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Abstract2

The Python code and the Raw Raman and IR spectra can be found at:3

https://github.com/john88gm/BSS_Analysis-Spectroscopy.4

1 Supplementary Information5

1.1 Spectroscopy6

The electromagnetic radiation travelling through a liquid solution and/or impinging on a7

solid can interact with the units (atoms, molecules, ions) constituting the material.1–3 In8

this contribution, we consider only two spectroscopic techniques among all those possible:9

ATR-FTIR and Raman. They are based on the interaction of light with a chemical bond: the10

former through the absorption of infra-red radiation because of a dipole moment; the latter11
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through scattering of light related to molecular polarizability. Symmetric chemical bonds and12

vibration modes have no dipole moment (they are thus IR inactive), while strongly polar13

molecules are usually weakly (if at all) polarizable (and are thus Raman inactive or only14

weakly active): ATR-FTIR and Raman spectroscopy are therefore often complementary15

tools. Additionally, Raman scattering is active with both liquid and solid species, while16

ATR-FTIR is used mainly to monitor liquid solutions, since the signal of solids is rather17

weak. The mathematical treatment developed in this work applies equally to Raman and18

ATR-FTIR spectroscopy.19

The intensity of the radiation (the absorbed one in ATR-FTIR and the scattered one in

Raman) is related to the concentration of the active species. When the concentration of the

species of interest in a medium is low, the intensity, X, follows a linear dependence on the

concentration, C, known as the Beer-Lambert law :

X(λ,q) = Cl(λ,q) (1)

where l is the absorption coefficient, which is dependent on the wavenumber, λ (with units

of cm-1), and possibly on other intensive properties, such as temperature, T , and pH, i.e.

q = (T, pH). When there are nK spectroscopically active species, the total intensity (ab-

sorbance/scattering) is usually obtained according to a linear superposition principle:

X(λ,q) =

nK∑
k=1

CkLk(λ,q) (2)

where Lk represents the intensity that the species k would have if it were the only one present

in the medium. Note that Eqs. (1) and (2), resting on the assumption of linearity, are also

valid in several systems at moderate, rather than low, concentrations. In actual experiments,

one samples only a finite set of values of the wavenumbers, hence the spectrum is discretized

into nL values. When nN different spectra are collected, Eq. (2) is written in matrix form
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as a linear system:

X = CL (3)

where X ∈ RnN×nL , C ∈ RnN×nK , and L ∈ RnK×nL ; the dependence on q is dropped to

ease the notation. Since Eq. (2) is a linear problem, given the data X and if L (or C) were

known, one could compute C (or L) by (pseudo-)inversion:

C = XL−1 (4)

L = C−1X (5)

1.2 Standard Calibration20

In a standard calibration approach, one uses various forms of supervised learning such as Par-

tial Least Squares (PLS) or Principal Component Analysis (PCA).3–5 Under the assumption

that nN � nK , the sought approximate solution is formally written as:

C = F(X) ≈ XL̂−1 (6)

where F is the (non-linear) model used to correlate the input measurements X with concen-21

tration by means of calibration experiments in which the number of species, their identity,22

and their concentrations are known (i.e. one solves first for L̂ = C−1
c Xc, where the subscript23

c indicates the matrix of calibration concentration, then for any subsequent measurement24

the concentration is estimated as per Eq. (6)).25

1.3 Data Preprocessing26

Measured spectra are corrupted by several unwanted phenomena, such as baseline drift,27

spikes, and — more generally — noise that prevent a direct application of Eqs. (1) to (5) of28

the manuscript to the raw data. Preprocessing aims at removing these unwanted phenomena29
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from the spectra, before feeding them to the algorithms that calibrate and estimate the30

concentrations and/or the spectra of pure species.31

Baseline correction is commonly performed on raw data of most spectroscopic techniques32

and several algorithms have been developed for that purpose. In this work, we have chosen33

two procedures, developed by Mazet et al.6 and Zhang et al.7 and based on a polynomial34

fit of the baseline: the former, though, uses nonquadratic cost functions adapted to the35

processed spectrum, while the latter uses reweighted penalized least squares (PLS). However,36

in this study we have found that both algorithms yield almost identical spectra after baseline37

correction, with no apparent differences in terms of performance and robustness. We have38

then adopted the PLS procedure.39

Smoothing is also usually performed on raw data. Here, we have used the Savitzky-Golay40

filter,8 because of its robustness and efficiency and since it can also perform numerical differ-41

entiation of the spectra with respect to the wavenumber (see Section 2 in the manuscript).42

