Figure S1: MD setup. Step1: Selection of $25 \AA$ radii sphere centred at N9 of G3/A3 (resid 1603) nucelotide of tRNA ${ }^{\text {Ala }}$ bound Ala-Synthetase complex (PDB:3wqy, 3wqz). Step 2: Truncated model ($25 \AA$ sphere) for molecular dynamics simulations. Step 3: Heavy atoms of the "buffer region" ($22 \AA-25 \AA$) are harmonically restrained to their experimentally determined positions. Sept4: Overlay water box of edge length $80 \AA$, equilibrate and proceed for MD.

Figure S2. MD structure of reactive AlaRS:tRNA ${ }^{\text {Ala }}$ /G3.U70 complex (Gray sticks) and after reverse alchemical transformation, i.e, A3.U70 \rightarrow G3.U70 (yellow sticks for G3.U70 and protein residues in cyan sticks). $\operatorname{Arg} 483$-Asp450 salt bridge is present at the end point of the reverse alchemical transformation.

Figure S3. Thermodynamic cycle for alchemical transformation of G3•U70 into A3•U70 in free tRNA in water. Vertical legs correspond to the conformation transformation from nonreactive to reactive; horizontal legs correspond to the alchemical transformation of the identity base pair, either in the reactive conformation (upper leg) or in non-reactive conformation (bottom leg).

Residue Number
Figure S4: Root-mean-square fluctuation of the heavy atoms of the loop region is highlighted with rectangular box. RMSF plotted was averaged over 7 ns MD trajectory with 1 ps interval.

Figure S5. Loop comparison between X-ray (black) and MD structures of AlaRS.tRNA complex with respect to G3.U70 (left) and A3.U70 (right). High flexibility of the loop region (residue $470-490$) is visible: overlaid 15 snapshots with a 125 ps spacing from a 2 ns MD trajectory. The distantly different orientation of Arg483 is visible. 3.70 base pair, Asp450 and Arg483 in sticks.

Figure S6. X-ray structure of the reactive (green) and non-reactive (red) complex revealed that $\operatorname{Arg} 483$ of highly flexible loop region (orange) is in different orientation (represented by double headed arrow) with respect to 3.70 base pair (yellow sticks).

Table S1: Partial changes of RNA phosphates.

Atom Name	Charges in CHARMM36 FF	Scaling down partial charges
\mathbf{P}	1.50	1.75
O1P	-0.78	-0.53
O2P	-0.78	-0.53
O5,	-0.57	-0.32

Table S2:
(a) Free energy change for the alchemical transformation of G3•U70 $\rightarrow \mathrm{A} 3 \cdot \mathrm{U} 70$ in reactive complex of AlaRS:tRNA ${ }^{\text {Ala }}$. MD trajectories were divided into two equal halves and the difference between the computed $\Delta \mathrm{G}$'s from the two-halves is reported as uncertainty in the parenthesis for individual replicas. Uncertainty in the average result is reported as standard error ($\Delta \mathrm{G}$'s from different replicas). Hysteresis of $>5 \mathrm{kcal} / \mathrm{mol}$ observed.

System	No of runs	Simulation Length (Fwd+Rev)	Forward $\Delta \mathbf{G}^{\text {comp }}$ (Figure 2a) (G3•U70) to (A3•U70)	Reverse $\Delta \mathbf{G}^{\text {comp }}$ (Figure 2a) (A3•U70) to (G3•U70)
$\begin{aligned} & \text { Reactive State (R): } \\ & \text { AlaRS:tRNA }{ }^{\text {Ala }} \\ & \text { /(G3•U70) } \end{aligned}$	Run1	34 ns	125.23 (1.91)	-121.06 (1.84)
	Run2	34 ns	126.39 (1.33)	-122.37 (1.27)
	Run3	34 ns	128.55 (1.52)	-121.46 (2.01)
Forward G-->A Reverse A-->G	Run4	34 ns	127.90 (1.56)	-120.65 (1.43)
	Run5	34 ns	126.39 (1.91)	-121.33 (2.37)
Average			126.89 (0.59)	-121.37 (0.28)

(b) Free energy change for the alchemical transformation of G3/A3 \rightarrow A3/G3 in reactive/non-reactive conformation of $\mathrm{tRNA}^{\text {Ala }}$ free in water. G3 in non-reactive conformation of free tRNA ${ }^{\text {Ala }}$ was modelled by replacing A3 by G3. Uncertainties are calculated in the same way described in Table S1(a).

