Supporting Information

Synthesis of Polycyclic Spirocarbocycles via Acid-Promoted RingContraction/Dearomative Ring-Closure Cascade of Oxapropellanes

Naoki Ogawa, Yousuke Yamaoka, Hiroshi Takikawa and Kiyosei Takasu*

Graduate School of Pharmaceutical Sciences, Kyoto University Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
(E-mail) kay-t@pharm.kyoto-u.ac.jp

Table of Contents

1. General Information S3
2. X-ray crystallographic data S4
3. Optical Properties of Compound 9 S8
4. Preparation of Substrates S8
5. Acid-promoted Rearrangement of Oxapropellanes S17
6. Derivertizations of Products S24
7. DFT Calculations S27
8. References S41
9. NMR Spectra S42

1. General Information

All non-aqueous reactions were carried out in dried glassware under an atmosphere of dry argon unless otherwise noted. For reactions that require heating, oil bath was used as a heat source. 1,2-Dichroloethane (DCE) was refluxed with and distilled from CaH_{2} prior to use. Ethyl acetate (EtOAc) and N, N-dimethylformamide (DMF) for reaction solvents were dried over molecular sieves 4 A prior to use. All other dehydrated solvents for the reactions were purchased and used without further desiccation. All reagents were purchased and used without further purifications. Analytical TLC was performed on pre-coated silica gel plate (Wako Silicagel 70 F254). Flash column chromatography was performed on Wakogel 60 N unless otherwise stated. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR spectra were recorded on a JEOL JNM-LA 500 at 500 and 125 MHz , respectively. Chemical shifts (δ) and coupling constants (J) are presented in parts per million and hertz, respectively. Tetramethylsilane ($\delta 0.0 \mathrm{ppm}$) was used as internal standard for ${ }^{1} \mathrm{H}$ NMR. Residual $\mathrm{CDCl}_{3}(\delta 77.0$ ppm) was used as internal standard for ${ }^{13} \mathrm{C}$ NMR. Multiplicities are indicated as s (singlet), d (doublet), t (triplet), m (multiplet), and br (broad). High-resolution mass spectra (HRMS) were recorded on a JEOL MS700 spectrometer (FAB) or a SHIMADZU LCMS-IT-TOF fitted with an ESI. IR spectra were recorded on a Shimadzu IRAffinity-1, and the wave numbers of maximum absorption peaks are reported in cm^{-1}. Melting points were determined on YANACO micro melting point apparatus. X-Ray single crystal diffraction analyses were performed on a Rigaku XtaLAB P200 apparatus. High performance liquid chromatography (HPLC) analyses were performed on a SHIMADZU analytical system equipped with two LC-20AT pumps and a SPD-20A UV/Vis detector using YMC CHIRAL Amylose-SA column (250 $\times 4.6 \mathrm{~mm}$), Daicel Chiralpak AD-H column ($250 \times 4.6 \mathrm{~mm}$), or Daicel Chiralpak AS-H column $(250 \times 4.6 \mathrm{~mm})$. Preparative HPLC was performed on a YMC LC-forte/R using YMC YMC-GPC T-2000 ($600 \times 21.2 \mathrm{~mm}$) and YMCGPC T-4000 ($600 \times 21.2 \mathrm{~mm}$), or YMC CHIRAL Amylose-SA column ($250 \times 20 \mathrm{~mm}$). Optical rotations were obtained on a JASCO P-1030 polarimeter. CD spectrum were recorded on JASCO J-820 CD spectrometer. UV-Vis absorption spectra were recorded on a Shimazu UV-2600. Fluorescence spectra were recorded on a JASCO FP-6200.

2. X-ray crystallographic data

ORTEP drawing of compounds (+)-1a, 4a, (+)-4a, (+)-4f, 5a, $\mathbf{6}$, and $\mathbf{7}$ (50\% probability).

Compound (+)-1a

Compound 4a

Compound (+)-4a

Compound (+)-4f

Compound 5a

Compound 6

Compound 7

CCDC 1944323 ((+)-1a), 1944319 (4a), 1944324 ((+)-4a), 1944325 ((+)-4f), 1944320 (5a), 1944321 (6), and 1944322
(7) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif

3. Optical Properties of Compound 9

UV-vis absorption spectra (solid line) and fluorescence spectra (dashed line, excited at 280 nm) in dichloromethane ($10 \mu \mathrm{M}$)

