Supporting Information

Pharmacophore-Directed Retrosynthesis Applied to Rameswaralide: Synthesis and Bioactivity of Sinularia Natural Product Tricyclic Cores

Nathanyal J. Truax, ${ }^{1}$ Safiat Ayinde, ${ }^{2}$ Khoi Van; ${ }^{1}$ Jun O. Liu, ${ }^{2}$ and Daniel Romo ${ }^{1}$
${ }^{1}$ Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798, USA${ }^{2}$ Department of Pharmacology and Molecular Sciences, John Hopkins School of Medicine, 725 North Wolfe St., Baltimore, MD 21205, USA
Table of contents
General S2
Reagent List: S2
Experimental Procedures S3
Representative NMR spectra S16
X-ray structure and crystallographic data S47
Cytotoxicity assays of 15, 25-26, 30-36 S55
References: S55

General

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR were recorded at $25^{\circ} \mathrm{C}$ using either a 600 MHz NMR equipped with Prodigy Cold Probe NMR (${ }^{1} \mathrm{H}$ NMR at $600 \mathrm{MHz},{ }^{13} \mathrm{C}$ NMR at 150 MHz), or 400 MHz NMR (${ }^{1} \mathrm{H}$ NMR at 400 $\mathrm{MHz},{ }^{13} \mathrm{C}$ NMR at 100 MHz). Chemical shifts are reported in ppm using the residual solvent resonance as the internal standard (${ }^{1} \mathrm{H} \mathrm{NMR} \mathrm{CDCl}_{3}: \delta 7.26 \mathrm{ppm},{ }^{13} \mathrm{CNMR}^{\mathrm{NDCl}}$: $\delta 77.16 \mathrm{ppm}$) Data is reported as follows: chemical shift, multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{bs}=$ broad singlet, $\mathrm{m}=$ multiplet (or any combination of these), app = apparent when multiplicity arises from coincidental equivalence of coupling constants, or there is obviously higher-order coupling than cannot be resolved within a given resonance e.g. app $t=$ apparent triplet), coupling constants (Hz) and integration. Infrared spectra (IR) were obtained using both ATR and thin film (NaCl plates) sampling techniques (as stated in line listing) and recorded in wavenumbers (cm^{-1}). Bands are characterized as broad (br), strong (s), medium (m), and weak (w) or intermediate absorptions i.e. w-m, m-s. High Resolution Mass Spectrometry (HRMS) analysis was obtained using a Thermo Orbitrap Discovery utilizing Electrospray Ionization (ESI) and are reported as m / z (relative intensity).

All non-aq. reactions were performed under a nitrogen atmosphere in oven-dried ($125^{\circ} \mathrm{C}$) or flame-dried glassware unless otherwise indicated. Reaction solvents used were pre-dried by passing through activated molecular sieves or alumina (JC Meyer Solvent Drying System). Both diisopropylethylamine (DIPEA) and triethylamine ($\mathrm{Et}_{3} \mathrm{~N}$) were distilled over CaH_{2} prior to use. All work-up and purifications were completed using ACS grade solvents and no precautions were taken to exclude air. Thin Layer Chromatography (TLC) was performed using glass-backed silica gel F_{254} (Silicycle, $250 \mu \mathrm{~m}$ thickness). TLCs were visualized under UV irradiation (254 nm) or by the use of p-anisaldehyde (PAA), Hannesian's, or KMnO_{4} staining solutions as specified for each reaction. Standard flash column chromatography was completed using Silicycle ultrapure SiliaFlash silica gel, 40-63 $\mu \mathrm{m}, 60 \AA$ pore size. Medium pressure liquid chromatography (MPLC) was performed using a Teledyne Isco CombiFlash Rf automated flash chromatography system. Microwave reactions were completed using a CEM discover SP equipped with an Explorer. Microwave vessels used were 35 mL borosilicate glass with a 35 mL silicon cap compatible with the Discover SP (part \# 909235). Temperature was monitored using an infrared sensor.

Reagent List:

Furfuryl alcohol (Alfa Aesar)
TBSCI (Oakwood)
DMAP (Oakwood)
$\mathrm{K}_{2} \mathrm{CO}_{3}$ (Oakwood)
I_{2} (Alfa Aesar)
Ethoxy vinyl tin (Oakwood)
$\mathrm{Pd}_{2}(\mathrm{dba})_{3}$ (Oakwood)
AsPh_{3} (Sigma-Aldrich)
CuTC (Sigma-Aldrich)
MeLi, 3.1 M in diethoxymethane (Sigma-Aldrich)
TBAF, 1 M in THF (Sigma-Aldrich)
Acryloyl chloride (Sigma-Aldrich)
BTM catalyst (prepared according to literature procedure ${ }^{1}$)

IBX (prepared according to literature procedure ${ }^{2}$)
AIBN (Sigma-Aldrich)
BuzSnH (Alfa Aesar)
NBS (recrystallized from Sigma-Aldrich)
TESOTf (Oakwood)
2,6-Lutidine (Sigma-Aldrich)
$\mathrm{ZnEt} 2,1 \mathrm{M}$ in hexanes (Sigma-Aldrich)
$\mathrm{CH}_{2} \mathrm{I}_{2}$ (Distilled prior to use from Oakwood)
CHBr_{3} (Sigma-Aldrich)
Acetic Acid, glacial (Sigma-Aldrich)
AgBF_{4} (Strem)
CAN (Alfa Aesar)
DBU (Sigma-Aldrich)

Experimental Procedures

furfuryl alcohol (11)
10

4-hydroxycyclopent-2-en-1-one (10): Cyclopentenone 10 was prepared based on a modified procedure reported by Ulbrich and co-workers as well as Saitman and co-workers. ${ }^{3,4}$ Furfuryl alcohol ($1.000 \mathrm{~mL}, 12.57$ $\mathrm{mmol}, 1.0$ equiv) was delivered into 48 microwave vials (35 mL volume) utilizing a micropipette (total of $555.4 \mathrm{mmol})$. The alcohol was then dissolved in deionized (DI) $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL}$ per vial). Note: the vials were not equipped with a stir bar and caps were applied to vials without exclusion of air. Each vial was then submitted to microwave irradiation at $300 \mathrm{~W}, 200^{\circ} \mathrm{C}$ for 5 min . After all 48 vials had been irradiated, the cloudy brown mixture in each vial was combined in a separatory funnel, each vial with rinsed with EtOAc $(\sim 2 \mathrm{~mL})$ to ensure quantitative transfer. The aq. layer was then washed with EtOAc $(3 \times 250 \mathrm{~mL})$. At this stage, the aq. layer was a clear, light orange solution. If aq. layer is dark and cloudy, polymeric side product is still present in the aq. layer and further rounds of EtOAc washes are required to remove the polymer which is essential at this stage. The combined organic layers were then back extracted with DI $\mathrm{H}_{2} \mathrm{O}(2 \times 200$ mL). The combined aq. layers were evaporated under reduced pressure, utilizing a high vacuum (Welch DuoSeal 1400) connected directly to a rotovap. The resulting oil was azeotropically dried with toluene ($3 x$ $\sim 10 \mathrm{~mL}$) to yield cyclopentenone 10 as a light brown/red non-viscous oil ($25.99 \mathrm{~g}, 264.9 \mathrm{mmol}, 47 \%$) which was of sufficient purity (by ${ }^{1} \mathrm{H}$ NMR) taken directly to the alcohol protection step without further purification. Spectral data matched that previously reported. ${ }^{5,6}$

10
S1
4-((tert-butyldimethylsilyl)oxy)cyclopent-2-en-1-one (S1): TBS protected enone S1 was prepared based on a modified procedure previously reported by Song and co-workers. ${ }^{7}$ A 1 L round-bottomed flask containing cyclopentenol 10 ($50.73 \mathrm{~g}, 517.1 \mathrm{mmol}, 1.0$ equiv) was equipped with a 250 mL addition funnel. The entire apparatus was evacuated and refilled with $\mathrm{N}_{2}(3 \mathrm{x})$ and was maintained under a positive pressure of N_{2}. In the round-bottom flask, the dark red/brown oil was then dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(345 \mathrm{~mL}$, Note: Used HPLC grade $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ that had been stored over $3 \AA$ mol. sieves for one week prior to use) before adding Ets N ($108 \mathrm{~mL}, 775.7 \mathrm{mmol}, 1.5$ equiv) and DMAP ($6.30 \mathrm{~g}, 51.7 \mathrm{mmol}, 10 \mathrm{~mol} \%$). The dark red/brown homogeneous solution was then cooled to $0{ }^{\circ} \mathrm{C}$ (ice/water bath) and a solution of TBSCI $(93.50 \mathrm{~g}$, $620.6 \mathrm{mmol}, 1.2$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (172 mL) was added dropwise over ca. 45 mins (using equipped addition funnel). After complete addition of the TBSCI solution, the reaction mixture was now a light red/brown heterogeneous mixture. The mixture was allowed to warm to ambient temperature $\left(23^{\circ} \mathrm{C}\right)$ and was stirred until full consumption of alcohol 10, as determined by TLC (typically 16 h). The red/brown heterogeneous mixture was then transferred to a 2 L separatory funnel, washing with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(250 \mathrm{~mL})$ and $\mathrm{DI} \mathrm{H}_{2} \mathrm{O}(100$ $\mathrm{mL})$ to ensure quantitative transfer. Additional DI $\mathrm{H}_{2} \mathrm{O}(300 \mathrm{~mL})$ was added to the separatory funnel before shaking vigorously. The layers were then separated, and the organic layer was treated with aq. $1 \mathrm{M} \mathrm{HCl}(2$ $\times 250 \mathrm{~mL}$) followed by satd. aq. $\mathrm{NaHCO}_{3}(3 \times 250 \mathrm{~mL})$. The organic layer was then washed with brine, dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$, decanted, and the solvent was removed in vacuo to yield a dark red/brown crude oil. The oil was purified by flash chromatography (5 inch column, ~ 5 inch height of silica, dry loaded) eluting $0 \rightarrow 20 \%$ EtOAc in hexanes (1.5 L hexanes then 5% increments, 1 L each) to yield TBS protected
cyclopentene S1 as a non-viscous, light yellow oil ($85.34 \mathrm{~g}, 401.9 \mathrm{mmol}, 78 \%$ yield). Spectral data matched that previously reported. ${ }^{7}$

4-((tert-butyldimethylsilyl)oxy)-2-iodocyclopent-2-en-1-one (12): α-lodo enone 12 was synthesized by scaling-up the method previously reported by Yang and co-workers. ${ }^{8}$ Purification by flash chromatography ($0 \rightarrow 20 \% \mathrm{Et}_{2} \mathrm{O}$ in hexanes) provided α-iodo enone 12 as a light yellow waxy solid. Spectral data matched that previously reported. ${ }^{8}$

4-((tert-butyldimethylsilyl)oxy)-2-(1-ethoxyvinyl)cyclopent-2-en-1-one (14): Vinyl iodide 12 (18.17 g, $53.71 \mathrm{mmol}, 1.0$ equiv), as a waxy solid, was weighed into an oven-dried, 1 L three-necked, roundbottomed flask. The flask was then equipped with a reflux condenser and the entire apparatus was evacuated and refilled with $N_{2}(3 x)$ and was maintained under a positive pressure of N_{2}. The solid was dissolved in THF (212 mL) prior to the addition of $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(1.22 \mathrm{~g}, 1.33 \mathrm{mmol}, 2.5 \mathrm{~mol} \%)$, $\mathrm{AsPh}_{3}(0.815 \mathrm{~g}$, $2.66 \mathrm{mmol}, 5.0 \mathrm{~mol} \%$) and CuTC ($0.507 \mathrm{~g}, 2.66 \mathrm{mmol}, 5.0 \mathrm{~mol} \%$) sequentially. Ethoxy vinyl tin 13 ($18.5 \mathrm{~mL}, 55.3 \mathrm{mmol}, 1.03$ equiv) was then added over ca. 1 min via plastic syringe. The reaction mixture was then heated to reflux $\left(65^{\circ} \mathrm{C}\right)$ and stirred. Upon full consumption of iodide 12, as judged by TLC (typically 12 h), the dark red mixture was filtered through a pad of celite, washing with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(\sim 20 \mathrm{~mL})$ and the solvent was removed by rotary evaporation. The viscous oil was purified by flash chromatography ($0 \rightarrow 10 \% \mathrm{Et}_{2} \mathrm{O}$ in hexanes) to yield a light-yellow oil ($12.99 \mathrm{~g}, 45.99 \mathrm{mmol}, 86 \%$): Note: the cross coupling was performed on up to 50 g scale, but isolated yields were inconsistent on larger scales. TLC (1:19 EtOAc:hexanes) $\mathrm{R}_{\mathrm{f}}=0.46$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.11-0.15(\mathrm{~m}, 6 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 1.36(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}$, $3 \mathrm{H}), 2.39(\mathrm{dd}, J=18.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.84(\mathrm{dd}, J=18.2,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.39-4.42(\mathrm{~m}$, $1 \mathrm{H}), 4.89(\mathrm{app} \mathrm{dt}, J=5.3,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.38(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (150 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-4.5,-4.6,14.5,18.3,25.9$ (3), 47.2, 62.4, 67.8, 89.2, 139.3, 151.6, 157.5, 202.5;FT-IR (thin film): $2956(\mathrm{~m}), 2930(\mathrm{~m}), 2858(\mathrm{~m}), 1720(\mathrm{~s}) \mathrm{cm}^{-1}$; HRMS (ESI) m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{27} \mathrm{O}_{3} \mathrm{Si}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 283.1724; found 283.1725 .