tRNA free in water (Non-reactive conformation): tRNA ${ }^{\text {Ala }} /(\mathbf{A} \cdot \mathbf{U})$	Run1	34 ns	-121.65 (1.57)	$\begin{aligned} & (\mathrm{G} 3 \cdot \mathrm{U} 70) \text { to } \\ & (\mathrm{A} 3 \cdot \mathrm{U} 70) \\ & 121.21(1.57) \end{aligned}$
	Run2	34 ns	-121.72 (1.76)	122.03 (1.02)
	Run3	34 ns	-121.67 (1.20)	121.71 (1.38)
Forward A-->G Reverse G-->A	Run4	34 ns	-121.57 (0.99)	121.33 (0.93)
	Run5	34 ns	-120.57 (1.17)	121.43 (0.91)
		Average	-121.43 (0.22)	121.54 (0.15)
tRNA free in water (Non-reactive conformation): tRNA ${ }^{\text {Ala }} /(\mathrm{G} \cdot \mathrm{U})-$ MODELEED Forward G-->A Reverse A-->G	No of runs Run1	Simulation Length (Fwd+Rev) 34 ns	$\begin{aligned} & \text { Forward } \Delta \mathbf{G}_{\text {free }}{ }^{\mathrm{NR}} \\ & (\mathrm{G} 3 \cdot \mathrm{U} 70) \text { to }(\mathrm{A} 3 \cdot \mathrm{U} 70) \\ & 121.41(1.15) \end{aligned}$	Reverse $\Delta \mathrm{G}_{\text {free }}{ }^{\mathrm{NR}}$ (A3•U70) to (G3•U70) -121.36 (1.62)
		Average	121.41 (1.15)	-121.36 (1.62)
Forward + Reverse Average of G3 \rightarrow A3,			$\Delta \mathrm{G}_{\text {free }}{ }^{\text {NR }}$	121.44 (0.79)
$\Delta \Delta G_{\text {free }}{ }^{\mathrm{NR} \rightarrow \mathrm{R}}$ (G3.U70 vs A3.U70) $=\Delta \mathrm{G}_{\text {free }}{ }^{\mathrm{R}}-\Delta \mathrm{G}_{\text {free }}{ }^{\mathrm{NR}}$				-0.2 (0.9)

(c) Free energy change for the alchemical transformation of $\mathrm{G} 3 / \mathrm{A} 3 \cdot \mathrm{U} \rightarrow \mathrm{A} 3 / \mathrm{G} 3 \cdot \mathrm{U}$ in AlaRS:tRNA ${ }^{\text {Ala }}$ non-reactive complex.

System	No of runs	Simulation Length ($\mathbf{F}+\mathbf{R}$)	Forward $\Delta \mathbf{G}$ $(\mathrm{A} \cdot \mathrm{U})$ to $(\mathrm{G} \cdot \mathrm{U})$	Reverse $\mathbf{\Delta} \mathbf{G}$ $(\mathbf{G} \cdot \mathrm{U})$ to $(\mathbf{A} \cdot \mathbf{U})$
Non-reactive State: AlaRS:tRNA ${ }^{\text {Ala }}$ /(A3•U70) Forward A-->G Reverse G-->A	Run1	34 ns	-122.54 (1.62)	122.37 (1.63)
	Run2	34 ns	-119.96 (1.59)	118.35 (1.81)
	Run3	34 ns	-121.25 (1.64)	121.85 (2.14)
	Run4	34 ns	-123.98 (1.43)	118.48 (2.57)
	Run5	34 ns	-120.60 (1.98)	120.84 (1.08)
		Average	-121.67 (0.72)	120.38 (0.84)

(d) Free energy change for the alchemical transformation of G3•U70 \rightarrow G3•C70 in AlaRS:tRNA ${ }^{\text {Ala }}$ reactive complex

System	No of runs	Simulation Length ($\mathbf{F}+\mathbf{R}$)	Forward $\Delta \mathbf{G}$ $(\mathrm{G} \cdot \mathrm{U})$ to $(\mathrm{G} \cdot \mathrm{C})$	Reverse $\Delta \mathbf{G}$ $(\mathrm{G} \cdot \mathrm{C})$ to $(\mathrm{G} \cdot \mathrm{U})$
Reactive State: AlaRS:tRNA ${ }^{\text {Ala }} /(\mathbf{G} \cdot \mathbf{U})$ Forward U-->C Reverse C--->U	Run1	22 ns	14.55 (0.19)	-12.96 (1.00)
	Run2	22 ns	12.70 (1.33)	-12.02 (1.00)
	Run3	22 ns	14.01 (1.08)	-14.50 (0.99)
	Run4	22 ns	13.87 (0.54)	-14.40 (0.78)
	Run5	22 ns	13.06 (0.93)	-11.04 (0.98)
Average			13.64 (0.33)	-12.98 (0.67)