4. Preparation of Substrates

Synthesis of Compound S1

To a solution of 2'-bromoacetophenone ($3.98 \mathrm{~g}, 20.0 \mathrm{mmol}$) in DME (86 mL) and water (14 mL) was added $\mathrm{Ba}(\mathrm{OH})_{2}$ ($5.14 \mathrm{~g}, 30.0 \mathrm{mmol}$), (2-(1-(2-methoxynaphthalen-1-yl)vinyl)phenyl)boronic acid ${ }^{1}(6.08 \mathrm{~g}, 20.0 \mathrm{mmol})$, and $\mathrm{Pd}_{(}\left(\mathrm{PPh}_{3}\right)_{4}$ $(1.16 \mathrm{~g}, 1.00 \mathrm{mmol})$ and the resulting solution was heated to $80^{\circ} \mathrm{C}$. After stirring for 16 h , the reaction mixture was cooled to $0^{\circ} \mathrm{C}$, quenched with 1 M aq. HCl , and diluted with EtOAc . Phases were separated, and the organic layer was washed with water followed by brine, dried oevr MgSO_{4} and concentrated. The residue was purified by silica gel column chromatography (hexanes/EtOAc) to give the title compound ($6.74 \mathrm{~g}, 89 \%$) was white solids: $\mathrm{mp} 85-86{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 50^{\circ} \mathrm{C}\right) \delta 1.97(\mathrm{~s}, 3 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H}), 5.33(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.65(\mathrm{~s}, 1 \mathrm{H}), 6.87-7.34(\mathrm{~m}, 9 \mathrm{H}), 7.37-$ $7.49(\mathrm{~m}, 2 \mathrm{H}), 7.62-7.69(\mathrm{~m}, 2 \mathrm{H}), 7.80(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 50^{\circ} \mathrm{C}\right) \delta 29.6,56.1,113.6$, $122.9,123.2,125.4,125.9,126.1,126.4,126.8,127.6,127.7,128.2,129.05,129.14,130.0,130.2,130.7,131.1,133.1$, $138.9,139.3,141.3,143.1,153.7,201.7 \mathrm{ppm}$; IR (neat) $3055,3012,2935,2839,1678 \mathrm{~cm}^{-1} ; \operatorname{HRMS}-\mathrm{ESI}(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{Na}]^{+}$ calcd for $\mathrm{C}_{27} \mathrm{H}_{22} \mathrm{O}_{2} \mathrm{Na} 401.1512$, found 401.1516 .

Synthesis of Compound S2

To a solution of 2'-bromoacetophenone ($597 \mathrm{mg}, 3.00 \mathrm{mmol}$) in $\mathrm{DME}(18 \mathrm{~mL})$ and water (3 mL) was added $\mathrm{Ba}(\mathrm{OH})_{2}$ ($771 \mathrm{mg}, 4.50 \mathrm{mmol}$), (2-(1-(2,7-dimethoxynaphthalen-1-yl)vinyl)phenyl)boronic acid ${ }^{1}$ ($1.00 \mathrm{~g}, 3.00 \mathrm{mmol}$), and $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(173 \mathrm{mg}, 0.150 \mathrm{mmol})$ and the resulting solution was heated to $80^{\circ} \mathrm{C}$. After stirring for 5 h , the reaction mixture was cooled to $0^{\circ} \mathrm{C}$, quenched with $1 \mathrm{M} \mathrm{aq} . \mathrm{HCl}$, and diluted with EtOAc. Phases were separated, and the organic layer was washed with water followed by brine, dried oevr MgSO_{4} and concentrated. The residue was purified by silica gel column chromatography (hexanes/EtOAc) to give the title compound ($834 \mathrm{mg}, 68 \%$) was white solids: $\mathrm{mp} 111-$ $112{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 50^{\circ} \mathrm{C}$) $\delta 1.93(\mathrm{~s}, 3 \mathrm{H}), 3.57(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 5.40(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.72(\mathrm{~d}$, $J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.69-7.02(\mathrm{~m}, 6 \mathrm{H}), 7.07(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.33(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.55(\mathrm{~m}$, $4 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 50^{\circ} \mathrm{C}$) $\delta 29.6,55.0,55.8,104.1,110.7,115.9,122.6,124.5,124.6,126.2,126.8$, $127.7,128.0,128.7,129.1,129.8,130.3,130.5,130.7,134.2,138.8,139.4,141.0,142.2,143.8,154.3,157.8,201.5 \mathrm{ppm}$; IR (neat) $3059,3012,2935,2835,1678 \mathrm{~cm}^{-1}$; HRMS-ESI (m / z) $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{28} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{Na} 431.1617$, found 431.1617.

