Supporting Information

Probing nano-scale phase separation at atomic resolution within β -type Ti - Mn alloy; a potential candidate for biomedical implants

Pritam Banerjee¹[‡], Chiranjit Roy¹[‡], Mohamed A.-H. Gepreel², Amit Ranjan³, Soumya Basu³, Somnath Bhattacharyya^{1*}

¹ Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai 600036, India

²Department of Materials Science and Engineering, Egypt–Japan University of Science and Technology, New Borg El-Arab City, Alexandria 21934, Egypt

³ Cancer and Translational Research Laboratory, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Tathawade, Pune 411033, India

* Corresponding author: somnathb@iitm.ac.in

[‡] Equally contributed as first authors

Sampla	Yield strength Ultimate tensile streng		
Sample	(MPa)	(MPa)	
CP-Ti (Grade 4) ¹	485	550	
Co-Cr-Mo ²	315	670	
SS 316 ⁻²	750	965	
Ti-64 ELI ¹	875	965	
TNZT ¹	864	911	
Ti-Mo ³	375	690	
Ti-14Mn (cold rolled)	1800	1858	

Table S1: Tensile properties of different grade of biomaterials

Table S2: Change in lattice parameter with Mn concentration; and relation between energy of the system with minimum interatomic Mn-Mn atom distance in supercell.

Sl.No.	Composition	Mn atoms fractional	Lattice	Minimum	Energy
		coordinates in	Parameter	Mn-Mn	(eV)
		(2 x 2 x 2) supercell	(Å)	atom	
				distance (Å)	
1.	Ti – 7 wt % Mn	(0.5,0.5,0.5)	3.226	6.452	-125.53467
		(0,0,0) (0.5,0.5,0.5)	3.177	2.751	-125.9538
2.	Ti – 14 wt %	(0,0,0) (0,0,0.5)	3.196	1.598	-127.41873
	Mn	(0,0,0) (0.25,0.25,0.25)	3.179	1.376	-126.1603
		(0,0,0) (0,0.5,0.5)	3.199	2.262	-126.28727
		(0,0,0) $(0.5,0.5,0.5)(0,0,0,5)$	3.164	1.582	-128.22182
		(0,0,0) (0.5,0.5,0.5)			
		(0.25,0.25,0.25)	3.146	1.362	-128.04161
		(0,0,0) (0.5,0.5,0.5)	3.153	1.576	-128.09458
		(0,0.5,0.5)			
		(0.25,0.25,0.25)	2 1 4 5	1 261	
	Ti – 21 wt %	(0.5,0,0) (0.5,0,0.5)	5.145	1.301	-127.76723
3.	Mn	(0.25,0.25,0.25)			
		(0.25, 0.25, 0.75)	3.17	1.372	-128.55645
		(0.5,0.5,0.5)			
		(0.25,0.25,0.25)			
		(0.25,0.25,0.75)	3.155	1.372	-128.6875
		(0.75,0.75,0.25)			
		(0.25,0.25,0.25)			
		(0.25, 0.25, 0.75)	3.153	1.365	-128.68893
		(0.5,0,0.5)			

Figure S1: Cytotoxicity test of CP-Ti alloy on different cell lines at different intervals of time.

References

- (1) Mitsuo, N. Mechanical Properties of Biomedical Titanium Alloys. *Mater. Sci. Eng. A* **1998**, *243* (1–2), 231–236.
- (2) Long, M.; Rack, H. J. Titanium Alloys in Total Joint Replacement a Medical Perspective. *Biomaterials* **2006**, *19*, 1621–1639.
- (3) Zhao, X.; Niinomi, M.; Nakai, M.; Hieda, J. Beta Type Ti-Mo Alloys with Changeable Young's Modulus for Spinal Fixation Applications. *Acta Biomater*. **2012**, *8* (5), 1990–1997. https://doi.org/10.1016/j.actbio.2012.02.004.