Supporting information

Automatically identifying electrode reaction

mechanisms using deep neural networks

Gareth F. Kennedy?t, Jie Zhang T+ and Alan M. Bond'-t*
T School of Chemistry, Monash University, Victoria 3800, Australia

T ARC Centre of Excellence for Electromaterials Science, School of Chemistry,
Monash University

Corresponding Author

*alan.bond@monash.edu

*jie.zhang@monash.edu

Contents

Figure S1. Python code using the Keras library in TensorFlow to give the DNN
architecture schematically shown in Figure 2.

Figure S2. Effect of adding noise to the current as a function of time for an EE
mechanism example and the associated DNN input images.

Figure S3. Effect of adding noise to the current as a function of time for an EC
mechanism example and the associated DNN input images.

Figure S4. Effect on the classification probabilities of increasing the noise added to
the simulated data for an EE mechanism.

Figure S5. Effect on the classification probabilities of increasing the noise added to
the simulated data for an EC mechanism.

S-1

build the model using sequential layers

model = Sequential ()

3 sequential 2D convolution layers followed by Rectified Linear Unit (Relu)
activation function and a 2D max pooling layer

model.add (Conv2D (32, (3, 3), input_shape=x_train.shape[l:])) # n paras = 320
model.add (Activation('relu')) # out = (98, 98, 32)
model.add (MaxPooling2D (pocl_size=(2,2))) # out = (489, 49, 32)
model.add (Conv2D (32, (3, 3))) # n paras = 9248
model .add (Activation('relu')) # out = (47, 47, 32)
model.add (MaxPooling2D (pocl size=(2,2))) #out: = (23, 23, 32)
model .add (Conv2D (€4, (3, 3))) # n paras = 18496
model .add (Activation('relu')) # out = (21, 21, 64)
model.add (MaxPooling2D(pool size=(2,2))) # out = (10, 10, 64)
flatten to 1D data

model.add (Flatten()) # out = (6400)

dense connection to a hidden layer of variable number of nodes

model .add (Dense (dnnHLNodeNumber)) # n paras = 448070
another Relu activation function

model .add (Activation('relu')) # out = (dnnHLNodeNumber
randomly set 50% of input units to 0: helps prevent overfitting

model.add (Dropout (0.5)

final output layer of the 3 classifications (E, EE and EC mechanisms)

model.add (Dense(n_labels)) # n paras = 213

sigmoid activation function for the final classification layer

model.add (Activation('sigmoid')) # out = (3)

compile the model using the ADAM optimizer for a specified learning rate
adam_opt = keras.optimizers.Adam(lr=dnnLearningRate)

model.compile (optimizer=adam opt, loss='categorical crossentropy', metrics=['accuracy'])
Train the model, iterating dnnEpochs times over the data in batches of dnnBatch samples
model.fit (¥ train, y train, epochs=dnnEpochs, batch size=dnnBatch)

Figure S1. Python code using the Keras library in TensorFlow to give the DNN
architecture schematically shown in Figure 2. The initial training data is a normalized
greyscale image of 100x100 pixels which goes through 3 convolution layers before
being flattened and densely connected to a hidden layer of a variable number of nodes
and finally to an output layer with one node for each classification. The output image
and number of filters (32 or 64) from each layer as well as the number of parameters
for that layer are shown as a comment at the end of each line. The final classification
output layer contains a series of 3 values corresponding to the probabilities that the
input mechanism is an E, EE or EC mechanism.

S-2

Scatter = 0.0 Scatter = 0.2

Scatter = 1.0

E 1%; EE 99%; EC 1% E 17%: EE 76%; EC 7% E 19%: EE 61%; EC 20%
-
1. [
L 8,
k! Y R 3
. o
%, 1 . 3 %
.hll “' .l‘~ s &
1*& ey L L}
.-._.-'"""-\.& - 5 5
v - %
-
| e
"

Figure S2. Effect of adding noise to the current as a function of time (top panels) for
an EE mechanism example and the associated DNN input images (bottom panels).
The simulated data for the EE mechanism before noise is added uses the default
parameters given in Table 1 except for R, =50 Q, k% = k% =1cms*'and E°4 =0.2V

and E% =-0.2 V which were chosen to further confuse the classifier.

S-3

Scatter = 0.0 Scatter = 0.2 Scatter = 1.0

E 17%; EE 9% EC 74% E 4%; EE 33%:; EC 63% E 18%; EE 67%; EC 15%

"

Figure S3. Effect of adding noise to the current as a function of time (top panels) for
an EC mechanism example and the associated DNN input images (bottom panels).
The simulated data for the EC mechanism before noise is added uses the default
parameters given in Table 1 except for R, =50 Q, k =1 cm s and k = 1 s*' which
were chosen to further confuse the classifier.

S-4

1.0 \ Mechanism

— E
—— EE
— EC
0.8
2
T_C_é
0 0.6
o)
|
o
5t
§0.4
o
Q
e
o
0.2
0.0
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Noise level

Figure S4. Effect on the classification probabilities of increasing the noise added to
the simulated data for an EE mechanism shown in Figure S2.

S-5

o
-.4

0.6
2
3 0.5
©
O
© 0.4
o
5
_"C:J' 0.3
e}
()]
g 0.2
Mechanism
0.1 — E
— EE
— EC
0.0
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Noise level

Figure S5. Effect on the classification probabilities of increasing the noise added to
the simulated data for an EC mechanism shown in Figure S3.