Preparation of Compound $\mathrm{S5}$

Synthesis of Compound S3

To a stirred solution of 2-methoxy-6-methylnaphthalene ($6.89 \mathrm{~g}, 40 \mathrm{mmol}$) and $\mathrm{AlCl}_{3}(11.7 \mathrm{~g}, 87.7 \mathrm{mmol})$ in dry DCM $(130 \mathrm{~mL})$ was added 2-bromobenzoyl chloride $(6.3 \mathrm{~mL}, 48 \mathrm{mmol})$ at $-20^{\circ} \mathrm{C}$. After stirring for 30 min , the reaxtion mixture was poured into iced $3 \mathrm{M} \mathrm{aq} . \mathrm{HCl}$. Phases were separated and the organic layer was wahsed with water, dried over MgSO_{4} and concentrated. The resulting solids were washed with hexanes and dried under reduced pressure to give the title compound ($10.3 \mathrm{~g}, 72 \%$) as white solids: $\mathrm{mp} 94-95{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.49(\mathrm{~s}, 3 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H})$, $7.21(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.34(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-7.47(\mathrm{~m}, 1 \mathrm{H}), 7.60(\mathrm{~s}, 1 \mathrm{H}), 7.64-7.67(\mathrm{~m}$, $1 \mathrm{H}), 7.83(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 21.3,56.7,113.5,120.4$, 123.1, 124.1, 127.0, 127.1, 129.3, 130.1, 130.3, 131.1, 131.9, 132.1, 133.9, 134.1, 141.4, 155.3, 196.9 ppm ; IR (neat) 3008, 2939, 2916, $1678 \mathrm{~cm}^{-1}$; HRMS-ESI $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{BrO}_{2} \mathrm{Na} 377.0147$, found 377.0153.

Synthesis of Compound S4

To a stirred solution of $\mathrm{MePPh}_{3} \operatorname{Br}(18.6 \mathrm{~g}, 52.1 \mathrm{mmol})$ in dry THF $(65 \mathrm{~mL})$ was added $n-\mathrm{BuLi}(1.6 \mathrm{M}$ in hexane, 31 mL , $50 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. After stirreing for $20 \mathrm{~min}, \mathbf{S 3}(9.24 \mathrm{~g}, 26.0 \mathrm{mmol})$ was added and the resulting solution was allowed to warm to room temperature. After stirreing for 16 h , the reaction was quenched by water and diluted with EtOAc. Phases were separated, and the organic layer was washed with water followed by brine, dried oevr MgSO_{4} and
concentrated. The residue was purified by silica gel column chromatography (hexanes/EtOAc), and the resulting solids were washed with MeOH and dried under reduced pressure to give the title compound ($7.94 \mathrm{~g}, 86 \%$) as white solids: mp $102-103{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.47(\mathrm{~s}, 3 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 5.64(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.01(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H})$, 7.02 (ddd, $J=8.0,7.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{td}, J=7.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.15-7.17(\mathrm{~m}, 1 \mathrm{H}), 7.19(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{dd}$, $J=8.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~s}, 1 \mathrm{H}), 7.57(\mathrm{dd}, J=7.9,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.09(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm}$; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 21.3,56.7,114.2,121.7,123.6,125.3,125.8,126.8,126.9,128.0,128.6,128.9,129.5$, $130.6,131.5,133.0,133.4,142.2,143.0,153.4 \mathrm{ppm}$; IR (neat) $3059,3008,2935,2916,2835 \mathrm{~cm}^{-1}$; HRMS-ESI (m / z) $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{BrO} 353.0536$, found 353.0540.