4-((tert-butyldimethylsilyl)oxy)-2-(1-ethoxyvinyl)-1-methylcyclopent-2-en-1-ol (S2): A 1-L roundbottomed flask containing enone 14 ($40.34 \mathrm{~g}, 142.8 \mathrm{mmol}, 1.0$ equiv) was equipped with a septum and was evacuated and filled with $\mathrm{N}_{2}(3 x)$ using an 18G needle. The flask was then maintained under a positive pressure of N_{2}. The light-yellow oil was then dissolved in THF (480 mL) and cooled to $-78^{\circ} \mathrm{C}$ (dry
ice:acetone bath). MeLi (3.1 M in diethoxymethane, $50.7 \mathrm{~mL}, 157 \mathrm{mmol}, 1.1$ equiv) was then added dropwise over 30 min via syringe pump. After complete addition, the reaction was stirred at $-78^{\circ} \mathrm{C}$ until starting enone was consumed as judged by TLC (typically 2.5 h). The $-78^{\circ} \mathrm{C}$ stirred solution was quenched by slow addition of $\mathrm{DI} \mathrm{H}_{2} \mathrm{O}(200 \mathrm{~mL})$. The biphasic mixture was then allowed to warm to $23^{\circ} \mathrm{C}$ by removing the dry ice acetone bath. Satd. aq. $\mathrm{NH}_{4} \mathrm{Cl}(550 \mathrm{~mL})$ was then added and the bulk of the THF was removed by rotary evaporation. The resulting solution was transferred to a separatory funnel, rinsing with EtOAc $(\sim 200 \mathrm{~mL})$. The biphasic mixture was shaken vigorously, and the layers were separated. The aq. layer was extracted with EtOAc ($3 \times 100 \mathrm{~mL}$). The combined organic layers were washed with brine ($\sim 200 \mathrm{~mL}$) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and the solvent was removed in vacuo to yield a red/orange viscous oil. The oil was purified by MPLC (330 g silica, eluting $0 \rightarrow 60 \%$ EtOAc in hexanes) to yield tertiary alcohol S2 as a clear, light yellow oil (18.88 g , $63.25 \mathrm{mmol}, 44 \%,>19: 1 \mathrm{dr}$): TLC ($1: 9 \mathrm{EtOAc}$:hexanes) $\mathrm{R}_{\mathrm{f}}=0.24$; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.08,0.09$ (overlapping s, 6 H), $0.89(\mathrm{~s}, 9 \mathrm{H}), 1.35(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}), 1.92$ (dd, $J=13.0,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.41-2.44(\mathrm{~m}, 1 \mathrm{H}), 2.46(\mathrm{dd}, J=13.0,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{app} \mathrm{qd}, J=7.0,4.7 \mathrm{~Hz}$, $2 \mathrm{H}), 4.21(\mathrm{~d}, J=2.23 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{ddd}, J=7.3,5.5,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.00(\mathrm{~d}$, $J=2.1 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta-4.52,-4.50,14.6,18.3,26.0(3), 27.4,53.2,62.8,72.6,80.9$, 86.0, 132.2, 145.4, 155.3;FT-IR (ATR): 3424 ($\mathrm{w}-\mathrm{m}$), 2930 (m), 1637 (w), 1587 (m) cm ${ }^{-1}$; HRMS (ESI) m / z cald for $\mathrm{C}_{16} \mathrm{H}_{31} \mathrm{O}_{3} \mathrm{Si}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 299.2037; found 299.2035.

5-(1-ethoxyvinyl)-1-methylcyclopent-4-ene-1,3-diol (9): A 500 mL round-bottomed flask containing S2 (18.88 g , $63.3 \mathrm{mmol}, 1.0$ equiv) was equipped with a septum and evacuated and refilled with N_{2} (3 x) using an 18 G needle. The flask was then maintained under a positive pressure of N_{2}. The light-yellow oil was then dissolved in THF (320 mL) and cooled to $0^{\circ} \mathrm{C}$ (ice water bath). TBAF (1.0 M in THF, $70 \mathrm{~mL}, 70 \mathrm{mmol}$, 1.1 equiv) was then added over ca. 10 min . The ice bath was then removed, and the reaction was allowed to warm to ambient temperature $\left(23^{\circ} \mathrm{C}\right)$ and was stirred until complete consumption of S2, as judged by TLC (typically $2.5-4 \mathrm{~h}$). The solvent was then removed in vacuo to yield a viscous dark red oil. The oil was then run through a silica plug (4-in diameter, 4-in tall) eluting with 60\% EtOAc in hexanes (1 L), 80\% EtOAc in hexanes (1 L), and EtOAc until all product was eluted (judging by TLC). After evaporation of solvent, the resulting light-yellow fibrous/needle crystals were dissolved in minimal hot EtOAc and cooling to ambient temperature open to air provided colorless needles ($8.75 \mathrm{~g}, 47.5 \mathrm{mmol}, 75 \%$) after collection of 3 crops of crystals: TLC (1:1 EtOAc:hexanes) $\mathrm{R}_{\mathrm{f}}=0.18 ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.36(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.44$ (s, 3H), 1.82, (d, J=8.4 Hz, 1H, -OH detd. by $\mathrm{D}_{2} \mathrm{O}$ exchange), 1.93 (dd, $J=13.7,4.3 \mathrm{~Hz}, 1 \mathrm{H}$), 2.48 (ddd, $J=13.7,7.0,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.68\left(\mathrm{~s}, 1 \mathrm{H},-\mathrm{OH}\right.$ detd. by $\mathrm{D}_{2} \mathrm{O}$ exchange), 3.82 (app qd, $J=7.0,2.5 \mathrm{~Hz}, 2 \mathrm{H}$), $4.22(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.60-4.64(\mathrm{~m}, 2 \mathrm{H}), 6.09(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 14.6, 27.5, 51.8, 63.0, 72.8, 81.1, 86.2, 131.8, 146.6, 155.7;FT-IR (ATR): 3239 (m), 3922 (m), 1660 (m) cm ${ }^{-1}$; HRMS (ESI) m / z calcd for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{3} \mathrm{Na}^{+}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 207.0992; found 207.0993.

4-methyl-2a,2a1,3,6,7,7a-hexahydroindeno[1,7-bc]furan-1,5-dione (15): Diene diol 9 (100.0 mg, $0.5430 \mathrm{mmol}, 1.0$ equiv) was weighed into an oven dried (or flame dried) 10 mL round-bottomed flask. Solid (\pm)-BTM ($68.0 \mathrm{mg}, 0.271 \mathrm{mmol}, 0.5$ equiv) was then added. The flask was then equipped with a septum and was evacuated and refilled with $\mathrm{N}_{2}(3 x)$ using an 18 G needle. The flask was then maintained under a positive pressure of N_{2}. The solids were then dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.7 \mathrm{~mL})$ and DIPEA $(0.28 \mathrm{~mL}$, 1.6 mmol , 3.0 equiv) was added. A freshly prepared 1.2 M solution of acryloyl chloride ($66 \mu \mathrm{~L}, 0.82 \mathrm{mmol}, 1.5$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.66 \mathrm{~mL})$ at $23^{\circ} \mathrm{C}$ was then added over 8 h via a plastic syringe fitted onto a syringe pump. After stirring for $12 \mathrm{~h}, 1 \mathrm{M}$ aq. $\mathrm{HCl}(5.0 \mathrm{~mL})$ was added over ca. 30 s at ambient temperature $\left(23^{\circ} \mathrm{C}\right)$. The mixture was then stirred for 30 min . The biphasic mixture was then transferred to a separatory funnel with the aid of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(\sim 5 \mathrm{~mL})$ and the layers were separated. The aq. layer was then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{x} \sim 5 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and the solvent was removed in vacuo to yield a dark orange sticky solid. The material was then purified by MPLC (4 g silica gold, dry loaded) eluting $0 \rightarrow 75 \%$ EtOAc in hexanes to afford tricyclic enone 15 as a light yellow oil which upon successive azeotropic removal of EtOAc with $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexanes became a light yellow solid ($66.6 \mathrm{mg}, 0.346 \mathrm{mmol}, 64 \%$): TLC (1:1 EtOAc:hexanes) $\mathrm{R}_{\mathrm{f}}=0.25$; mp $61-64{ }^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ hexanes, diffusion method); ${ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): ~ \delta 1.84-1.92(\mathrm{~m}, 1 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H}), 2.28-2.35(\mathrm{~m}, 1 \mathrm{H}), 2.36-2.45(\mathrm{~m}, 2 \mathrm{H}), 2.72(\mathrm{~d}, \mathrm{~J}=19.4 \mathrm{~Hz}, 1 \mathrm{H})$, 2.95 (ddt, $J=19.4,5.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.13-3.19(\mathrm{~m}, 1 \mathrm{H}), 3.69-3.74(\mathrm{~m}, 1 \mathrm{H}), 5.02(\mathrm{app} t, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz, CDCl_{3}): $\delta 15.8,22.1,38.4,39.0,46.1,48.8,80.5,129.6,151.8,178.5,198.9 ;$ FT-IR (ATR): 2944 (w), 1759 (s), 1679 (s), 1626 (s) cm^{-1}; HRMS (ESI) m / z calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{3} \mathrm{Na}^{+}\left([\mathrm{M}+\mathrm{Na}]^{+}\right.$): 215.0679; found 215.0678 .

9
8
5-ethoxy-6-hydroxy-6-methyl-2a1,3,4,6,7,7a-hexahydroindeno[1,7-bc]furan-2(2aH)-one (8): Diene diol $9(1.50 \mathrm{~g}, 8.14 \mathrm{mmol}, 1.0$ equiv) was weighed into an oven dried (or flame dried under vacuum) 200 mL round-bottomed flask. Solid (\pm)-BTM ($1.03 \mathrm{~g}, 4.07 \mathrm{mmol}, 0.5$ equiv) was then added. The flask was equipped with a septum and was evacuated and refilled with $N_{2}(3 x)$ using an $18 G$ needle. The flask was then maintained under a positive pressure of N_{2}. The colorless solids were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(65 \mathrm{~mL})$ and DIPEA ($4.25 \mathrm{~mL}, 24.4 \mathrm{mmol}, 3.0$ equiv) was added, prior to the addition of a freshly prepared 0.81 M solution of acryloyl chloride ($1.0 \mathrm{~mL}, 12 \mathrm{mmol}, 1.5$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15.0 \mathrm{~mL})$ at $23^{\circ} \mathrm{C}$ over 8 h using a plastic syringe fitted to a syringe pump. After stirring for 12 h the red solution was treated with satd. aq. $\mathrm{NaHCO}_{3}(\sim 30 \mathrm{~mL})$ and was stirred for $\sim 5 \mathrm{~min}$. The biphasic mixture was then transferred to a separatory funnel, rinsing with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(\sim 10 \mathrm{~mL})$ to ensure quantitative transfer. The aq. layer was then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{x} \sim 30 \mathrm{~mL})$. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and the solvent was removed in vacuo to yield a dark red sticky oil. The material was then purified by MPLC (80 g silica, dry loaded) eluting $0 \rightarrow 100 \% \mathrm{Et}_{2} \mathrm{O}$ in hexanes over 25 min , followed by an additional 10 min held at $100 \% \mathrm{Et}_{2} \mathrm{O}$ to give a light yellow viscous oil. Trace DIPEA was extremely detrimental to the following
reaction thus the material was then taken up in equal portions of MeCN and $\mathrm{H}_{2} \mathrm{O}$ and was lyophilized to yield the desired enol ether 8 as a fluffy light yellow solid ($1.50 \mathrm{~g}, 6.30 \mathrm{mmol}, 77 \%$ yield):

Note: For reproducible yields, a new bottle of acryloyl chloride stored under argon gave optimal and reproducible yields of the enol ether 8 avoiding subsequent elimination leading to enone 15.