The Savitzky-Golay filter requires two input parameters, the window size, Sw ( i.e. the num-43

ber of points to be used for estimating the smoothed value), and the degree of the locally44

interpolating polynomial, Sp.45

Despiking is standard in pre-processing procedure particularly for Raman spectra and46

consists of the removal of spikes, i.e. sudden surges in the spectral intensity due to random47

cosmic rays. Several despiking algorithms have been proposed: in this work, we have adopted48

the simple, but rather effective approach recently proposed by Whitaker and Hayes9 to49

identify a spike. Note that despiking may result in only a reduction, rather than a total50

removal, of spikes, particularly if two consecutive spikes are affecting the measurements.51

Despiking aims at automatically detecting and removing the spikes, which could be oth-

erwise interpreted during the data analysis as spectroscopic features of some species, leading

to outlier values and spurious behaviors. Supposing that the spectra are collected in a se-

quence, this approach identifies a spike by using modified Z-scores, defined for each measured

4



spectrum as:

Zil = 0.6745
∆Xil − 〈∆X〉

V
∀l = 1, ..., nL, ∀i = 2, ..., nN (7)

where ∆Xil = Xil−X(i−1)l is the difference between two consecutive measurements, 〈∆X〉 is52

the median of all ∆X, and V is the median of |∆Xil − 〈∆X〉|. Whitaker and Hayes suggest53

to identify as spike values those Xil for which Zil > 6. As for spike removal, we adopted the54

method proposed by Li and Dai,10 i.e. to compute the values replacing those of the spike55

by linear extrapolation from the immediate predecessors, i.e. extrapolating the values from56

the spectrum Xi−1 to the spectrum Xi. Figure 1 compares the raw spectrum (dashed blue57

line) with its despiked and baselined counterpart (solid black line).58

Finally, pre-processing often includes spectra centering and rescaling. The former shifts59

the data, so that each spectrum has zero mean; the latter is used to decrease the relative60

difference between the importance of samples at high and at low concentration, thus di-61

minishing the formation and propagation of spurious effects and numerical instabilities. It62

is worth mentioning that the use of so-called “internal standards”, i.e. dividing the whole63

spectrum by its value at a specific wavenumber, is also frequently applied during calibration64

in Raman spectroscopy.11–14 The use of internal standards, which can be considered a par-65

ticular type of scaling, was based in this work on the peak of water at 1640 cm-1 for Raman66

spectra.67

68
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Figure 1: An example of a Raman spectrum with five different chemical species (water,
sodium nitrite, sodium nitrate, sodium carbonate, and sodium aluminate) before (blue
dashed line) and after despiking and baselining (black solid line). The attenuated, but
not completely removed spike is highlighted by a red ellipse.

1.4 Simulated Data69

70

71

72

73

74
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(a) (b)

(c) (d)

(e) (f)

Figure 2: The value of the correlation coefficients between the spectra obtained from
ICA/MCR-ALS and the reference spectra for the true components, for water and the five
anions of interest, at different levels of noise and for different values of Sw for the Savitzky-
Golay filter. The composition of the synthetic mixture follows the values reported in Table 1,
with κ = 0.10. The bright yellow areas indicate the regions where the correlation is highest.
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Figure 3: Estimation of the composition for a set of 15 mixtures, with κ = 0.70, with SNR =
100, 70, 50 dB, from left to right; the values have been computed enforcing the spectra non-
negativity and choosing a Savitsky-Golay window of 11 for all values of SNR. The black,
blue, and red dashed lines in each plot indicate a perfect match, the ±10% boundaries,