Synthesis of Compound S5

To a stirred solution of $\mathbf{S 4}(6.44 \mathrm{~g}, 18.2 \mathrm{mmol})$ in dry THF (100 mL) was added $n-\mathrm{BuLi}(1.6 \mathrm{M}$ in hexane, $14 \mathrm{~mL}, 22$ $\mathrm{mmol})$ dropwise at $-78^{\circ} \mathrm{C}$. After sitrring for $50 \mathrm{~min}, \mathrm{~B}(\mathrm{OMe})_{3}(16 \mathrm{~mL}, 146 \mathrm{mmol})$ was added and the resulting solution was allowed to warm to roomtemperature. After stirring for 14 h , the reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and diluted with $\mathrm{Et}_{2} \mathrm{O}$. Phases were separated, and the organic layer was washed with water followed by brine, dried oevr MgSO_{4} and concentrated. The resulting boronic acid was used without further purifications.
To a solution of 2'-bromoacetophenone ($597 \mathrm{mg}, 3.00 \mathrm{mmol}$) in DME $(13 \mathrm{~mL})$ and water $(2 \mathrm{~mL})$ was added $\mathrm{Ba}(\mathrm{OH})_{2}$ ($771 \mathrm{mg}, 4.50 \mathrm{mmol}$), the crude boronic acid above $\left(955 \mathrm{mg}, 3.00 \mathrm{mmol}\right.$), and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(173 \mathrm{mg}, 0.150 \mathrm{mmol})$ and the resulting solution was heated to $80^{\circ} \mathrm{C}$. After stirring for 5 h , the reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$, quenched with 1 M aq. HCl , and diluted with EtOAc. Phases were separated, and the organic layer was washed with water followed by brine, dried oevr MgSO_{4} and concentrated. The residue was purified by silica gel column chromatography (hexanes/EtOAc) to give the title compound ($586 \mathrm{mg}, 50 \%$) was pale yellow paste: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, $\left.50^{\circ} \mathrm{C}\right) \delta 1.99(\mathrm{~s}, 3 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 3.60(\mathrm{~s}, 3 \mathrm{H}), 5.31(\mathrm{~s}, 1 \mathrm{H}), 5.61(\mathrm{~s}, 1 \mathrm{H}), 6.95-7.29(\mathrm{~m}, 8 \mathrm{H}), 7.36(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H})$, $7.41-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.58(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 50{ }^{\circ} \mathrm{C}\right) \delta 21.2$, $29.6,56.1,113.7,122.8,125.3,125.9,126.4,126.5,126.7,127.6,128.2,128.3,128.5,129.4,130.1,130.7,131.1,131.4$, $132.7,139.1,139.3,141.4,143.1,153.1,201.8 \mathrm{ppm}$; IR (neat) $3059,3012,2916,2835,1678 \mathrm{~cm}^{-1}$; HRMS-ESI (m / z) $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{28} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{Na} 415.1668$, found 415.1672.

General Procedure for the Preparations of Oxapropellanes 5

To a stirred solution of biaryl ketones in dry DMF (0.1 M) was added KHMDS (1 M in THF, 2.0 equiv). After stirring for 30 min , the reaction was quenched with 1 M aqueous HCl and diluted with $\mathrm{Et}_{2} \mathrm{O}$. Phases were separated, and the organic layer was washed three times with water followed by brine, dried over MgSO_{4} and concentrated. The residue was purified by silica gel column chromatography (hexanes/EtOAc) to give the desired oxapropellanes.

Compound 1a

The general procedure using 1-(2'-(1-(2-methoxynaphthalen-1-yl)vinyl)-[1,1'-biphenyl]-2-yl)-2-methylpropan-1-one ${ }^{1}$ (3.0 mmol) gave the title compound ($989 \mathrm{mg}, 88 \%$) as white solids. The spectroscopic data were in good agreement with those reported.

Compound 1b

The general procedure using 1-(4-chloro-2'-(1-(2-methoxynaphthalen-1-yl)vinyl)-[1,1'-biphenyl]-2-yl)-2-methylpropan-1-one ${ }^{2}(1.5 \mathrm{mmol})$ gave the title compound ($539 \mathrm{mg}, 88 \%$) as white solids: $\mathrm{mp} 202-203{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.85(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{~s}, 3 \mathrm{H}), 2.61(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.21-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.27-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.45(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.75$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.77-7.81(\mathrm{~m}, 2 \mathrm{H}), 8.10(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.24(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 24.2,26.6,44.4,49.4,51.8,93.2,112.5,122.4,124.1,124.3,124.5,126.3,127.4,127.6,127.8,128.7,129.3$, $130.2,130.3,130.6,130.8,131.1,131.4,133.9,134.5,137.4,159.7 \mathrm{ppm}$; IR (neat) $3059,3016,2958,2931 \mathrm{~cm}^{-1}$; HRMSFAB $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{28} \mathrm{H}_{22} \mathrm{ClO} 409.1354$, found 409.1359 .