TLC (1:1 EtOAc:hexanes, PAA stain) $\left.\mathrm{R}_{\mathrm{f}}=0.20 ;{ }^{1} \mathrm{H} \mathrm{NMR} \mathrm{(600} \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.27(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.44$ (s, 3H), 1.91-1.99 (m, 1H), 2.12 (dd, $J=15.6,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.16-2.22(\mathrm{~m}, 1 \mathrm{H}), 2.27-2.35(\mathrm{~m}, 3 \mathrm{H}), 2.96$ (ddd, $J=6.5,5.5,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.12$ (ddt, $J=7.1,4.9,2.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.82-3.91 (m, 2H), $4.53(\mathrm{~s}, 1 \mathrm{H}), 4.74$ (ddd, $J=5.6,4.6,1.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 15.4,20.3,21.1,30.4,39.4,43.8,46.6,63.5,79.6$, 81.4, 121.4, 148.6, 177.5;FT-IR (ATR): 3514 (w), 2962 (w), 1754 (m-s), 1147 (s), 1605 (s) cm²; HRMS (ESI) m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{4} \mathrm{Na}^{+}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 261.1097$; found 261.1103.

5a-bromo-5-ethoxy-6-hydroxy-6-methyl-2a1,3,5a,6,7,7a-hexahydroindeno[1,7-bc]furan-2(2aH)-one

 (16): A $50-\mathrm{mL}$ round-bottomed flask containing enol ether 8 ($2.16 \mathrm{~g}, 9.06 \mathrm{mmol}, 1.0$ equiv) was equipped with a rubber septum and was evacuated and refilled with $\mathrm{N}_{2}(3 x)$ using an 18G needle. The flask was then maintained under a positive pressure of N_{2}. The solid was then dissolved in THF (90 mL) and was cooled to $0^{\circ} \mathrm{C}$ using an ice water bath. The septum was then removed and solid NBS ($1.61 \mathrm{~g}, 9.06 \mathrm{mmol}, 1.0$ equiv) was added in a single portion and the septum was quickly replaced. The flask was then covered with aluminum foil (to shield reaction vessel from light) and the reaction was stirred at $0^{\circ} \mathrm{C}$. Upon full consumption of enol ether 8, as judged by TLC (typically 1 h), the reaction was treated with satd. aq. $\mathrm{NaHCO}_{3}(90 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. A colorless precipitate immediately formed, and the precipitate was removed by filtration through celite. The filtrate was then transferred to a separatory funnel, rinsing with $\mathrm{Et}_{2} \mathrm{O}(\sim 10 \mathrm{~mL})$. The biphasic mixture was then extracted with $\mathrm{Et}_{2} \mathrm{O}(3 x \sim 50 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4}, filtered, and the solvent was removed in vacuo to yield a light yellow solid. The solid was purified by MPLC (24 g silica, dry loaded) eluting $0 \rightarrow 70 \%$ EtOAc in hexanes to yield allylic bromide 16 mixed with epoxide 21 as an inseparable mixture and as a colorless crystalline solid (2.44 g total, 7.08 mmol desired product, 78% yield of $\mathbf{1 6}, 0.818 \mathrm{mmol}, 9 \%$ yield of 21). Note: mmol and yield determined based on ratio of signal integration in the ${ }^{1} H$ NMR of the two compounds. Formation of epoxide 21 is not always noted but is typically more prevalent on reactions larger than 1 g scale. The epoxide was not detrimental to the subsequent reaction and can be separated at that point. Characterization data for the desired allylic bromide 16: TLC ($\left.\mathrm{Et}_{2} \mathrm{O}\right) \mathrm{R}_{\mathrm{f}}=0.38 ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.35(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H}), 2.02(\mathrm{~s}, 1 \mathrm{H})$, $2.33(d, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.42$ (ddd, $J=14.8,5.1,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.58$ (ddd, $J=18.0,8.2,2.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.73 (dd, $J=18.0,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.89(\mathrm{app} t, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{dq}, J=8.9,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{dq}, J=9.6$, $7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{dd}, J=10.9,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.99(\mathrm{dd}, J=5.9,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{app} \mathrm{t}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz, CDCl_{3}): $\delta 14.5,21.9,27.5,37.9,43.2,55.2,63.4,69.7,81.5,84.3,98.9,151.7,177.5 ; \mathrm{FT}-$ IR (ATR): 3489 (w), 2971 (w), 1764 (s), 1665 (m), 1150 (s) cm^{-1}; HRMS (ESI) m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{O}_{4} \mathrm{BrNa}^{+}$ ([M + Na] $\left.{ }^{+}\right): 339.0202$, 341.0182; found 339.0203, 341.0182.
7-ethoxy-1a-methyl-1a,2,2a,2a1,4a,5-hexahydro-4H-oxireno[2',3':3,3a]indeno[1,7-bc]furan-4-one

(21): A sample of epoxide 21 (devoid of the co-eluting allylic bromide 16 as described above) was prepared for characterization by removing an aliquot from a transposition reaction described above. The aliquot was treated with satd. aq. NaHCO_{3} (to induce further cyclization to the epoxide) and was stirred at $23^{\circ} \mathrm{C}$ for 2 hours prior to filtering the colorless precipitate through a cotton plug. The resulting biphasic mixture was transferred to a separatory funnel and was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 x)$. The combined organic layers were dried over MgSO_{4}, filtered, and the solvent was removed in vacuo to yield a colorless crystalline solid. The solid was then purified by flash chromatography eluting $0 \rightarrow 100 \% \mathrm{Et}_{2} \mathrm{O}$ in hexanes to yield epoxide 21 as
colorless flaky or plate like crystals; TLC (Et $2 \mathrm{O}, \mathrm{PAA}$ stain) $\mathrm{R}_{\mathrm{f}}=0.38 ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.28(\mathrm{t}$, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}$), $1.65(\mathrm{~s}, 3 \mathrm{H}), 2.08(\mathrm{dd}, J=15.6,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.47(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.70$ (ddd, $J=17.6$, $9.9,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.79(\mathrm{dt}, J=17.6,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.92-2.99(\mathrm{~m}, 2 \mathrm{H}), 3.71-3.76(\mathrm{~m}, 2 \mathrm{H})$, 4.75 (app t, $J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.82(\mathrm{dd}, J=6.0,2.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 14.4,16.2,22.8,35.3,40.4$, 46.0, 62.8, 67.9, 73.1, 78.4, 99.4, 151.7, 179.2;FT-IR (thin film): 2976 (w), 2930 (w), 1769 (s), 1642 (w$\mathrm{m}) \mathrm{cm}^{-1}$; HRMS (ESI) m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{4} \mathrm{Na}^{+}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 259.0941$; found 259.0942.

5a-bromo-5-ethoxy-6-methyl-6-((triethylsilyl)oxy)-2a1,3,5a,6,7,7a-hexahydroindeno[1,7-bc]furan2(2 aH)-one (17): A $250-\mathrm{mL}$ round-bottomed flask containing tertiary alcohol 16 (2.44 g total, 7.08 mmol , 1.0 equiv of 16, containing 0.818 mmol of 21 (by ${ }^{1} \mathrm{H} N M R$), see previous reaction for details) was equipped with a septum and evacuated and refilled with $\mathrm{N}_{2}(3 x)$ using an 18G needle. The flask was then maintained under a positive pressure of N_{2}. The solid was then dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(77 \mathrm{~mL})$ and the resulting clear colorless solution was cooled to $-78^{\circ} \mathrm{C}$ (dry ice acetone bath). 2,6-Lutidine ($4.49 \mathrm{~mL}, 38.3 \mathrm{mmol}, 5.4$ equiv) was then added followed by the dropwise addition of TESOTf ($3.5 \mathrm{~mL}, 15 \mathrm{mmol}, 2.2$ equiv) over ca. 1 min using a plastic syringe. After complete addition, the reaction was stirred at $-78{ }^{\circ} \mathrm{C}$ for 10 min prior to replacing the $-78^{\circ} \mathrm{C}$ bath with a $0^{\circ} \mathrm{C}$ bath (ice water). After complete consumption of alcohol 16 as judged by TLC (typically 2 h), the reaction mixture was treated with satd. aq. $\mathrm{NaHCO}_{3}(\sim 60 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The biphasic mixture was then transferred to a separatory funnel, rinsing with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(\sim 10 \mathrm{~mL})$. After vigorous shaking the layers were separated. The aq. layer was then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 x \sim 30 \mathrm{~mL})$. The combined organic layers were then washed with $1 \mathrm{M} \mathrm{aq} .\mathrm{HCl}(20 \mathrm{~mL})$ and then washed with satd. aq. $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$. The combined organic layers were then washed with brine, dried over $\mathrm{Mg}_{2} \mathrm{SO}_{4}$, filtered, and the solvent was removed in vacuo to yield a light-yellow oil. The material was purified by silica gel flash chromatography (1.5 -inch column, ~ 7 inches silica, wet loaded in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) eluting $0 \rightarrow 20 \% \mathrm{Et}_{2} \mathrm{O}$ in hexanes (5% increments, 250 mL each) to yield the title compound as a colorless waxy solid ($2.47 \mathrm{~g}, 5.73 \mathrm{mmol}$, 81% yield based on calculated amount of tertiary alcohol 16) (Note: the product is weakly UV active, therefore many product-containing fractions will be missed if PAA stain is not used). TLC (Et 2 O , UV active/PAA stain) $\mathrm{R}_{\mathrm{f}}=0.71 ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.59(\mathrm{q}, J=8.0 \mathrm{~Hz}, 6 \mathrm{H}), 0.94(\mathrm{t}, J=8.0 \mathrm{~Hz}, 9 \mathrm{H})$, $1.32(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.55(\mathrm{~s}, 3 \mathrm{H}), 2.03(\mathrm{dd}, J=15.1,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{ddd}, J=17.1,4.3,2.1 \mathrm{~Hz}, 1 \mathrm{H})$, 2.49 (ddd, $J=17.0,6.1,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.75-2.82(\mathrm{~m}, 2 \mathrm{H}), 3.19(\mathrm{app} \mathrm{dt}, J=5.1,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.76-3.83(\mathrm{~m}$, $2 \mathrm{H}), 4.81$ (ddd, $J=9.2,6.3,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.93(\mathrm{dd}, J=6.1,2.1 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 4.8$ (3), 6.9 (3), 14.5, 21.2, 29.5, 41.3, 47.2, 54.4, 63.5, 69.8, 70.5, 92.8, 97.8, 150.3, 173.2;FT-IR (thin film): 2954 (m), 1749 (s), 1648 (w-m) cmr. ; HRMS (ESI) m/z cald for $\mathrm{C}_{19} \mathrm{H}_{31} \mathrm{O}_{4} \mathrm{BrNa}^{+}\left([\mathrm{M}+\mathrm{Na}]^{+}\right):$453.1067, 455.1047; found 453.1070, 455.1048.

