Lead-free Antimony-based Light-Emitting Diodes through Vapor-Anion Exchange Method

Anupriya Singh,^{*a,b,c*} Nan-Chieh Chiu,^{*a,d*} Karunakara Moorthy Boopathi,^{*a*} Yu-Jung Lu,^{*a,b*} Anisha Mohapatra,^{*a*} Gang Li,^{*e*} Yang-Fang Chen,^{*b,c*} Tzung-Fang Guo, ^{*,*d*} and Chih-Wei Chu^{*,*a,f,g*} ^{*a*}Research Center for Applied Science, Academia Sinica, Taipei 115, Taiwan (R.O.C.)

Research Conter for Applied Science, Academia Sinica, Taiper 115, Taiwan (R.S.C.)

^bDepartment of Physics, National Taiwan University, Sec. 4, Roosevelt Road, Taipei 106, Taiwan (R.O.C.)

^cNano Science and Technology, Taiwan International Graduate Program, Academia Sinica and National Taiwan University, Taiwan (R.O.C.)

^dDepartment of Photonics, National Cheng Kung University, Tainan 70101, Taiwan (R.O.C.)

^eDepartment of Electronic and Information Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China

^fCollege of Engineering, Chang Gung University, Taoyuan City, Taiwan (R.O.C.)

^gDepartment of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan (R.O.C.)

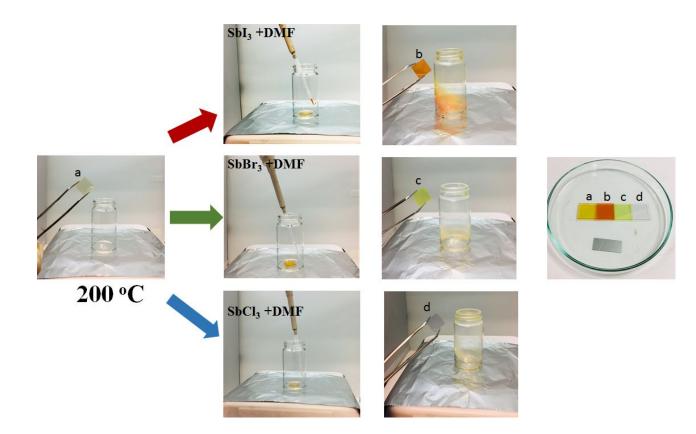
*Corresponding Authors

Email : guotf@mail.ncku.edu.tw and gchu@gate.sinica.edu.tw

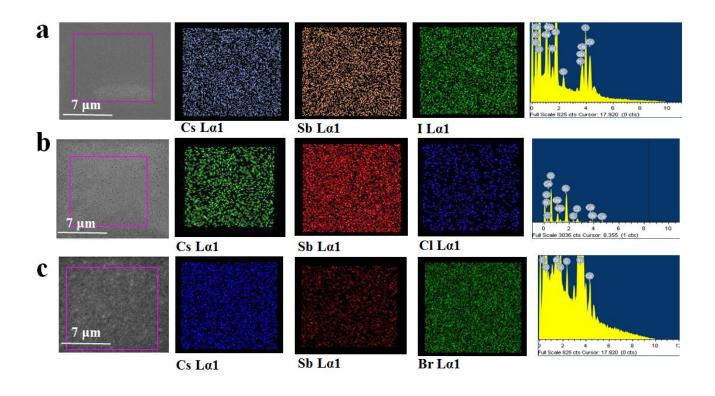
Experimental Section

Chemicals: PEDOT: PSS (Clevios P VP.AI 4083, Heraeus Germany), SbI₃ (99.9%, Alfa Aesar), SbBr₃ (99.9%, Alfa Aesar), SbCl₃ (99.9%, Alfa Aesar), CsI (99.9%, Alfa Aesar), dimethyl sulfoxide (Sigma–Aldrich), *N*,*N*-dimethylformamide (Sigma–Aldrich), TPBi (Luminescence Technology), and LiF (Luminescence Technology) were used as received, without further purification.