Compound 1c

The general procedure using 1-(4-methoxy-2'-(1-(2-methoxynaphthalen-1-yl)vinyl)-[1,1'-biphenyl]-2-yl)-2-methylpropan-1-one ${ }^{2}(395 \mathrm{mg}, 0.905 \mathrm{mmol})$ gave the title compound ($217 \mathrm{mg}, 59 \%$) as white solids: $\mathrm{mp} 185-186{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.85(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{~s}, 3 \mathrm{H}), 2.58(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.82(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~s}$, $3 \mathrm{H}), 6.89(\mathrm{dd}, J=8.7,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.25-7.32(\mathrm{~m}$, $2 \mathrm{H}), 7.38(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.76-7.83(\mathrm{~m}, 2 \mathrm{H}), 8.06(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, $1 \mathrm{H}), 8.27(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 24.3,26.9,44.4,49.5,51.4,55.4,93.7,111.8,112.5$, $114.8,122.3,122.7,123.6,124.1,124.8,125.4,126.2,126.5,127.4,129.3,130.08,130.13,130.2,130.9,132.3,134.1$, 136.7, 159.6, 159.9 ppm ; IR (neat) $3059,3016,2958,2931,2866 \mathrm{~cm}^{-1}$; HRMS-FAB $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{29} \mathrm{H}_{25} \mathrm{O}_{2}$ 405.1849, found 405.1855.

Compound 1d

The general procedure using 1-(2'-(1-(2,7-dimethoxynaphthalen-1-yl)vinyl)-[1,1'-biphenyl]-2-yl)-2-methylpropan-1one ${ }^{1}(1.5 \mathrm{mmol})$ gave the title compound ($557 \mathrm{mg}, 92 \%$) as white solids: $\mathrm{mp} 163-165{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (500 MHz ,
$\left.\mathrm{CDCl}_{3}\right) \delta 0.86(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H}), 2.69(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.82(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 6.87(\mathrm{dd}, J=8.9$, $2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.41(\mathrm{~m}, 4 \mathrm{H}), 7.48(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.62(\mathrm{~d}, J=8.9$ $\mathrm{Hz}, 1 \mathrm{H}), 7.83-7.93(\mathrm{~m}, 2 \mathrm{H}), 8.14(\mathrm{dd}, J=7.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 24.2,26.4,44.2,49.1$, $52.1,55.3,94.3,101.2,110.0,114.8,122.4,123.7,124.6,125.4,126.8,127.3,127.6,128.4,128.6,129.7,130.6,130.7$, $132.0,132.5,132.8,133.0,137.8,157.9,160.5 \mathrm{ppm}$; IR (neat) $2931 \mathrm{~cm}^{-1} ; \operatorname{HRMS}-\mathrm{ESI}(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{29} \mathrm{H}_{25} \mathrm{O}_{2}$ 405.1849, found, 405.1850 .

Compound 1e

The general procedure using 1-(3-(2-(1-(2-(methoxymethoxy)naphthalen-1-yl)vinyl)phenyl)thiophen-2-yl)-2-methylpropan-1-one ${ }^{1}(324 \mathrm{mg}, 0.732 \mathrm{mmol})$ gave the title compound ($106 \mathrm{mg}, 38 \%$) as pale yellow solids: $\mathrm{mp} 169-$ $170{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.98(\mathrm{~s}, 3 \mathrm{H}), 1.18(\mathrm{~s}, 3 \mathrm{H}), 2.46(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.93(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.16(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.19-7.31(\mathrm{~m}, 3 \mathrm{H}), 7.41(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{ddd}, J=8.3,6.9$, $1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{dd}, J=7.5,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.06(\mathrm{dd}, J=7.5,1.0 \mathrm{~Hz}$, $1 \mathrm{H}), 8.29(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 24.2,28.0,45.8,49.7,51.9,91.7,112.5,122.5,123.4$, $124.4,124.6,126.3,126.9,127.1,127.4,128.7,129.4,130.0,130.41,130.43,130.9,133.0,136.2,137.2,160.0 \mathrm{ppm}$; IR (neat) 3059, 3016, 2958, $2927 \mathrm{~cm}^{-1}$; HRMS-FAB $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{26} \mathrm{H}_{21} \mathrm{OS} 381.1308$, found 381.1313 .

Compound 1f

The reaction was carried out according to the general procedure at $80^{\circ} \mathrm{C}$ for 20 min using $\mathbf{S 1}(2.4 \mathrm{mmol})$ to give the title compound ($703 \mathrm{mg}, 85 \%$) as white solids: $\mathrm{mp} 89-91{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.26-2.35(\mathrm{~m}, 1 \mathrm{H}), 2.38-2.44$ $(\mathrm{m}, 1 \mathrm{H}), 2.87-2.95(\mathrm{~m}, 1 \mathrm{H}), 3.03-3.12(\mathrm{~m}, 1 \mathrm{H}), 7.13(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.36(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.60(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.69-7.77(\mathrm{~m}, 2 \mathrm{H}), 7.87(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H})$, $7.89(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.03-8.12(\mathrm{~m}, 1 \mathrm{H}), 8.30(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 28.8,36.0,53.3,85.9,113.3,122.8,123.0,124.3,125.1,126.6,127.5,127.8,128.3,128.8,128.9,129.2,129.5$, $130.4,130.5,130.7,132.1,132.3,132.4,137.1,158.8 \mathrm{ppm}$; IR (neat) $3059,3016,2989,2943 \mathrm{~cm}^{-1} ;$ HRMS-FAB (m / z) $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{26} \mathrm{H}_{19} \mathrm{O} 347.1431$, found 347.1436.