5-ethoxy-6-hydroxy-6-methyl-2a1,3,5a,6,7,7a-hexahydroindeno[1,7-bc]furan-2(2aH)-one (19): To a $250-\mathrm{mL}$ round-bottomed flask containing allylic bromide 17 ($2.46 \mathrm{~g}, 5.70 \mathrm{mmol}, 1.0$ equiv) was added AIBN ($187 \mathrm{mg}, 1.14 \mathrm{mmol}, 0.2$ equiv). The round-bottomed flask was fitted with a reflux condenser and the entire apparatus was evacuated and refilled with $\mathrm{N}_{2}(3 \mathrm{x})$ and was subsequently maintained under a positive
pressure of N_{2}. The mixture was dissolved in $\mathrm{PhMe}(57 \mathrm{~mL})$ and the reflux condenser was removed, $\mathrm{Bu}_{3} \mathrm{SnH}$ ($1.7 \mathrm{~mL}, 6.3 \mathrm{mmol}, 1.1$ equiv) was added over ca. 20 s and the condenser was quickly refitted to the round-bottomed flask. The clear colorless solution was heated to $85^{\circ} \mathrm{C}$ and was stirred at that temperature until full consumption of allylic bromide 17 (as determined by TLC, typically 1-2 h). The solvent was then removed in vacuo to yield a viscous, clear, colorless oil. The oil which contained some trace tin by-products was utilized without further purification in the subsequent deprotection reaction.

When using enol ether 18 for attempted cyclopropanation reactions, purification was completed by MPLC (wet loaded using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) eluting $0 \rightarrow 60 \% \mathrm{Et}_{2} \mathrm{O}$ in hexanes to yield debrominated silylether 18 as a clear colorless oil. Characterization data for purified debrominated silylether 18: TLC ($30 \% \mathrm{Et}_{2} \mathrm{O}$ in hexanes, PAA stain) $\mathrm{R}_{\mathrm{f}}=0.35 ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.56(\mathrm{q}, J=8.0 \mathrm{~Hz}, 6 \mathrm{H}), 0.93(\mathrm{t}, J=8.0 \mathrm{~Hz}, 9 \mathrm{H}), 1.27(\mathrm{t}$, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}), 2.00(\mathrm{dd}, J=14.9,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.15(\mathrm{dd}, J=14.9,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.24$ (d, $J=5.1 \mathrm{~Hz}, 1 \mathrm{H}$), 2.36 (dd, $J=16.8,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.43$ (ddd, $J=7.0,5.5,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.47$ (ddd, $J=17.0$, $5.5,2.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.07 (bs, 1H), 3.64-3.78 (m, 2H), 4.48 (ddd, $J=9.3,6.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.74$ (dd, $J=5.6$, 2.0 Hz, 1H); ${ }^{13} \mathrm{C}$ NMR (150 MHz, CDCl_{3}): $\delta 4.7,6.7,14.6,22.4,29.4,29.4,37.0,44.0,46.7,49.0,62.4$, 70.0, 88.8, 94.8, 151.3, 174.6;FT-IR (thin film): 2956 (m-s), 2877 (m), 1739 (s), 1662 (w) cm^{-1}; HRMS (ESI) m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{32} \mathrm{O}_{4} \mathrm{SiNa}^{+}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 375.1962; found 375.1964.

The round-bottomed flask containing enol ether 18 as a crude oil was equipped with a septum and was evacuated and refilled with $\mathrm{N}_{2}(3 x)$ using an 18G needle. The flask was then maintained under a positive pressure of N_{2}. The oil was then dissolved in THF (57 mL) and the resulting clear colorless solution was cooled to $0^{\circ} \mathrm{C}$ (ice water bath) prior to adding TBAF (1 M in THF, $14.3 \mathrm{~mL}, 14.3 \mathrm{mmol}, 2.5$ equiv) over ca. 45 s (Note: when using crude 18, tin-containing byproducts which remained from the previous reaction made it necessary to use an excess of TBAF to achieve full conversion to 19). The reaction was stirred at $0^{\circ} \mathrm{C}$ for 5 min , after which the $0^{\circ} \mathrm{C}$ bath was removed allowing the reaction to warm to ambient temperature $\left(23^{\circ} \mathrm{C}\right)$. After TES protected alcohol 19 was fully consumed (as judged by TLC, typically 2-3 h) the solvent was removed in vacuo to yield a light brown viscous oil. The material was then purified by flash chromatography (1.5 inch column, ~ 7 inches of silica, wet loaded with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) eluting $0 \rightarrow 60 \% \mathrm{EtOAc}$ in hexanes (10% increments, 250 mL each) to yield tertiary alcohol 19 as a colorless powder (1.222 g , $5.128 \mathrm{mmol}, 90 \%$ yield over 2 steps); TLC (EtOAc, PAA stain) $\mathrm{R}_{\mathrm{f}}=0.53 ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.29$ (t, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}), 1.51\left(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{OH}\right.$ detd. by $\mathrm{D}_{2} \mathrm{O}$ exchange), 1.83 (ddd, $J=14.9$, $5.1,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{~d}, J=14.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.45-2.54(\mathrm{~m}, 2 \mathrm{H}), 2.70(\mathrm{ddd}, J=18.3,4.4,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.86$ (ddd, $J=10.9,9.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.2(\mathrm{td}, J=10.5,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.69-3.79(\mathrm{~m}, 2 \mathrm{H}), 4.82(\mathrm{app} \mathrm{t}, J=4.0 \mathrm{~Hz}$, $1 \mathrm{H}), 5.00(\mathrm{dd}, \mathrm{J}=6.4,5.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 14.8,22.6,28.3,36.3,41.5,46.3,48.9$, 62.2, 80.1, 83.0, 94.8, 151.3, 178.9; FT-IR (ATR): 3428 (w-m), 2871 (w), 1748 (m-s) 1673 (m) cm ${ }^{-1}$; HRMS (ESI) m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{4} \mathrm{Na}^{+}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 261.1097$; found 261.1098.

6a-ethoxy-1-hydroxy-1-methyldecahydro-4H-cyclopropa[4,5]indeno[1,7-bc]furan-4-one (20): Enol ether 19 ($26.9 \mathrm{mg}, 0.113 \mathrm{mmol}, 1.0$ equiv) as a colorless solid was weighed into a flame-dried 1.5 dram vial. The vial was equipped with a septum and then evacuated and refilled with N_{2} (3x) through an 18G needle. The reaction was maintained under a positive pressure of N_{2}. The enol ether 19 was dissolved in $\mathrm{Et}_{2} \mathrm{O}(0.84 \mathrm{~mL})$ and the solution was cooled to $0^{\circ} \mathrm{C} . \mathrm{ZnEt} 2(1 \mathrm{M}$ in hexanes, $0.84 \mathrm{~mL}, 0.84 \mathrm{mmol}, 10$ equiv) was then added dropwise over ca. 1 min . The reaction was then stirred at $0^{\circ} \mathrm{C}$ for 5 min prior to the addition of $\mathrm{CH}_{2} \mathrm{l}_{2}(64 \mu \mathrm{~L}, 0.78 \mathrm{mmol}, 9.5$ equiv). The reaction was then allowed to warm to ambient temperature (23 ${ }^{\circ} \mathrm{C}$) over 1 h , after which the vial was sealed and heated to $40^{\circ} \mathrm{C}$ (Note: heating a reaction in a sealed container is dangerous and can lead to an explosion. A blast shield should be employed in addition to your hood sash for protection). After full consumption of starting enol ether 19, as determined by TLC ($\sim 5 \mathrm{~h}$), the
reaction was cooled to $0^{\circ} \mathrm{C}$. While the reaction mixture was stirring vigorously, $1 \mathrm{M} \mathrm{aq} . \mathrm{HCl}(\sim 1-2 \mathrm{~mL})$ was added slowly until all colorless precipitate had dissolved (Note: Add aq. HCl slowly, if ZnEt2 is still present in solution the reaction will bubble over the top of the reaction flask). The reaction mixture was then transferred to a separatory funnel with $\mathrm{Et}_{2} \mathrm{O}(\sim 2 \mathrm{~mL})$ to ensure quantitative transfer. The layers were separated, and the aq. layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{x} \sim 3 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4}, filtered, and the solvent was removed in vacuo to yield a light-yellow solid. The solid was then purified by flash chromatography (Monstr-Pette (Kimble p1005, 10 mm O.D.) pipette column, wet loaded with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) eluting $0 \rightarrow 40 \%$ EtOAc in hexanes (5% increments, 2 mL each), then $45 \rightarrow 70 \%$ EtOAc in hexanes (5% increments, 4 mL each) to yield the product as a colorless crystalline solid ($10.7 \mathrm{mg}, 0.0421$ $\mathrm{mmol}, 38 \%$ yield) (Note: reaction yields ranged from 35 to 69% and were highly dependent on $\mathrm{CH}_{2} \mathrm{l}_{2}$ purity; $\sim 40 \%$ was a typical yield): TLC (5:1 EtOAc:hexanes, PAA stain) $\mathrm{R}_{\mathrm{f}}=0.35 ; \mathrm{mp} 118-121^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ hexanes, diffusion method); ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.71$ (app t, $J=6.5 \mathrm{~Hz}, 1 \mathrm{H}$), 0.98 (ddd, $J=10.5,7.4$, $1.7 \mathrm{~Hz}, 1 \mathrm{H}$), $1.14(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}$), 1.23 (ddt, $J=9.4,6.0,3.2 \mathrm{~Hz}, 1 \mathrm{H}$), 1.33 (s, 3H), 2.12 (ddd, $J=14.5$, $7.5,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.18(\mathrm{dd}, 14.1,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.28-2.35(\mathrm{~m}, 2 \mathrm{H}), 2.64-2.69(\mathrm{~m}, 2 \mathrm{H}) 3.11(\mathrm{dt}, J=12.0,9.7 \mathrm{~Hz}$, 1 H), 3.33 (dq, $J=8.8,7.1 \mathrm{~Hz}, 1 \mathrm{H}$), 3.65 (dq, $J=8.8,7.0 \mathrm{~Hz}, 1 \mathrm{H}$), 4.30 (s, 1H), 4.80 (ddd, $J=8.4,7.6$, 6.0 Hz, 1H); ${ }^{33} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 14.66,14.74,15.7,22.2,30.8,34.7,38.0,43.1,46.6,60.5,61.9$, 80.7, 81.5, 180.1;FT-IR (thin film): 3479 (w-m), 2926 (m-s), $1764(\mathrm{~s}), 1259(\mathrm{~m}) \mathrm{cm}^{-1}$; HRMS (ESI) m/z calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{4} \mathrm{Na}^{+}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 275.1254 ; found 275.1256 .

6-hydroxy-4-(iodomethyl)-6-methyloctahydroindeno[1,7-bc]furan-2,5-dione (22): To a 2 dram vial containing cyclopropane $20(16.2 \mathrm{mg}, 0.0642 \mathrm{mmol}, 1.0$ equiv), was added CAN ($79.9 \mathrm{mg}, 0.146 \mathrm{mmol}$, 2.3 equiv) and $\mathrm{NaI}(20.6 \mathrm{mg}, 0.137 \mathrm{mmol}, 2.1$ equiv) sequentially. The vial was then fitted with a septum and was evacuated and refilled with $\mathrm{N}_{2}(3 \mathrm{x})$. The solids were dissolved in $\mathrm{MeCN}(0.5 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(0.1 \mathrm{~mL})$ and the red/brown reaction mixture was stirred at ambient temperature $\left(23^{\circ} \mathrm{C}\right)$. Note: both MeCN and $\mathrm{H}_{2} \mathrm{O}$ were degassed by bubbling Ar through the solvents for 20 min prior to use. After 3 h mass spec revealed the prevalence of starting cyclopropane $\mathbf{2 0}$ (TLC difficult to interpret as product decomposes and streaks). At this point additional CAN ($81.7 \mathrm{mg}, 0.149 \mathrm{mmol}, 2.3$ equiv) was added by removing the septum, adding solid CAN and then quickly refitting the septum on the vial. After 30 min , mass spec showed no starting material. DI $\mathrm{H}_{2} \mathrm{O}(\sim 2 \mathrm{~mL})$ was added to the vial and the and the orange mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(3 x \sim 2 \mathrm{~mL})$ using a pipet to remove the layer from the vial. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and the solvent was removed in vacuo to yield iodide 22 as an orange solid. Unfortunately, this compound was not stable to silica gel and therefore could not be purified to homogeneity and a yield is not provided. Data for the crude product is provided: ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.60$ (s, 3H), 1.88 (dd, $J=15.2,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.01$ (td, $J=13.6,9.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.26(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.45($ app ddt, $J=14.1,7.5$, $4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.56(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.64$ (ddd, $J=13.5,10.0,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.05(\mathrm{dd}, J=10.4,7.5 \mathrm{~Hz}, 1 \mathrm{H})$, 3.31 (dt, $J=12.2,9.9 \mathrm{~Hz}, 1 \mathrm{H}$), 3.48 (ddd, $J=12.4,9.7,7.7 \mathrm{~Hz}, 1 \mathrm{H}$), 3.57 (dd, $J=10.4,4.5 \mathrm{~Hz}, 1 \mathrm{H}$), 5.10 (dd, $J=7.6,6.1 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.7,26.9,27.8,37.6,40.8,48.0,49.8,58.5,82.4$, 82.8, 179.1, 207.4; HRMS (ESI) m/z calcd for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{IO}_{4} \mathrm{Na}^{+}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 372.9907; found 372.9908.