(e) Free energy change for the alchemical transformation of G3•U70 $\rightarrow \mathrm{G} 3 \cdot \mathrm{C} 70$ in AlaRS:tRNA ${ }^{\text {Ala }}$ non-reactive complex

System	No of runs	Simulation Length ($\mathbf{F}+\mathbf{R}$)	Forward $\Delta \mathbf{G}$ (G•U) to (G•C)	Reverse $\Delta \mathbf{G}$ $(\mathrm{G} \cdot \mathrm{C})$ to $(\mathrm{G} \cdot \mathrm{U})$
Non-reactive State: AlaRS:tRNA ${ }^{\text {Ala }} /(\mathbf{G} \cdot \mathbf{U})$	Run1	22 ns	14.03 (1.14)	-13.23 (1.10)
	Run2	22 ns	15.95 (0.89)	-12.82 (0.96)
Forward U-->C Reverse C-->U	Run3	22 ns	13.36 (0.66)	-11.38 (0.88)
	Run4	22 ns	13.82 (0.94)	-11.71 (0.75)
	Run5	22 ns	13.27 (0.51)	-11.93 (0.75)
		Average	14.09 (0.49)	-12.21 (0.35)

(f) Free energy change for the alchemical transformation of G3 $\cdot \mathrm{U} 70 \rightarrow \mathrm{G} 3 \cdot \mathrm{C} 70$ in reactive and non-reactive tRNA ${ }^{\text {Ala }}$ free in water

System	No of runs	Simulation Length ($\mathbf{F}+\mathbf{R}$)	Forward $\Delta \mathrm{G}$ $(\mathrm{G} \cdot \mathrm{U})$ to $(\mathrm{G} \cdot \mathrm{C})$	Reverse $\Delta \mathbf{G}$ $(\mathrm{G} \cdot \mathrm{C})$ to $(\mathrm{G} \cdot \mathrm{U})$
tRNA free in water (Reactive conformation): $\mathbf{t R N A}^{\text {Ala }} /(\mathbf{G} \cdot \mathbf{U})$ Forward U-->C Reverse C-->U	Run1	22 ns	7.65 (0.11)	-7.37 (0.22)
): Run2	22 ns	7.86 (0.78)	-8.01 (0.51)
	Run3	22 ns	7.64 (0.76)	-8.07 (0.72)
	Run4	$22 \mathrm{~ns}$	$7.74(0.65)$	-7.97(0.93)
	Run5	22 ns	6.62 (0.94)	-8.64 (0.84)
Average			7.50 (0.22)	-8.01 (0.20)
System	No of runs	Simulation Length ($\mathbf{F}+\mathbf{R}$)	Forward $\Delta \mathrm{G}$ (G•U) to (G•C)	Reverse $\Delta \mathbf{G}$ $(\mathrm{G} \cdot \mathrm{C})$ to $(\mathrm{G} \cdot \mathrm{U})$
tRNA free in water (Non-reactive conformation): tRNA $^{\text {Ala }} /(\mathbf{G} \cdot \mathbf{U})$	Run1	22 ns	8.02 (0.71)	-8.01 (0.66)
	Run2	22 ns	7.92 (0.45)	-7.74 (0.75)
	Run3	22 ns	7.68 (0.69)	-7.59 (0.64)
Forward U-->C Reverse C-->U	Run4	22 ns	7.70 (0.72)	-8.14 (0.51)
	Run5	22 ns	7.78 (0.72)	-8.08 (0.64)
		Average	7.82 (0.06)	-7.91 (0.11)

(\mathbf{g}) Free energy change for the alchemical transformation of $\mathrm{A} 3 \cdot \mathrm{U} 70 \rightarrow \mathrm{~A} 3 \cdot \mathrm{C} 70$ in AlaRS:tRNA ${ }^{\text {Ala }}$ reactive complex where A3 taken from non-reactive complex

System	No of runs	Simulation Length ($\mathbf{F}+\mathbf{R}$)	Forward $\Delta \mathbf{G}$ $(\mathrm{A} \cdot \mathrm{U})$ to $(\mathrm{A} \cdot \mathrm{C})$	Reverse $\mathbf{\Delta G}$ $(\mathrm{A} \cdot \mathrm{C})$ to $(\mathrm{A} \cdot \mathrm{U})$
Reactive State: AlaRS:tRNA ${ }^{\text {Ala }}$ /(A3•U70)-A3 modelled from Non-Reactive state	Run1	22 ns	18.35 (1.23)	-18.12 (0.60)
	Run2	22 ns	18.55 (1.44)	-17.69 (0.70)
	Run3	22 ns	17.25 (0.66)	-17.45 (1.59)
	Run4	22 ns	18.60 (0.91)	-17.49 (0.87)
	Run5	22 ns	17.74 (1.39)	-18.00 (1.42)
Reverse C-->U				
Average			18.10 (0.26)	-17.75 (0.13)