Compound 1g

The reaction was carried out according to the general procedure at $80^{\circ} \mathrm{C}$ for 20 min using $\mathbf{S 5}(0.81 \mathrm{mmol})$ to give the title compound ($147 \mathrm{mg}, 50 \%$) as white solids: $\mathrm{mp} 88-90{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.29(\mathrm{td}, J=10.6,8.9 \mathrm{~Hz}$, $1 \mathrm{H}), 2.40$ (ddd, $J=11.4,8.9,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.53(\mathrm{~s}, 3 \mathrm{H}), 2.88(\mathrm{ddd}, J=11.0,9.3,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.06(\mathrm{dt}, J=11.5,10.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.11-7.16(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.29(\mathrm{~m}, 1 \mathrm{H}), 7.43-7.51(\mathrm{~m}, 3 \mathrm{H}), 7.63-7.67(\mathrm{~m}, 2 \mathrm{H}), 7.70-7.73(\mathrm{~m}, 1 \mathrm{H}), 7.89(\mathrm{~d}, J=7.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.99(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.04-8.07(\mathrm{~m}, 1 \mathrm{H}), 8.21(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 21.4$, $28.8,36.0,53.4,85.8,113.3,123.0,124.2,124.3,125.0,127.5,127.8,128.2,128.5,128.8,128.86,128.90,129.2,129.6$, $130.2,130.8,132.2,132.3,132.5,137.2,158.2 \mathrm{ppm}$; IR (neat) $3062,3012,2989,2943,2920 \mathrm{~cm}^{-1} ;$ HRMS-ESI (m / z) $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{27} \mathrm{H}_{21} \mathrm{O} 361.1587$, found 361.1582.

Compound 1h

The reaction was carried out according to the general procedure at $80^{\circ} \mathrm{C}$ for 20 min using $\mathbf{S 2}(1.0 \mathrm{mmol})$ to give the title compound ($184 \mathrm{mg}, 49 \%$) as white solids: $\mathrm{mp} 157-158{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.31(\mathrm{td}, J=10.4,8.6 \mathrm{~Hz}$, 1 H), 2.42 (ddd, $J=11.5,8.9,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.91$ (ddd, $J=11.0,9.2,2.1 \mathrm{~Hz}, 1 \mathrm{H}$), 3.07 (dt, $J=11.7,9.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.98 (s, $3 \mathrm{H}), 7.01-7.06(\mathrm{~m}, 2 \mathrm{H}), 7.14-7.19(\mathrm{~m}, 1 \mathrm{H}), 7.28-7.33(\mathrm{~m}, 1 \mathrm{H}), 7.46-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.57(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J$ $=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.72-7.74(\mathrm{~m}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.01(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.06-8.09$ (m, 1H) ppm; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 28.5,36.0,53.1,55.4,85.8,103.2,110.9,115.2,123.0,124.2,124.4,125.9$, $127.6,127.7,128.2,128.82,128.85,129.2,130.1,130.8,131.0,132.2,132.5,133.3,137.3,158.1,159.4 \mathrm{ppm}$; IR (neat) 3066, 3012, 2993, 2939, $2877 \mathrm{~cm}^{-1}$; HRMS-ESI $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{27} \mathrm{H}_{21} \mathrm{O}_{2}$ 377.1536, found 377.1539 .

Compound 1i

The general procedure using 1-(2-(2-(1-(2-methoxynaphthalen-1-yl)vinyl)naphthalen-1-yl)phenyl)-2-methylpropan-1one ${ }^{1}$ ($238 \mathrm{mg}, 0.521 \mathrm{mmol}$) gave the title compound ($215 \mathrm{mg}, 97 \%$) as white solids: $\mathrm{mp} 204-205{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.85(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}), 2.65(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.15-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.31-$ $7.40(\mathrm{~m}, 3 \mathrm{H}), 7.45-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.62(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{dd}, J=7.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.87-$ $7.93(\mathrm{~m}, 2 \mathrm{H}), 7.99(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.24(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.43(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.54-8.60(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 24.6,25.5,43.6,50.3,53.3,94.9,112.7,122.3,122.5,124.3,125.7,126.21,126.23,126.25$,
$127.0,127.2,127.9,128.2,128.57,128.63,129.0,129.2,129.95,129.97,130.01,130.9,132.0,132.8,134.1,134.9$, $135.8,160.1 \mathrm{ppm}$; IR (neat) $3055,3012,2974,2931 \mathrm{~cm}^{-1}$; $\operatorname{HRMS}-\mathrm{FAB}(\mathrm{m} / z)[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{32} \mathrm{H}_{25} \mathrm{O} 425.1900$, found 425.1905 .