6-bromo-6a-ethoxy-1-hydroxy-1-methyldecahydro-4H-cyclopropa[4,5]indeno[1,7-bc]furan-4-one

(24): Enol ether 19 ($90.0 \mathrm{mg}, 0.378 \mathrm{mmol}, 1.0$ equiv) was weighed into an oven-dried 2 dram vial. The vial was equipped with a septum and was evacuated and refilled with $\mathrm{N}_{2}(3 \mathrm{x})$ using an 18G needle. The vial was then maintained under a positive pressure of N_{2}. The colorless solid was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.8 \mathrm{~mL})$ and the resulting homogenous, colorless solution was cooled to $0^{\circ} \mathrm{C}$ before adding ZnEt_{2} (1 M in hexanes, $0.94 \mathrm{~mL}, 0.94 \mathrm{mmol}, 2.5$ equiv) dropwise over ca. 2 min (white vapor forms in the headspace above the reaction mixture as ZnEt_{2} is added). After complete addition, the reaction was stirred at $0^{\circ} \mathrm{C}$ for ca .5 min prior to warming the reaction to ambient temperature $\left(23^{\circ} \mathrm{C}\right)$ by removing the ice bath. The reaction was then stirred at $23^{\circ} \mathrm{C}$ for 30 min (Note: this premixing time is absolutely essential to the success of the reaction; failure to premix the ZnEt_{2} and the tertiary alcohol for 30 min will result in increased side reactions and low yields of cyclopropane 24). After stirring for 30 min at $23^{\circ} \mathrm{C}, \mathrm{CHBr}_{3}(66 \mu \mathrm{~L}, 0.76 \mathrm{mmol}, 2.0$ equiv) was added dropwise over ca. 1 min at the same temperature and the N_{2} inlet was replaced with an O_{2} balloon through a 18 G needle (Note: the headspace was NOT purged, O_{2} was allowed to passively diffuse into the existing N_{2} atmosphere. A white cloud forms directly above the reaction mixture and remains until the reaction is complete). Stirring was continued with the attached O_{2} balloon at $23^{\circ} \mathrm{C}$ for 2 h (Note: the reaction now contained a colorless precipitate) at which time the reaction was quenched by slow addition of satd. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ solution (enough to dissolve all precipitate upon vigorous stirring). The biphasic mixture was then transferred to a separatory funnel, rinsing with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(\sim 5 \mathrm{~mL})$ and the layers were separated. If solid persisted, additional satd. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ solution was added accordingly. The aq. layer was then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 x \sim 6 \mathrm{~mL})$ and the combined organic layers were dried over MgSO_{4} and filtered. The solvent was removed in vacuo to yield a colorless solid which was purified by MPLC (4 g silica gold, dry loaded) eluting $0 \rightarrow 75 \%$ EtOAc in hexanes to give bromocyclopropane 24 as a colorless crystalline solid (87.6 mg , $0.265 \mathrm{mmol}, 70 \%$ yield); TLC (EtOAc, PAA stain) $\mathrm{R}_{\mathrm{f}}=0.53$; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.24(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}$, 3 H), 1.42 (ddd, $J=6.3,4.6,4.0 \mathrm{~Hz}, 1 \mathrm{H}$), 1.45 (s, 3H), 2.10-2.17 (m, 3H), 2.26 (ddd, $J=15.0,8.8,6.3 \mathrm{~Hz}$, $1 \mathrm{H}), 2.47(\mathrm{~s}, 1 \mathrm{H}), 2.62(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.74$ (ddd, $J=11.7,8.8,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.10$ (app td, $J=11.1$, $10.9,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.22(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{dq}, J=8.8,7.0, \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{dq}, J=8.7,7.0 \mathrm{~Hz}, 1 \mathrm{H})$, 4.90 (ddd, $J=7.7,5.3,4.1 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 15.4,21.3,24.1,27.4,29.5,35.0,38.8$, 44.5, 47.5, 60.4, 63.1, 81.0, 82.0, 179.4;FT-IR (thin film): 3449 (w-m), $2974(\mathrm{w}-\mathrm{m}), 1760(\mathrm{~s}), 735(\mathrm{~m}) \mathrm{cm}^{-1}$; HRMS (ESI) m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}_{4} \mathrm{BrNa}{ }^{+}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 353.0359, 355.0338; found 353.0363, 355.0338.

The purity of bromoform is important. The presence of bromine from bromoform's decomposition leads to α-bromination/retro aldol side reaction, providing methyl ketone S3. For reproducible results, we used "Bromoform, contains 60-120 ppm 2-methyl-2-butene as stabilizer, 99\%" from Sigma-Aldrich (SKU: 241032) without further purification.

Data for methyl ketone S3: ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.33$ (t, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}$), 2.21 (s, 3H), 2.38-2.50 (m, 2H), 2.71 (dd, $J=17.4,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{dd}, J=17.4,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.10(\mathrm{app} \mathrm{td}, J=9.0,5.4 \mathrm{~Hz}, 1 \mathrm{H}$), 3.51 (app td, $J=8.0,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.70-3.78(\mathrm{~m}, 2 \mathrm{H}), 4.45(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{t}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.09$ (app q, $7.0 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 14.4,30.8,32.7,36.6,36.9,42.6,45.9,63.5,77.7,92.1$, 156.2, 177.1, 204.9;FT-IR (thin film): 2978 (w), 2933 (w), 1771 (s), 1717 (m), 1197 (m) cm ${ }^{-1}$

4-methyloctahydro-1H-4,7-epoxyazuleno[1,8-bc]furan-1,5(2aH)-dione and 4-methyl-2a1,3,8,8a-tetrahydro-1H-azuleno[1,8-bc]furan-1,5(2aH)-dione, (25 and 26): To a 1.5 -dram vial containing bromo cyclopropane 24 ($32.4 \mathrm{mg}, 0.0980 \mathrm{mmol}, 1.0$ equiv) was added AgBF_{4} ($76.0 \mathrm{mg}, 0.391 \mathrm{mmol}, 4.0$ equiv). The vial was subsequently equipped with a septum and was evacuated and refilled with $N_{2}(3 x)$ using an

18G needle. The vial was then maintained under a positive pressure of N_{2}. The solids were dissolved in $\mathrm{AcOH}(1.0 \mathrm{~mL})$ and 3 drops $\mathrm{DI} \mathrm{H}_{2} \mathrm{O}$ (from 20 G needle). The septum was replaced with a cap, the joint was sealed with Teflon tape, then parafilm and the vial was heated to $80^{\circ} \mathrm{C}$ and was stirred (Note: heating a reaction in a sealed container is dangerous and can lead to an explosion. A blast shield should be employed in addition to your hood sash for protection). After full consumption of starting cyclopropane 24 as determined by TLC (typically 1.5 h), the reaction mixture was allowed to cool to ambient temperature $\left(23^{\circ} \mathrm{C}\right.$) and was neutralized by slow addition of satd. aq. NaHCO_{3} until a pH of ~ 7 was achieved. The dark grey/black precipitate ($\mathrm{Ag}_{2} \mathrm{O}$) that had formed during the reaction was removed by filtration through celite and the filtrate was transferred to a separatory funnel, rinsing with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(\sim 3 \mathrm{~mL})$. The layers were separated, and the aq. layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{x} \sim 3 \mathrm{~mL})$. The combined organic layers were then dried over MgSO_{4}, filtered, and the solvent was removed in vacuo to yield a gray oil. The oil was purified by flash chromatography ($1 / 2$ inch column, ~ 7 inch height of silica, dry loaded) eluting $0 \rightarrow 25 \%$ EtOAc in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2.5% increments, 25 mL each) to yield pyranone 25 as a clear colorless oil ($8.1 \mathrm{mg}, 0.036 \mathrm{mmol}$, 37% yield) and cross conjugated dienone 26 as a colorless solid ($2.4 \mathrm{mg}, 0.012 \mathrm{mmol}, 12 \%$ yield);

Pyranone 25: TLC (70\% EtOAc in hexanes, PAA stain) $\mathrm{R}_{\mathrm{f}}=0.27$; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.38$ (s, 3H), 2.04-2.14 (m, 2H), 2.37 (dd, $J=15.8,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.42$ (dd, $J=17.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.61(\mathrm{~d}, J=7.1 \mathrm{~Hz}$, $1 \mathrm{H}), 2.74$ (app ddt, $J=15.2,7.4,2.3 \mathrm{~Hz}, 1 \mathrm{H}$), $2.80(\mathrm{td}, J=10.9,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.98$ (app dd, $J=17.9,4.5 \mathrm{~Hz}$, 1 H), 3.48 (dt, $J=11.2,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.58-4.62(\mathrm{~m}, 1 \mathrm{H}), 5.09$ (ddd, $J=9.3,7.6,1.9 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (150 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta .26 .8,35.4,35.9,45.8,46.6,48.9,59.5,67.5,82.0,83.0,180.2,206.1$;FT-IR (thin film): 2937 (w), 1763 (s), 1716 (m) 1214 (w-m), $1012(\mathrm{w}-\mathrm{m}) \mathrm{cm}^{-1}$; HRMS (ESI) m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{4} \mathrm{Na}^{+}([M+$ Na^{+}): 245.0784; found 245.0785 .

Dienone 26: TLC ($30 \% \mathrm{EtOAc}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) $\mathrm{R}_{\mathrm{f}}=0.66$; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.18$ (app dt, $J=2.2$, $1.3 \mathrm{~Hz}, 3 \mathrm{H}$), 2.42 (app tdd, $J=13.6,6.0,2.3 \mathrm{~Hz}, 1 \mathrm{H}$), 2.73 (ddd, $J=13.8,8.7,5.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.85 (br d, $J=20.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.99$ (ddt, $J=20.0,7.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}$), 3.21 (ddd, $J=13.3,10.4,5.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.83-3.88 (m, $1 \mathrm{H}), 5.15$ (td, $J=7.1,1.3 \mathrm{~Hz}, 1 \mathrm{H}$), 6.10 (ddd, $J=11.3,2.2,0.9 \mathrm{~Hz}, 1 \mathrm{H}$), 6.69 (ddd, $J=11.2,8.9,6.1 \mathrm{~Hz}$, 1H); ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 16.6,26.9,43.8,47.2,49.7,79.4,133.2,135.3,140.7,155.9,177.1$, 192.1;FT-IR (thin film): 2920 (m), 2851 (m), 1764 (s), 1737 (m), 1684 (m), 1603 (m) cm^{-1}; HRMS (ESI) m/z calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{3} \mathrm{Na}^{+}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 227.0679; found 227.0679.