and the ±20% boundaries, respectively. H2O, NO –
3 , NO –

2 , CO 2–
3 , SO 2–

4 , PO 3–
4 are

reported as red, black, light blue, violet, orange, and green symbols, respectively.
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Figure 4: Estimation of the composition for a set of 15 mixtures, with κ = 0.50, with SNR =
100, 70, 50 dB, from left to right; the values have been computed enforcing the spectra non-
negativity and choosing a Savitsky-Golay window of 11 for all values of SNR. The black,
blue, and red dashed lines in each plot indicate a perfect match, the ±10% boundaries,

and the ±20% boundaries, respectively. H2O, NO –
3 , NO –

2 , CO 2–
3 , SO 2–

4 , PO 3–
4 are

reported as red, black, light blue, violet, orange, and green symbols, respectively.
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Figure 5: Estimation of the composition for a set of 15 mixtures, with κ = 0.25, with SNR =
100, 70, 50 dB, from left to right; the values have been computed enforcing the spectra non-
negativity and choosing a Savitsky-Golay window of 11 for all values of SNR. The black,
blue, and red dashed lines in each plot indicate a perfect match, the ±10% boundaries,

and the ±20% boundaries, respectively. H2O, NO –
3 , NO –

2 , CO 2–
3 , SO 2–

4 , PO 3–
4 are

reported as red, black, light blue, violet, orange, and green symbols, respectively.
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Figure 6: Estimation of the composition for a set of 15 mixtures, with κ = 0.01, with SNR =
100, 70, 50 dB, from left to right; the values have been computed enforcing the spectra non-
negativity and choosing a Savitsky-Golay window of 11 for all values of SNR. The black,
blue, and red dashed lines in each plot indicate a perfect match, the ±10% boundaries,

and the ±20% boundaries, respectively. H2O, NO –
3 , NO –

2 , CO 2–
3 , SO 2–

4 , PO 3–
4 are

reported as red, black, light blue, violet, orange, and green symbols, respectively.
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1.5 Experimental Values75

Table 1: Compositions used for the experimental measurements with Raman and IR.

species/
sample

Na3PO4 Na2SO4 NaNO2 Na2CO3 NaNO3 H2O

1 0.00% 0.00% 0.00% 0.00% 0.00% 100.00%
2 0.00% 0.00% 0.00% 0.00% 0.00% 100.00%
3 0.00% 0.00% 0.00% 0.00% 0.00% 100.00%
4 0.00% 0.16% 0.00% 0.00% 0.00% 99.84%
5 0.24% 0.15% 0.00% 0.00% 0.00% 99.60%
6 0.24% 0.15% 0.00% 0.64% 0.00% 98.97%
7 0.24% 0.15% 0.00% 0.63% 1.20% 97.78%
8 0.23% 0.15% 1.00% 0.63% 1.19% 96.81%
9 0.23% 0.29% 0.97% 0.61% 1.15% 96.66%
10 0.46% 0.30% 0.99% 0.62% 1.18% 96.43%
11 0.45% 0.29% 0.97% 1.21% 1.15% 93.81%
12 0.46% 0.30% 0.98% 1.22% 2.32% 94.73%
13 0.45% 0.29% 1.94% 1.21% 2.30% 93.81%
14 0.45% 0.44% 1.94% 1.21% 2.29% 93.67%
15 0.68% 0.44% 1.93% 1.20% 2.29% 93.45%
16 0.68% 0.44% 1.92% 1.79% 2.27% 92.90%
17 0.67% 0.44% 1.90% 1.77% 3.38% 91.85%
18 0.67% 0.43% 2.83% 1.75% 3.35% 90.97%

1.6 Error Analysis76

77
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Table 2: Compositions estimated from the one-point calibration from Raman spectra.