Compound 1j

The general procedure using 1-(3-(2-(1-(2-methoxynaphthalen-1-yl)vinyl)phenyl)naphthalen-2-yl)-2-methylpropan-1one ${ }^{2}(1.5 \mathrm{mmol})$ gave the title compound ($613 \mathrm{mg}, 96 \%$) as pale yellow solids: $\mathrm{mp}>250{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 0.84(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}), 2.71(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.86(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.21$ $(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.48(\mathrm{~m}, 5 \mathrm{H}), 7.62(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.81-7.90(\mathrm{~m}, 2 \mathrm{H}), 7.99(\mathrm{~s}$, $1 \mathrm{H}), 8.06(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.15(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.29(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.33(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 24.2,26.6,44.1,49.6,51.9,94.3,112.6,121.5,122.29,122.31,124.6,125.1,126.16,126.24,126.3,126.5$, $127.5,127.7,127.8,128.3,129.3,130.05,130.08,130.8,130.9,131.0,131.8,132.7,133.3,133.5,137.8,160.0 \mathrm{ppm}$; IR (neat) $3055,3020,2962,2931 \mathrm{~cm}^{-1}$; HRMS-FAB $(\mathrm{m} / z)[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{32} \mathrm{H}_{25} \mathrm{O} 425.1900$, found 425.1905 .

Preparation of Enantiopure Substrates

(+)-1a

Racemic mixtures of 1a was seperated by preparative chiral HPLC (column: YMC CHIRAL Amylose-SA, eluent: hexane $/ i-\mathrm{PrOH}=99.5 / 0.5$), flow rate: $25 \mathrm{~mL} / \mathrm{min}$, detection: UV 254 nm). Analytical HPLC (column: YMC CHIRAL Amylose-SA, eluent: hexane $/ i-\mathrm{PrOH}=99.5 / 0.5$, flow rate: $0.20 \mathrm{~mL} / \mathrm{min}$, detection: UV 254 nm , temperature: $25{ }^{\circ} \mathrm{C}$) $(+)-1 \mathbf{a} 23.5 \mathrm{~min},(-)-4 \mathbf{a} 25.8 \mathrm{~min} .[\alpha]^{21} \mathrm{D}+232\left(\mathrm{c} 0.74, \mathrm{CHCl}_{3}, 99 \%\right.$ ee $)$. Recrystalization from hexanes/EtOAc afforded colorless, clear plates suitable for X-ray crystalography. The absolute configuration was determined by X-ray crystalography.

Chromatogram of racemic 1a
mV

SPD－20A 254nm

peak\＃	time	area	height	area\％
1	23.541	14156618	409269	49.202
2	25.824	14615945	378830	50.798
合計		28772562	788100	100.000

Chromatogram of（＋）－1a（99\％ee）
mV

SPD－20A 254 nm

peak\＃	time	area	height	area\％
1	23.707	6465490	203995	99.968
2	26.362	2095	305	0.032
合計		6467584	204299	100.000

（＋）－1f

Racemic mixtures of $\mathbf{1 f}$ was seperated by preparative chiral HPLC (column: YMC CHIRAL Amylose-SA, eluent: hexane $/ i-\mathrm{PrOH}=99.5 / 0.5$), flow rate: $25 \mathrm{~mL} / \mathrm{min}$, detection: UV 254 nm). Analytical HPLC (column: YMC CHIRAL Amylose-SA, eluent: hexane $/ i-\mathrm{PrOH}=99.5: 0.5$, flow rate: $0.40 \mathrm{~mL} / \mathrm{min}$, detection: UV 254 nm , temperature: $25{ }^{\circ} \mathrm{C}$) $(+)-\mathbf{1 f} 16.8 \mathrm{~min},(-)-\mathbf{1 f} 19.0 \mathrm{~min} .[\alpha]^{21} \mathrm{D}+742\left(\mathrm{c} 0.55, \mathrm{CHCl}_{3}, 99 \%\right.$ ee $)$. The absolute configuration was determined by comparing the CD spectra with that of $(+)-\mathbf{1 a}$, whose absolute configuration was determined by X-ray crystalography.