6,7-dibromo-4-hydroxy-4-methyloctahydro-1H-azuleno[1,8-bc]furan-1,5(2aH)-dione and 4a,6,7-tribromo-4-hydroxy-4-methyloctahydro-1H-azuleno[1,8-bc]furan-1,5(2aH)-dione (28 and 29): Bromo cyclopropane 24 ($30.8 \mathrm{mg}, 0.0930 \mathrm{mmol}, 1.0$ equiv) was weighed into a Pyrex threaded culture tube. CAN ($104.5 \mathrm{mg}, 0.1906 \mathrm{mmol}, 2.0$ equiv), $\mathrm{LiBr}(11.6 \mathrm{mg}, 0.134 \mathrm{mmol}, 1.4$ equiv) and NBS ($53.7 \mathrm{mg}, 0.302 \mathrm{mmol}$, 3.2 equiv) were added to the vial as solids. The culture tube was fitted with a septum and evacuated and refilled with argon (3x) using an 18G needle. The culture tube was then maintained under a positive pressure of argon. The solids were then dissolved in MeCN (0.9 mL) and 2 drops of DI $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{G}$ needle,
 degassing the reaction does not proceed. The septum was then replaced with the tube cap and the joint was sealed with Teflon tape. The orange homogeneous reaction was then heated to $100^{\circ} \mathrm{C}$ (Note: heating a reaction in a sealed container is dangerous and can lead to an explosion. A blast shield should be employed in addition to your hood sash for protection) and stirred for 4 h . At this point, the reaction was usually a homogeneous yellow solution (see image below) at which point the reaction was cooled to ambient temperature $\left(23^{\circ} \mathrm{C}\right) . \mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was added and the vial was shaken vigorously. The organic layer was removed from the vial using a pipette. The aq. layer was then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 2 \mathrm{~mL})$ and the layers were again separated by pipette. The combined organic layers were dried over MgSO_{4},
filtered and the solvent was removed in vacuo to yield a clear, light yellow film that was purified by flash chromatography ($1 / 2$ inch column, dry loaded) eluting $0 \rightarrow 60 \%$ EtOAc in hexanes (10% increments, 50 mL each) to yield dibromo cycloheptanone 28 as a colorless crystalline solid ($4.8 \mathrm{mg}, 0.013 \mathrm{mmol}, 14 \%$ yield) and tribromo cycloheptanone 29 as a colorless crystalline solid ($19.6 \mathrm{mg}, 0.0425 \mathrm{mmol}, 46 \%$ yield).

$t=0$

$\mathrm{t}=2 \mathrm{~h}$

$t=4 h$

Dibromocycloheptanone 28. TLC (50\% EtOAc in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, PAA stain) $\mathrm{R}_{\mathrm{f}}=0.68 ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.62(\mathrm{~s}, 3 \mathrm{H}), 1.86(\mathrm{dd}, J=15.3,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.33-2.43(\mathrm{~m}, 2 \mathrm{H}), 2.77(\mathrm{app} \mathrm{br} \mathrm{dt}, J=15.3,4.1 \mathrm{~Hz}, 1 \mathrm{H})$, 3.15 (ddd, $J=12.6,11.5,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.24(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.14$ (td, $J=10.9,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.47$ (ddd, $J=13.3,3.5,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.83(\mathrm{dd}, J=2.2,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{dd}, J=7.7,6.3 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz , CDCl_{3}): $\delta 27.0,35.5,40.7,42.9,46.7,48.6,56.7,59.9,80.3,81.5,175.8,201.3 ;$ FT-IR (thin film): 3468 (br w), 2930 (w), 1759 (s), 1703 (m), 1193 (m), 731 (w) cm^{-1}; HRMS (ESI) m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{4} \mathrm{Br}_{2} \mathrm{Na}^{+}$([M + $\mathrm{Na}]^{+}$): 402.9151, 404.9131, 406.9110; found 402.9158, 404.9136, 406.9112.

Tribromocycloheptanone 29. TLC (70\% EtOAc in hexanes: UV and Hanessians' stain) $\mathrm{R}_{\mathrm{f}}=0.78$; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.90(\mathrm{~s}, 3 \mathrm{H}), 2.25(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.30(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.62-2.70(\mathrm{~m}, 2 \mathrm{H}), 2.83$ (dddd, $J=15.4,5.1,3.9,1.08 \mathrm{~Hz}, 1 \mathrm{H}), 3.20(\mathrm{ddd}, J=13.2,12.4,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{dd}, J=12.4,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.72$ (ddd, $J=13.0,5.3,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.93(\mathrm{app} t, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{dd}, J=8.3,6.9 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 25.6,35.8,43.8,44.9,49.6,51.9,52.0,69.3,80.4,85.9,175.7,195.1$;FT-IR (thin film): 3400 (br w), 2981 (w), 1761 (s), 1705 (m), 1215 (m-s), 733 (w-m) cm ${ }^{-1}$; HRMS (ESI) m/z calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{O}_{4} \mathrm{Br}_{3} \mathrm{Na}^{+}$ $\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 480.8256,482.8236,484.8215,486.8195$; found 480.8259, 482.8236, 484.8213, 486.8189.

7-bromo-1a-methyl-1a,2,2a,2a1,4a,5-hexahydrooxireno[2',3':3,3a]azuleno[1,8-bc]furan-4,8-dione (30): A vial containing tribromo cycloheptanone 29 ($35.1 \mathrm{mg}, 0.0762 \mathrm{mmol}, 1.0$ equiv) was equipped with a septum and was evacuated and refilled $\mathrm{N}_{2}(3 x)$ using an 18G needle. The vial was then maintained under a positive pressure of N_{2}. The solid was then dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.4 \mathrm{~mL})$ and the clear colorless solution was cooled to $0^{\circ} \mathrm{C}$. DBU ($23 \mu \mathrm{~L}, 0.15 \mathrm{mmol}, 2.0$ equiv) was then added dropwise and the solution immediately turned to a dark brown color. The reaction was stirred for 15 min and was quenched at $0^{\circ} \mathrm{C}$
by the addition of satd. aq. $\mathrm{NH}_{4} \mathrm{Cl}(\sim 5 \mathrm{~mL})$. The biphasic mixture was transferred to a separatory funnel, rinsing with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(\sim 3 \mathrm{~mL})$ for quantitative transfer, and the layers were separated. The aq. layer was then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{x} \sim 5 \mathrm{~mL})$ and the combined organic layers were dried over $\mathrm{Mg}_{2} \mathrm{SO}_{4}$, filtered and the solvent was removed in vacuo to yield a light brown solid. The crude material was then purified by flash chromatography ($1 / 2$ inch column, dry loaded) eluting $0 \rightarrow 60 \%$ EtOAc in hexanes (10% increments, 50 mL each) to yield α-bromo enone $\mathbf{3 0}$ as colorless crystalline solid ($16.0 \mathrm{mg}, 0.0535 \mathrm{mmol}, 70 \%$ yield); TLC (70% EtOAc in hexanes, UV) $\mathrm{R}_{\mathrm{f}}=0.54$; A small sample was recrystallized from EtOAc /hexanes (diffusion) to give a cluster of colorless prism-shaped crystals, mp $153-154^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.74$ (s, 3H), 2.29 (dd, $J=16.2,7.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.52 (d, $J=16.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.92 (ddd, $J=14.6,10.1,6.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.01 (ddd, $J=14.6,11.7,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.20(\mathrm{ddd}, J=11.8,9.8,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.26(\mathrm{dd}, J=9.8,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.94$ ($\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 1 \mathrm{H}$), $7.54(\mathrm{dd}, J=10.1,5.9 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 16.7,27.9,38.7,39.5$, 44.0, 69.5, 75.3, 79.0, 127.6, 146.6, 176.1, 188.6;FT-IR (thin film): 2930 (w), 1763 (s), 1691 (m), 734 (w$\mathrm{m}) \mathrm{cm}^{-1}$; HRMS (ESI) m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{O}_{4} \mathrm{BrNa}^{+}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 320.9733, 322.9712; found 320.9736, 322.9713 .

4-methyl-2a,2a1,3,7a-tetrahydroindeno[1,7-bc]furan-1,5-dione (31): Enone 15 ($50.0 \mathrm{mg}, 0.260 \mathrm{mmol}$, 1.0 equiv) was weighed into an oven dried Pyrex threaded culture tube. The light-yellow solid was then dissolved in DMSO ($5.2 \mathrm{~mL}, 0.3 \mathrm{M}$ based on IBX). IBX ($437 \mathrm{mg}, 1.56 \mathrm{mmol}, 6.0$ equiv) was then added, the tube was then sealed (under an atmosphere of air) and the solution was heated to $85^{\circ} \mathrm{C}$ (Note: heating a reaction in a sealed container is potentially dangerous and can lead to explosion. A blast shield should be employed in addition to your hood sash for protection). After stirring at that temperature for 6 h , the reaction was allowed to cool to ambient temperature $\left(23^{\circ} \mathrm{C}\right)$ and the reaction mixture was transferred to a separatory funnel, rinsing with $\mathrm{Et}_{2} \mathrm{O}(\sim 5 \mathrm{~mL})$. The solution was then diluted with $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$ and was washed with $5 \% \mathrm{NaHCO}_{3}$ solution (50 mL). The biphasic mixture was shaken vigorously before separating the layers. The aq. layer was then extracted with $\mathrm{Et}_{2} \mathrm{O}(5 \times 50 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and the solvent was removed in vacuo to yield a clear colorless oil. The oil was purified by MPLC (4 g silica gold, dry loaded) eluting $0 \rightarrow 90 \%$ EtOAc in hexanes to yield dienone 31 as a clear colorless oil ($26.7 \mathrm{mg}, 0.140 \mathrm{mmol}, 54 \%$ yield); TLC ($70 \% \mathrm{EtOAc}$ in hexanes) $\mathrm{R}_{\mathrm{f}}=0.25$; ${ }^{1} \mathrm{H}$ NMR (600 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.08$ (s, 3H), 2.74 (d, $J=19.3 \mathrm{~Hz}, 1 \mathrm{H}$), 2.95 (ddt, $J=19.1,4.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}$), 3.60 (ddd, $J=8.4,5.9,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.99-4.04(\mathrm{~m}, 1 \mathrm{H}), 5.06(\mathrm{app} \mathrm{t}, \mathrm{J}=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.17(\mathrm{dd}, J=10.0,1.72 \mathrm{~Hz}, 1 \mathrm{H})$ 6.84 (dd, $J=10.0,5.9 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C} \operatorname{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta 15.7,41.8,45.5,50.6,81.0,127.9,133.7$, 139.5, 150.0, 172.5, 186.0;FT-IR (thin film): 2913 (w), 1767 (s), 1665 (s), 1635 (m) cm^{-1}; HRMS (ESI) m/z calcd for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{O}_{3} \mathrm{Na}^{+}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 213.0522 ; found 213.0523.

6-hydroxy-6-methyloctahydroindeno[1,7-bc]furan-2,5-dione (32): Ethyl enol ether 19 (100.0 mg , $0.4197 \mathrm{mmol}, 1.0$ equiv) was weighed into a 2 dram vial. The vial was equipped with a septum and was evacuated and refilled with $\mathrm{N}_{2}(3 \mathrm{x})$ using an 18G needle. The vial was then maintained under a positive pressure of N_{2}. The colorless solid was then dissolved in THF (3.0 mL) and was cooled to $0^{\circ} \mathrm{C}$ (ice water
bath). Aq. $\mathrm{HCl}(1 \mathrm{M}, 0.8 \mathrm{~mL}, 0.8 \mathrm{mmol}, 1.9$ equiv) was then added over ca. 30 s and the resulting clear colorless solution was stirred at $0^{\circ} \mathrm{C}$ for 10 min . The ice bath was removed, and the reaction was allowed to warm to ambient temperature $\left(23^{\circ} \mathrm{C}\right)$ until full consumption of starting enol ether 19 , as determined by TLC (1.5 h). The reaction was then neutralized by the slow addition of satd. aq. NaHCO_{3} until a pH of ~ 7 was achieved. The reaction was then transferred to a separatory funnel using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($\sim 3 \mathrm{~mL}$) to ensure quantitative transfer. The layers were separated, and the aq. layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 x \sim 4 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4}, filtered and the solvent was removed in vacuo to yield a colorless solid. The solid was purified by flash chromatography ($1 / 2$ inch column, ~ 6 inch height of silica, dry loaded) eluting $0 \rightarrow 100 \%$ EtOAc in hexanes (10% increments, 50 mL each) to yield ketone 32 as a colorless solid ($71.3 \mathrm{mg}, 0.339 \mathrm{mmol}, 81 \%$ yield); Spectral data matched that previously reported by Deng and co-workers ${ }^{9}$ and is included here since NMR data was taken at higher field strength. TLC (70\% EtOAc in hexanes, PAA stain) $\mathrm{R}_{\mathrm{f}}=0.24$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.46(\mathrm{~s}, 3 \mathrm{H}), 1.86-1.94(\mathrm{~m}, 2 \mathrm{H}), 2.08$ (dddd, $J=14.1,13.1,6.2,4.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.28-2.37 (m, 2H), 2.45-2.61 (m, 3H), 3.02 (ddd, $J=10.0,6.1$, $3.4 \mathrm{~Hz}, 1 \mathrm{H}$), 3.40 (td, $J=10.6,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.07$ (dd, $J=6.4,4.9 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 22.7, 27.1, 38.1, 38.8, 43.7, 47.3, 58.3, 82.4, 83.4, 177.8, 209.8;FT-IR (thin film): 3516 (w-m), 2919 (w), 1765 (s), 1692 (s) cm^{-1}; HRMS (ESI) m / z calcd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{4} \mathrm{Na}^{+}\left([\mathrm{M}+\mathrm{Na}]^{+}\right.$): 233.0784; found 233.0785.