species/
samples
1 0.00% 0.00% 0.00% 0.00% 0.00% 100.01%
2 0.00% 0.00% 0.00% 0.00% 0.00% 100.05%
3 0.00% 0.00% 0.00% 0.00% 0.00% 100.03%
4 0.00% 0.17% 0.00% 0.00% 0.00% 99.88%
5 0.12% 0.18% 0.00% 0.00% 0.00% 99.72%
6 0.10% 0.17% 0.00% 0.65% 0.00% 99.10%
7 0.07% 0.14% 0.00% 0.56% 1.30% 97.93%
8 0.04% 0.16% 0.88% 0.67% 1.47% 96.77%
9 0.02% 0.33% 0.83% 0.69% 1.42% 96.70%
10 0.25% 0.35% 0.89% 1.43% 1.50% 95.59%
11 0.26% 0.36% 0.90% 1.46% 1.54% 95.48%
12 0.24% 0.33% 0.87% 1.55% 2.85% 94.14%
13 0.22% 0.32% 1.77% 1.55% 2.72% 93.42%
14 0.20% 0.52% 1.81% 1.67% 2.83% 92.97%
15 0.48% 0.51% 1.78% 1.65% 2.78% 92.80%
16 0.47% 0.53% 1.88% 2.46% 2.90% 91.76%
17 0.40% 0.48% 1.76% 2.60% 3.92% 90.83%
18 0.42% 0.48% 2.70% 2.73% 3.89% 89.78%

Table 3: Compositions estimated from the one-point calibration from IR spectra.

species/
samples
1 0.02% 0.00% 0.00% 0.07% 0.00% 99.91%
2 0.02% 0.00% 0.00% 0.07% 0.00% 99.91%
3 0.02% 0.00% 0.00% 0.07% 0.00% 99.91%
4 0.03% 0.20% 0.00% 0.06% 0.00% 99.71%
5 0.31% 0.18% 0.00% 0.06% 0.00% 99.45%
6 0.26% 0.15% 0.00% 0.83% 0.00% 98.76%
7 0.22% 0.12% 0.00% 0.69% 1.23% 97.73%
8 0.23% 0.14% 0.94% 0.75% 1.13% 96.81%
9 0.25% 0.33% 0.93% 0.79% 1.13% 96.57%
10 0.54% 0.30% 0.85% 0.78% 1.12% 96.43%
11 0.49% 0.27% 0.82% 1.31% 1.15% 95.96%
12 0.50% 0.28% 0.89% 1.19% 2.32% 94.81%
13 0.49% 0.29% 1.98% 1.26% 2.15% 93.83%
14 0.53% 0.47% 1.95% 1.31% 2.13% 93.60%
15 0.78% 0.43% 1.87% 1.31% 2.12% 93.49%
16 0.77% 0.42% 1.88% 1.72% 2.21% 93.01%
17 0.77% 0.42% 1.95% 1.62% 3.25% 91.99%
18 0.76% 0.42% 2.98% 1.71% 3.03% 91.10%
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Figure 7: The error between the measured and the reconstructed IR spectra, computed as
an element-wise difference.

1.7 Incomplete Library78

The BSS part of the algorithm does not depend on the library, hence the spectra recon-79

structed by the BSS procedure are not affected by any missing component. Figure 8 shows80

the case discussed in the main text, where the reference spectrum of carbonate is missing81

from the library. In this figure, the left column reports the spectra reconstructed using82

BSS (top), CLS (center), and LASSO (bottom); the right column shows the residual errors83

calculated as discussed in Section 3.3.2 for each method.84

85

86

87
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Figure 8: On the left column, we have reported the measured Raman spectra for the data
set (black) and the reconstructed spectra using BSS, CLA, LASSO, in red, magenta, and
light blue (from top to bottom). On the right column, the corresponding element-wise error:
the BSS residual is basically background noise, whereas CLS and LASSO capture neither
the peak drift of nitrate nor the peak of carbonate.
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Figure 9: Library without nitrate. On the left column, we have reported the measured
Raman spectra for the data set (black) and the reconstructed spectra using BSS, CLA,
LASSO, in red, magenta, and light blue (from top to bottom). On the right column, the
corresponding element-wise error.
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Figure 10: Library without sulfate. On the left column, we have reported the measured
Raman spectra for the data set (black) and the reconstructed spectra using BSS, CLA,
LASSO, in red, magenta, and light blue (from top to bottom). On the right column, the
corresponding element-wise error.
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