Supporting Information

Co-Axial Extrusion of Tubular Tissue Constructs Using A Gelatin/GelMA Blend Bioink

Ying Wang, ${ }^{\dagger}$ Ranjith Kumar Kankala, ${ }^{\dagger, \dagger}$ Kai Zhu, ${ }^{\S}$ Shi-Bin Wang, ${ }^{\dagger}{ }^{\dagger}$ Yu Shrike Zhang, $\|$, * Ai-Zheng Chen ${ }^{\dagger \text {, t, * }}$
${ }^{\dagger}$ Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, P. R. China
${ }^{\ddagger}$ Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen 361021, P. R. China
${ }^{\S}$ Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P. R. China
${ }^{\|}$Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA

*Corresponding authors:
Email addresses: yszhang@research.bwh.harvard.edu (Y. S. Zhang) azchen@hqu.edu.cn (A. Z. Chen)

Number of pages: 3 pages

Number of Figures: 2 figures

Number of Tables: 1 table

Figure S1. Mechanical properties of the GelMA/Gel hydrogels. Changes in (A) Young's modulus and (B) shear modulus of the GelMA/Gel hydrogels at different incubation periods in culture medium.

Figure S2. GelMA/Gel hollow microfibers fabricated at different gauge combinations of the needles. (A) ODs and IDs of the hollow microfibers fabricated at the different gauge combinations of the co-axial nozzles. (B-D) CLSM images of longitudinal cross-sections of the hollow microfibers corresponding to the different gauge combinations of the co-axial nozzles shown in (A).

Table S1. Processing variables used for the preparation of hollow microfibers fabricated with various gauge combinations of the co-axial nozzles.

Nozzle size	Sample flow rate $(\mu \mathrm{L} / \mathbf{m i n})$	Core flow rate $(\mu \mathrm{L} / \mathbf{m i n})$	OD	ID	Wall thickness ${ }^{a}$
$19 \mathrm{G} / 30 \mathrm{G})$	(\boldsymbol{m})	$(\boldsymbol{\mu m})$			
$19 \mathrm{G} / 32 \mathrm{G}$	450	40	1248.1	618.4	314.9
$22 \mathrm{G} / 30 \mathrm{G}$	450	40	1172.2	479.9	346.2

${ }^{a}$ Wall thickness $=(O D-I D) / 2$