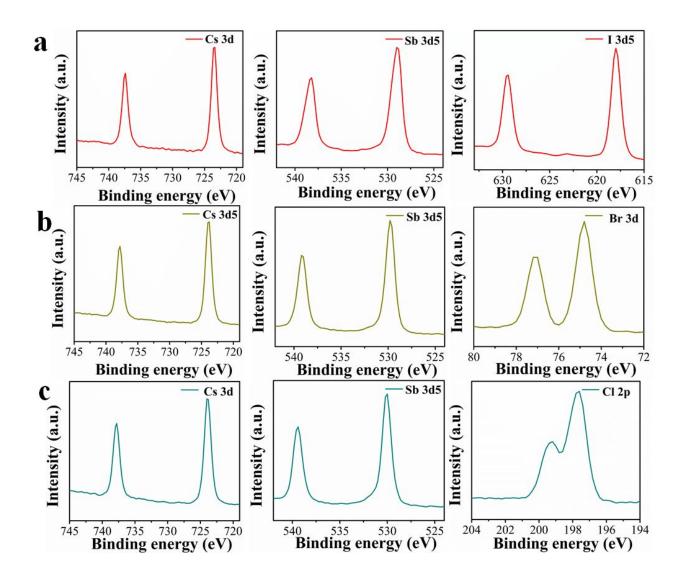
Cs₃Sb₂X₉ films through Vapor-Anion exchange: Steps for preparing films

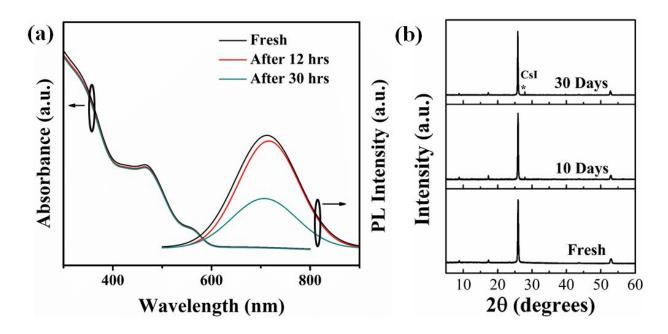

- Mix 0.25 M of SbI₃ and 1 M of CsI in DMSO and then continuous stir (150 rpm) the mixture for 6 h at 70 °C.
- This solution was dropped onto the PEDOT:PSS-coated substrates and spin-coated for 40 s at 8000 rpm.
- These films (two samples at a time) were moved directly to a glass bottle (diameter: 4 cm; height: 6 cm) preheated at 200 °C.
- 4. 10 μ L (40 wt%) of SbI₃ in DMF is added in the corner of the bottle.
- 5. This bottle was then covered with a cap.
- 6. The films were maintained at 200 °C for 15 min; the temperature was decreased gradually to 150 °C before bringing the sample to room temperature, to avoid quenching.
 For the halide-exchanged films, 10 μL (80 wt%) of SbBr₃ or 10 μL (90 wt%) of SbCl₃ was placed in corners of the bottles, instead of SbI₃, to form films of Cs₃Sb₂Br₉ or Cs₃Sb₂I₉, respectively. Note that the precursor (CsI:SbI₃) for spin-coating was the same when preparing all of the films; the only thing changed was the solution used for the halide exchange in the second step.

Structural Characterization: XPS and UPS were performed at room temperature using a PHI 5000 Versa Probe apparatus equipped with an Al K α X-ray source (1486.6 eV). UPS was used to measure the valence band using He I emission (21.2 eV, ca. 50 W) as the source of UV light; the take-off angle was 90°. Samples for UPS were prepared on ITO substrates only, using the same method as that for preparing the active layer of the device. SEM images and EDX spectra were recorded using an FEI Nova 200 scanning electron microscope (15 kV). Samples were prepared on ITO substrates. XRD patterns were recorded at room temperature using X'Pert3 Powder, PAN analytical equipped with a diffracted beam monochromator set for Cu K α radiation ($\lambda = 1.54056$ Å). Samples were formed on glass substrates.


Optical Characterization: UV–Vis absorption spectra were recorded using a JASCI V-670 spectrophotometer. ITO and PEDOT:PSS-coated substrates were used to record the baseline; the absorption spectra of the active layers, deposited using the above-mentioned methods on given substrates, were then recorded. PL measurements were performed using a closed-cycle cryogenic system (Attodry 800, Attocube) equipped with a scanning confocal microscope and a spectrometer (Andor) consisting of a monochromator and a thermo-electric cooling CCD camera. PL spectra were recorded at both 4.7 K and room temperature. A 405-nm continuous wave (CW) laser diode excitation source was used and a 420-nm long-pass filter was placed before the spectrometer to filter out the laser signal. A 100x objective lens (0.82 NA; Attocube) was used to focus the pulsed laser to a small spot (diameter: 1 μ m²) with an average power density of 53 kW/cm².