(h) Free energy change for the alchemical transformation of $\mathrm{A} 3 \cdot \mathrm{U} 70 \rightarrow \mathrm{~A} 3 \cdot \mathrm{C} 70$ in AlaRS:tRNA ${ }^{\text {Ala }}$ non-reactive complex

System	No of runs	Simulation Length $(\mathbf{F}+\mathbf{R})$	Forward $\mathbf{\Delta G}$ $(\mathrm{A} \cdot \mathrm{U})$ to $(\mathrm{A} \cdot \mathrm{C})$	Reverse $\mathbf{\Delta G}$ $(\mathrm{A} \cdot \mathrm{C})$ to $(\mathrm{A} \cdot \mathrm{U})$
Non-reactive State: AlaRS:tRNA				
Forward $/ \mathbf{A} \cdot-\mathbf{U})$ Reverse C-->C	Run1	22 ns	$17.68(0.38)$	$-18.59(1.16)$
	Run2	22 ns	$17.72(1.16)$	$-15.56(0.55)$
	Run3	22 ns	$18.23(1.52)$	$-16.6(1.00)$
	Run4	22 ns	$18.25(1.35)$	$-17.77(1.27)$
	Run5	22 ns	$18.11(1.44)$	$-18.71(1.60)$

(i) tRNA free in water Free energy change for the alchemical transformation of $\mathrm{A} 3 \cdot \mathrm{U} 70 \rightarrow \mathrm{~A} 3 \cdot \mathrm{C} 70$ in reactive and non-reactive $\mathrm{RRNA}^{\text {Ala }}$ free in water where A in reactive tRNA ${ }^{\text {Ala }}$ taken from non-reactive complex

System	No of runs	Simulation Length ($\mathbf{F}+\mathrm{R}$)	Forward $\Delta \mathbf{G}$ $(\mathrm{A} \cdot \mathrm{U}) \text { to }(\mathrm{A} \cdot \mathrm{C})$	Reverse $\Delta \mathbf{G}$ $(\mathrm{A} \cdot \mathrm{C})$ to $(\mathrm{A} \cdot \mathrm{U})$
tRNA free in water (Reactive conformation): tRNA ${ }^{\text {Ala } /(A \cdot U)-" A " ~}$ Modelled from Nonreactive state	Run1 Run2	$\begin{aligned} & 22 \mathrm{~ns} \\ & 22 \mathrm{~ns} \end{aligned}$	$\begin{aligned} & 15.20(0.87) \\ & 14.24(1.09) \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline-14.88(0.47) \\ -14.25(0.74) \\ \hline \end{array}$
	Run3	22 ns	14.43 (1.04)	-14.02 (0.72)
	Run4	22 ns	13.41 (0.59)	-14.87 (0.78)
Forward U-->C Reverse C-->U	Run5	$22 \mathrm{~ns}$	$14.18(0.97)$	-13.95 (0.87)
		Average	14.29 (0.29)	-14.39 (0.20)
System	No of runs	Simulation Length ($\mathbf{F}+\mathbf{R}$)	Forward $\Delta \mathbf{G}$ $(\mathrm{A} \cdot \mathrm{U})$ to $(\mathrm{A} \cdot \mathrm{C})$	Reverse $\Delta \mathbf{G}$ $(\mathrm{A} \cdot \mathrm{C})$ to $(\mathrm{A} \cdot \mathrm{U})$
Non-reactive conformation of tRNA free in water:$\text { tRNA }{ }^{\mathrm{Ala}} /(\mathbf{A} \cdot \mathbf{U})$	Run1	22 ns	14.60 (0.38)	-13.26 (0.45)
	Run2	22 ns	14.02 (0.91)	-11.50 (0.97)
	Run3	22 ns	14.45 (0.84)	-14.68 (0.89)
Forward U-->C Reverse C-->U		22 ns	14.92 (0.76)	-14.11 (1.15)
	Run5	22 ns	14.82 (1.14)	-14.41 (0.73)
		Average	14.56 (0.16)	-13.59 (0.57)

[^0]: * Correspondence and requests for materials should be addressed to P.S. (Tel: +91-361-2583205, Fax: +91-361-2582249, e-mail: psatpati@iitg.ac.in) and J.Å. (Tel: +46 18471 4109, e-mail: aqvist@xray.bmc.uu.se)