6-hydroxy-6-methyl-2a,2a1,5a,6,7,7a-hexahydroindeno[1,7-bc]furan-2,5-dione (33): Ketone 32 (10.5 $\mathrm{mg}, 0.0499 \mathrm{mmol}, 1.0$ equiv) was weighed into a 1.5 dram vial. IBX ($71.4 \mathrm{mg}, 0.255 \mathrm{mmol}, 5.1$ equiv) was then added. DMSO (0.4 mL) and PhMe $(0.4 \mathrm{~mL})$ were then added, creating a white suspension. The vial was capped under an air atmosphere and was sealed with Teflon tape. The suspension was then heated to $65{ }^{\circ} \mathrm{C}$ and was covered with aluminum foil (IBX is sensitive to light) and was stirred. Note: upon heating all solids dissolved, resulting in a clear colorless solution. After stirring at that temperature for 17 h , a colorless solid had precipitated. The mixture was cooled to $23^{\circ} \mathrm{C}$ and 5% aq. $\mathrm{NaHCO}_{3}(\sim 4 \mathrm{~mL}$) was added. Using a pipette, the organic layer was removed. The aq. layer was then extracted with EtOAc ($3 x \sim 3 \mathrm{~mL}$) using a pipette to remove the organic layer (in vial extraction). The combined organic layers were then dried over MgSO_{4}, filtered, and the solvent was removed in vacuo to yield a colorless solid. The solid was purified by flash chromatography (Monstr-Pette (Kimble p1005, 10 mm O.D.) pipette column, wet loaded in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) eluting $0 \rightarrow 40 \%$ EtOAc in hexanes (5% increments, 2 mL each), then $45 \rightarrow 100 \%$ EtOAc in hexanes (5% increments, 4 mL each) to yield an inseparable mixture of starting ketone 32 and enone 33 as a colorless solid (7.9 mg , NMR ratio $1.0: 1.6,32: 33$, NMR yield of $3348 \%, 79 \% \mathrm{brsm}$). To obtain a sample of pure enone 33 for biological testing, the mixture was further purified by semi-prep HPLC using a gemini $5 \mu \mathrm{M}$ C18 $110 \AA 250 \times 21.2 \mathrm{~mm}$ column (isocratic: $97.5 \% \mathrm{H}_{2} \mathrm{O}, 2.5 \% \mathrm{MeCN}$). Enone 33 eluted at 29.9 min and ketone 32 at 31.1 min . As there was significant shouldering, only fractions at the very beginning of the first peak were combined to give pure enone 33 for biological testing and characterization: TLC (EtOAc, UV and PAA stain) $\mathrm{R}_{\mathrm{f}}=0.49 ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 1.33(\mathrm{~s}, 1 \mathrm{H}$, likely -OH based on absence of cross peak in HSQC $\left.\left({ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}\right)\right), 1.48(\mathrm{~s}, 3 \mathrm{H}), 1.93(\mathrm{dd}, J=15.1,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.31(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.57(\mathrm{~d}$, $J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.61$ (ddd, $J=11.3,5.0,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{ddd}, J=10.9,9.5,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{dd}, J=$ $7.0,5.6 \mathrm{~Hz}, 1 \mathrm{H}) 6.22$ (dd, $\left.J=10.3,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{dd}, J=10.3,4.9 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(150MHz,CDCl}_{3}\right): ~$ б 26.2, 39.9, 41.2, 47.4, 55.8, 82.8, 82.9, 131.0, 142.5, 174.1, 196.0;FT-IR (thin film): 3448 (m), 1751 (s), 1663 (s) cm^{-1}; HRMS (ESI) m / z calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{4} \mathrm{Na}^{+}\left([\mathrm{M}+\mathrm{Na}]^{+}\right):$231.0628; found 231.0629.

${ }^{1} \mathrm{H}(600 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}(150 \mathrm{MHz})$ NMR of tertiary alcohol S2.

${ }^{1} \mathrm{H}(600 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}(150 \mathrm{MHz})$ NMR of diene diol 9.

15

${ }^{1} \mathrm{H}(600 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}(150 \mathrm{MHz})$ NMR of tricyclic enone 15.

${ }^{1} \mathrm{H}(600 \mathrm{MHz})$ and $\operatorname{COSY}(400 \mathrm{MHz})$ NMR of tricyclic lactone 8.

${ }^{13} \mathrm{C}(150 \mathrm{MHz})$ and HSQC $\left({ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}\right)(400 \mathrm{MHz})$ NMR of tricyclic lactone 8.

(Mand

${ }^{1} \mathrm{H}(600 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}(150 \mathrm{MHz}) \mathrm{NMR}$ of allylic bromide 16.

${ }^{1} \mathrm{H}(600 \mathrm{MHz})$ and $\operatorname{COSY}(600 \mathrm{MHz}) \mathrm{NMR}$ of 5,5,6 epoxide 21 with trace allylic bromide 16.

${ }^{13} \mathrm{C}(150 \mathrm{MHz})$ and HSQC $\left({ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}\right)(600 \mathrm{MHz})$ NMR of epoxide 21 with trace allylic bromide 16.

${ }^{1} \mathrm{H}(600 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}(150 \mathrm{MHz})$ NMR of TES enol ether 18 , tin byproduct present in spectra.

${ }^{1} \mathrm{H}(600 \mathrm{MHz})$ and COSY quantum filtered $(600 \mathrm{MHz})$ NMR of enol ether 19.

$\mathrm{D}_{2} \mathrm{O}$ Exchange: ${ }^{1} \mathrm{H}$ NMR (600 MHz) before and after adding one drop of $\mathrm{D}_{2} \mathrm{O}$ to a NMR sample. Coupling of ROH_{c} presumably the result of W-coupling to H_{a}. Diastereotopic protons H_{a} and H_{b} were assigned based on the observed W -coupling, bond angles and the Karplus curve and predicted coupling constants with proton H_{e}.

${ }^{13} \mathrm{C}(150 \mathrm{MHz})$ and HSQC $\left({ }^{1} \mathrm{H}-{ }^{-13} \mathrm{C}\right)(600 \mathrm{MHz})$ NMR of enol ether 19.

${ }^{1} \mathrm{H}(600 \mathrm{MHz})$ and COSY NMR of crude primary iodide 22.

22
荅

${ }^{1} \mathrm{H}(600 \mathrm{MHz})$ and COSY (600 MHz) NMR of cross conjugated dienone 26.

${ }^{1} \mathrm{H}(600 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}(150 \mathrm{MHz})$ NMR of 5,5,7 dibromide core 28.

10

${ }^{13} \mathrm{C}(150 \mathrm{MHz})$ and HSQC $\left({ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}\right)(600 \mathrm{MHz})$ NMR of α-bromo enone 30.

$\begin{aligned} & \circ \\ & \stackrel{\circ}{\otimes} \\ & \stackrel{1}{1} \end{aligned}$	$\stackrel{\sim}{N}$	$\begin{aligned} & \text { 울 } \\ & \hline 1 \end{aligned}$	$\stackrel{\text { ® }}{\stackrel{\circ}{\circ}}$	¢

${ }^{1} \mathrm{H}(600 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}(150 \mathrm{MHz})$ NMR of cross-conjugated dieneone 31.

${ }^{1} \mathrm{H}(600 \mathrm{MHz})$ and COSY (600 MHz) NMR of tricyclic enone 33.

${ }^{13} \mathrm{C}(150 \mathrm{MHz})$ and $\mathrm{HSQC}\left({ }^{(}{ }^{\left.\mathrm{H}-{ }^{-13} \mathrm{C}\right)(600 \mathrm{MHz}) \text { NMR of tricyclic enone } 33 .}\right.$

X-ray structure and crystallographic data

Table S1. X-ray crystallographic data of tricyclic enone 15

Table S2. Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters ($\AA^{2} x$ 10^{3}) for DR43 (enone 15). $\mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized Uij tensor.

	x	y	z	$\mathrm{U}(\mathrm{eq})$
$\mathrm{O}(1)$	$6270(1)$	$2997(1)$	$2564(1)$	$29(1)$
O(2)	$7190(1)$	$880(1)$	$2781(1)$	$36(1)$
O(3)	$4504(1)$	$2223(1)$	$5622(1)$	$32(1)$
C(1)	$6803(1)$	$2063(2)$	$3070(1)$	$25(1)$
C(2)	$6809(1)$	$2677(2)$	$3999(1)$	$22(1)$
C(3)	$6066(1)$	$3985(1)$	$4006(1)$	$22(1)$
C(4)	$5873(1)$	$4364(2)$	$3043(1)$	$26(1)$
C(5)	$4850(1)$	$4337(2)$	$2938(1)$	$28(1)$
C(6)	$4509(1)$	$3493(2)$	$3746(1)$	$23(1)$
C(7)	$5176(1)$	$3324(1)$	$4330(1)$	$21(1)$
C(8)	$5174(1)$	$2460(2)$	$5176(1)$	$24(1)$
C(9)	$6100(1)$	$1853(2)$	$5440(1)$	$31(1)$
C(10)	$6636(1)$	$1267(2)$	$4646(1)$	$26(1)$
C(11)	$3546(1)$	$2967(2)$	$3816(1)$	$31(1)$

Table S3. X-ray crystallographic data of cyclopropane (\pm)-20

Table S4. Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters ($\AA^{2} x$ 10^{3}) for dr36 (cyclopropane 20). $\mathrm{U}(\mathrm{eq}$) is defined as one third of the trace of the orthogonalized uij tensor.