Device Characterization: Radiance spectra were recorded using an Ocean Optics miniature spectrometer (bandwidth: 590–1235 nm).


Supporting Figures and tables


Figure S1. Real time photographs showing the experimental procedure: (a) spin coated film of CsI:SbI₃ films. (b) Layer Cs₃Sb₂I₉ film after SbI₃ + DMF vapor treatment. (c) Layer Cs₃Sb₂Br₉ film after SbBr₃ + DMF vapor treatment, i.e. after anion exchange from $I \rightarrow$ Br. (d) Layer Cs₃Sb₂Cl₉ film after SbCl₃ + DMF vapor treatment, i.e. after anion exchange from $I \rightarrow$ Cl.

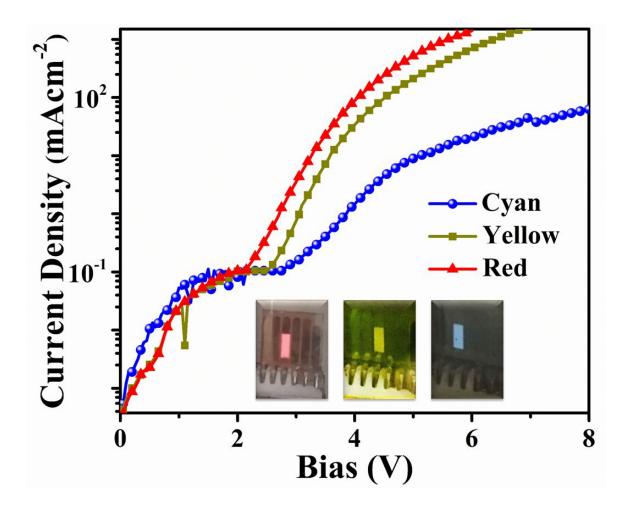

Figure S2. EDX elemental mapping of the surface morphologies after anion exchange: (a) CsI:SbI₃ film after SbI₃ vapor treatment, (b) CsI:SbI₃ film after SbCl₃ vapor treatment, and (c) CsI:SbI₃ film after SbBr₃ vapor treatment.

Figure S3. XPS elemental mapping after anion exchange: (a) CsI:SbI₃ film after SbI₃ vapor treatment, (b) CsI:SbI₃ film after SbBr₃ vapor treatment, and (c) CsI:SbI₃ film after SbCl₃ vapor treatment.

Figure S4. (a) Absorption and PL variation after keeping films in air (b) XRD peak revealing the slow evolution of CsI peak after 30 days.

Figure S5. Averaged J-V curves of a series of devices prepared using the Cs₃Sb₂X₉ film. (inset is photographs of working LEDs)

 Table S1. Stoichiometric ratios revealed through EDX elemental mapping.

Cs/Sb	X/Sb	X/Cs
1.57	3.86	2.45
1.45	3.62	2.36
1.68	3.40	2.02
1.50	4.50	3
	1.57 1.45 1.68	1.57 3.86 1.45 3.62 1.68 3.40

Perovskite	Cs ₃ Sb ₂ I ₉	Cs ₃ Sb ₂ Br ₉	Cs ₃ Sb ₂ Cl ₉ 28.9194 0.26776 306.3921	
2theta (degrees)	25.8528	27.6928		
FWHM (degrees)	0.25723	0.29898		
Crystallite size (nm)	316.8917	273.6585		

The average crystallite sizes were estimated using the Scherrer equation :

 $D = 0.89\lambda/\beta \cos \theta$

where D is the crystallite size, λ is the wavelength of the X-rays, β is the fwhm of the diffraction peak, θ is the diffraction angle, and the constant 0.89 is the shape factor.

Table S3. Literature reports on light emitting properties of lead free A3B2X9 rports.

Perovskite	Material type	Tunability	Air Stability	Light emitting device
Cs ₃ Bi ₂ X ₉	Nanocrystals	Yes	10 days	Based on photoluminescence
Cs ₃ Sb ₂ X ₉	Nanocrystals	Yes	30 days	No device display
Cs ₃ Sb ₂ X ₉ (Current work)	Thin film (Solution processable)	Yes	30 days	Based on electroluminescence