	X	y	Z	$\mathrm{U}(\mathrm{eq})$
$\mathrm{O}(1)$	207(1)	6979(2)	4292(1)	24(1)
$\mathrm{O}(2)$	-381(1)	9754(2)	3472(1)	31(1)
O(3)	1621(1)	10159(2)	5070(1)	24(1)
$\mathrm{O}(4)$	3854(1)	8084(2)	3329(1)	30(1)
C(1)	3148(1)	11510(3)	3835(1)	31(1)
C(2)	3088(1)	9111(3)	3699(1)	24(1)
C(3)	2573(1)	10560(3)	3003(1)	26(1)
C(4)	1538(1)	10590(3)	2977(1)	26(1)
C(5)	1113(1)	8333(2)	3119(1)	22(1)
C(6)	1701(1)	6660(2)	3691(1)	21(1)
C(7)	2540(1)	7581(2)	4279(1)	21(1)
C(8)	247(1)	8494(3)	3626(1)	23(1)
C(9)	1067(1)	5785(3)	4434(1)	23(1)
C(10)	1544(1)	6312(3)	5392(1)	25(1)
C(11)	2171(1)	8247(3)	5227(1)	23(1)
C(12)	2913(1)	8636(3)	6015(1)	35(1)
C(13)	4624(1)	7901(4)	3998(2)	39(1)
C(14)	5339(1)	6573(4)	3562(2)	50(1)

Table S5. X-ray crystallographic data of dibromide 29

Identification code	dr40	
Empirical formula	C12 H13 Br3 O4	
Formula weight	460.95	
Temperature	150(2) K	\%
Wavelength	0.71073 Å	
Crystal system	Triclinic	
Space group	P-1	
Unit cell dimensions	$\mathrm{a}=6.3345(2) \AA$	$\square=84.4638(12)^{\circ}$.
	$\mathrm{b}=9.2517(4) \AA$	$\square=75.5671(17)^{\circ}$.
	$\mathrm{c}=12.3961(5) \AA$	$\square=82.1279(12)^{\circ}$.
Volume	695.44(5) \AA^{3}	
Z	2	
Density (calculated)	$2.201 \mathrm{Mg} / \mathrm{m}^{3}$	
Absorption coefficient	$8.707 \mathrm{~mm}^{-1}$	
F(000)	444	
Crystal size	$0.350 \times 0.222 \times 0$	
Theta range for data collection	2.713 to 28.353°	
Index ranges	$-8<=h<=8,-12<=$	$<=1<=16$
Reflections collected	33238	
Independent reflections	3477 [R(int) $=0.0$	
Completeness to theta $=25.242^{\circ}$	99.9 \%	
Absorption correction	Semi-empirical fr	ents
Max. and min. transmission	0.179 and 0.069	
Refinement method	Full-matrix least-	
Data / restraints / parameters	3477 / 0 / 177	
Goodness-of-fit on F^{2}	1.048	
Final R indices [$1>2 \mathrm{sigma}(\mathrm{l})$]	$\mathrm{R} 1=0.0190, \mathrm{wR}$	
R indices (all data)	$\mathrm{R} 1=0.0206, \mathrm{wR}$	
Extinction coefficient	n/a	
Largest diff. peak and hole	0.660 and -0.443	

Table S6. Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for dr40 (tribromide 29). $\mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized U^{ij} tensor.

			x	y
		$\mathrm{z}(\mathrm{eq})$		
$\mathrm{Br}(1)$	$14248(1)$	$-1062(1)$	$6632(1)$	$30(1)$
$\mathrm{Br}(2)$	$6738(1)$	$3020(1)$	$9708(1)$	$23(1)$
$\mathrm{Br}(3)$	$7709(1)$	$-592(1)$	$8962(1)$	$25(1)$
$\mathrm{O}(1)$	$9385(2)$	$2918(2)$	$4414(1)$	$27(1)$
$\mathrm{O}(2)$	$7013(2)$	$4132(1)$	$5745(1)$	$24(1)$
$\mathrm{O}(3)$	$12187(2)$	$2162(1)$	$8481(1)$	$21(1)$
$\mathrm{O}(4)$	$10820(2)$	$4240(1)$	$6718(1)$	$18(1)$
$\mathrm{C}(1)$	$8618(3)$	$2924(2)$	$8161(1)$	$15(1)$
$\mathrm{C}(2)$	$7237(3)$	$2528(2)$	$7386(1)$	$16(1)$
$\mathrm{C}(3)$	$8500(3)$	$1781(2)$	$6306(1)$	$17(1)$
$\mathrm{C}(4)$	$10878(3)$	$1067(2)$	$6164(1)$	$18(1)$
$\mathrm{C}(5)$	$11137(3)$	$-227(2)$	$6998(1)$	$18(1)$
$\mathrm{C}(6)$	$10497(3)$	$156(2)$	$8227(1)$	$18(1)$
$\mathrm{C}(7)$	$10539(3)$	$1796(2)$	$8323(1)$	$15(1)$
$\mathrm{C}(8)$	$8393(3)$	$2973(2)$	$5385(1)$	$20(1)$
$\mathrm{C}(9)$	$6197(3)$	$4029(2)$	$6958(2)$	$22(1)$
$\mathrm{C}(10)$	$9178(3)$	$4500(2)$	$7738(1)$	$18(1)$
$\mathrm{C}(11)$	$7025(3)$	$5207(2)$	$7464(2)$	$23(1)$
$\mathrm{C}(12)$	$10027(3)$	$5377(2)$	$8482(2)$	$26(1)$

Table S7. X-ray crystallographic data of epoxy bromo enone $\mathbf{3 0}$.

Table S7. X-ray crystallographic data of epoxy bromo enone 30.			
Identification code	DR45		
Empirical formula	C12 H11 Br O4		
Formula weight	299.12		
Temperature	150(2) K		
Wavelength	0.71073 Å		
Crystal system	Orthorhombic		
Space group	Pna2 ${ }_{1}$		
Unit cell dimensions	$a=17.7546(7) \AA$	$\alpha=90^{\circ}$.	
	$\mathrm{b}=4.9613(2) \AA$	$\beta=90^{\circ}$.	
	$\mathrm{c}=13.0346(4) \AA$	$\gamma=90^{\circ}$.	
Volume	1148.16(7) \AA^{3}		
Z	4		
Density (calculated)	$1.730 \mathrm{Mg} / \mathrm{m}^{3}$		
Absorption coefficient	$3.580 \mathrm{~mm}^{-1}$		
F(000)	600		
Crystal size	$0.104 \times 0.091 \times 0.050 \mathrm{~mm}^{3}$		
Theta range for data collection	2.776 to 28.293°.		
Index ranges	$-23<=h<=23,-6<=k<=6,-17<=1<=17$		
Reflections collected	27717		
Independent reflections	2851 [R(int) $=0.0448$]		
Completeness to theta $=25.242^{\circ}$	99.9 \%		
Absorption correction	Semi-empirical from equivalents		
Max. and min. transmission	0.797 and 0.670		
Refinement method	Full-matrix least-squares on F^{2}		
Data / restraints / parameters	2851 / 1/156		
Goodness-of-fit on F^{2}	1.075		
Final R indices [$1>2 \mathrm{sigma}(\mathrm{l})$]	$\mathrm{R} 1=0.0247, \mathrm{wR} 2=0.0507$		
R indices (all data)	$\mathrm{R} 1=0.0304, \mathrm{wR2}=0.0522$		
Absolute structure parameter	0.020(11)		
Extinction coefficient	n/a		
Largest diff. peak and hole	0.459 and -0.255 e. \AA^{-3}		

Table S8. Atomic coordinates ($\AA \times 10^{4}$) and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for dr40 (epoxy enone $\mathbf{3 0}$). $\mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	x	y	z	$\mathrm{U}(\mathrm{eq})$
$\mathrm{Br}(1)$	$10760(1)$	$-2803(1)$	$9320(1)$	$27(1)$
$\mathrm{O}(1)$	$9699(2)$	$724(5)$	$8135(2)$	$40(1)$
$\mathrm{O}(2)$	$8841(1)$	$5173(4)$	$9453(2)$	$20(1)$
$\mathrm{O}(3)$	$7696(1)$	$4453(5)$	$11122(2)$	$29(1)$
$\mathrm{O}(4)$	$8453(1)$	$5994(5)$	$12339(2)$	$30(1)$
$\mathrm{C}(1)$	$10094(2)$	$-127(6)$	$9833(2)$	$21(1)$
$\mathrm{C}(2)$	$9578(2)$	$939(6)$	$9044(2)$	$22(1)$
$\mathrm{C}(3)$	$8854(2)$	$2224(5)$	$9433(3)$	$18(1)$
$\mathrm{C}(4)$	$8310(2)$	$3731(7)$	$8790(3)$	$25(1)$
$\mathrm{C}(5)$	$7543(2)$	$3484(7)$	$9294(4)$	$35(1)$
$\mathrm{C}(6)$	$7680(2)$	$2311(7)$	$10352(3)$	$32(1)$
$\mathrm{C}(7)$	$8471(2)$	$1058(6)$	$10362(2)$	$23(1)$
$\mathrm{C}(8)$	$8823(2)$	$1998(6)$	$11374(2)$	$22(1)$
$\mathrm{C}(9)$	$9654(2)$	$2818(6)$	$11299(2)$	$24(1)$
$\mathrm{C}(10)$	$10134(2)$	$648(6)$	$10811(3)$	$24(1)$
$\mathrm{C}(11)$	$8331(2)$	$4346(6)$	$11684(2)$	$24(1)$
$\mathrm{C}(12)$	$8369(2)$	$4356(8)$	$7666(3)$	$35(1)$

Cytotoxicity assays of Sinularia natural product intermediates 15, 25-26, 30-36.

The cell lines, MDA MB 231, HCT 116, A549, and HUVEC were obtained from American Tissue Culture Collection (ATCC). MDA MB 231 cells were cultured in DMEM (ThermoFisher Scientific; Waltham, MA) supplemented with 10% fetal bovine serum (FBS; ThermoFisher Scientific; Waltham, MA). HCT 116 cells were cultured in McCoy's 5A (ThermoFisher Scientific; Waltham, MA) supplemented with 10\% FBS. A549 cells were cultured in F12-K (ATCC; Manassas, VA) supplemented with 10\% FBS. HUVEC cells were cultured in EBM-2 (Lonza; Basel Switzerland) supplemented with an EGM-2 bullet kit (Lonza; Basel Switzerland). All cell lines were maintained in a humidified incubator at $37^{\circ} \mathrm{C}$ with $5 \% \mathrm{CO}_{2}$.

Cell viability assays were performed using resazurin sodium salt (Sigma; St. Louis, MO) in 96 well plates. The cells were seeded at varying cell densities per well: MDA MB 231, 2,500 cells/well; HCT 116, 4,000 cells/well; A549, 4,000 cells/well; and HUVEC, 2,000 cells per well. All compounds were dissolved in DMSO and diluted in media to a final maximum concentration of $100 \mu \mathrm{M}$. After incubation with drugs for 72 h , resazurin was added to each well to a final concentration of $10 \mu \mathrm{~g} / \mathrm{ml}$. After incubation at $37^{\circ} \mathrm{C}$ for another 4-6 h away from direct light, fluorescence was measured using BMG Fluostar Optima Microplate Reader (Ortenberg, Germany). The data was analyzed using Microsoft Excel (Redmond, WA) and Graphpad Prism (San Diego, California).

References:

(1) Daniels, D. S. B.; Smith, S. R.; Lebl, T.; Shapland, P.; Smith, A. D. A Scalable, ChromatographyFree Synthesis of Benzotetramisole. Synthesis 2015, 47, 34-41.
(2) Frigerio, M.; Santagostino, M.; Sputore, S. A User-Friendly Entry to 2-lodoxybenzoic Acid (IBX). J. Org. Chem. 1999, 64, 4537-4538.
(3) Ulbrich, K.; Kreitmeier, P.; Reiser, O. Microwave- or Microreactor-Assisted Conversion of Furfuryl Alcohols into 4-Hydroxy-2-Cyclopentenones. Synlett 2010, 2010, 2037-2040.
(4) Saitman, A.; Theodorakis, E. A. Synthesis of a Highly Functionalized Core of Verrillin. Org. Lett. 2013, 15, 2410-2413.
(5) Curran, T. T.; Hay, D. A.; Koegel, C. P.; Evans, J. C. The Preparation of Optically Active 2-Cyclopenten-1,4-Diol Derivatives from Furfuryl Alcohol. Tetrahedron 1997, 53, 1983-2004.
(6) Piancatelli, G.; Scettri, A.; Barbadoro, S. A Useful Preparation of 4-Substituted 5-Hydroxy-3Oxocyclopentene. Tetrahedron Letters 1976, 17, 3555-3558.
(7) Song, L.; Yao, H.; Zhu, L.; Tong, R. Asymmetric Total Syntheses of (-)-Penicipyrone and (-)Tenuipyrone via Biomimetic Cascade Intermolecular Michael Addition/Cycloketalization. Org. Lett. 2013, 15, 6-9.
(8) Yang, P.; Yao, M.; Li, J.; Li, Y.; Li, A. Total Synthesis of Rubriflordilactone B. Angewandte Chemie International Edition 2016, 55, 6964-6968.
(9) Deng, M.; Zhang, X.; Li, Z.; Chen, H.; Zang, S.; Liang, G. Rapid Construction of the Common [5-56] Tricyclic Ring Skeleton in Polycyclic Cembranoids and Norcembranoids via Intramolecular 1,3Dipolar Cycloaddition. Org. Lett. 2019, 21, 1493-1496.