Chromatogram of Racemic $\mathbf{1 f}$

Chromatogram of (+)-1f (99\% ee)

CD Spectra of (+)-1a (red line) and (+)-1f (blue line), and UV-vis spectra of (+)-1f (gray line) in MeCN (17 $\mu \mathrm{M})$. The spectral patterns suggest that the absolute configurations of these two compounds are identical.

5. Acid-promoted Rearrangement of Oxapropellanes

General Procedure for Spirocyclizations of Oxapropellanes

To a stirred solution of oxapropellane 1 in dry 1,2 -dichloroethane $(0.05 \mathrm{M})$ was added $\mathrm{TfOH}\left(2.0\right.$ equiv) at $-20^{\circ} \mathrm{C}$. After stirring for 20 min , the reaction was quenched with $\mathrm{Et}_{3} \mathrm{~N}$ and diluted with CHCl_{3}. Phases were separated and the organic layer was washed with 1 M aqueous HCl followed by water, dried over MgSO_{4} and concentrated. The residue was purified by silica gel column chromatography (hexanes/EtOAc) to give the desired spirocycles 4.

Compound 4a

The general procedure using 1a (1.00 mmol) gave the title compound ($347 \mathrm{mg}, 93 \%$) as pale yellow solids. WRecrystalization from $\mathrm{EtOAc} / \mathrm{CHCl}_{3}$ gave colorless, clear plates suitable for X-ray crystalography: mp 219-220 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.87(\mathrm{~s}, 3 \mathrm{H}), 1.23(\mathrm{~s}, 3 \mathrm{H}), 3.25(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.29(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.34(\mathrm{~d}, J$ $=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{td}, J=7.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{td}, J=7.5,1.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.27(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.64-7.73(\mathrm{~m}$, $2 \mathrm{H}), 7.91(\mathrm{dd}, J=7.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.70(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.76(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 25.5,31.0,46.7,50.1,72.8,123.2,123.3,125.0,125.4,126.3,126.48,126.54,126.6,127.1,128.1,128.6$, $129.3,129.4,129.5,130.4,131.1,131.3,137.3,139.4,142.2,145.3,201.9 \mathrm{ppm}$; IR (neat) $3062,3020,2962,2927,1662$ $\mathrm{cm}^{-1} ;$ HRMS-FAB $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{28} \mathrm{H}_{23} \mathrm{O} 375.1744$, found 375.1749.

Compound 5a

The reaction was carried out at room temperature for 2 h using $\mathbf{1 a}(18.7 \mathrm{mg}, 0.0500 \mathrm{mmol})$ according to the general procedure to give the title compound ($4.1 \mathrm{mg}, 22 \%$) as white solids. Recrystalization from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane gave colorless, clear prisms suitable for X-ray crystalography: mp $202-203{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.28(\mathrm{~s}, 3 \mathrm{H}), 1.49(\mathrm{~s}, 3 \mathrm{H})$, $2.78(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.42(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.18-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.27-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.45(\mathrm{~m}, 3 \mathrm{H}), 7.6(\mathrm{t}, J$ $=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.68-7.77(\mathrm{~m}, 2 \mathrm{H}), 7.91-7.98(\mathrm{~m}, 2 \mathrm{H}), 8.23(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.79(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.87(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 26.8,27.1,37.8,91.0,122.7,123.3,124.3,124.45,124.50,125.6,125.9$, 126.1, 126.3, 126.8, 127.2, 127.9, 128.1, 128.3, 129.3, 129.7, 130.4, 130.6, 131.0, 131.8, 132.8, 152.5 ppm ; IR (neat) $2974 \mathrm{~cm}^{-1} ;$ HRMS-ESI $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{28} \mathrm{H}_{23} \mathrm{O} 375.1744$, found 375.1745.

Compound 4b

The general procedure using $\mathbf{1 b}(0.20 \mathrm{mmol})$ gave the title compound $(71.9 \mathrm{mg}, 88 \%)$ as white solids: $\mathrm{mp} 133-135{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.86(\mathrm{~s}, 3 \mathrm{H}), 1.22(\mathrm{~s}, 3 \mathrm{H}), 3.23(\mathrm{~s}, 2 \mathrm{H}), 6.34(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.45(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 6.84(\mathrm{dd}, J=8.1,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{td}, J=7.6,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.28(\mathrm{ddd}, J=8.0,7.0,1.1 \mathrm{~Hz}$, 1 H), 7.43 (dd, $J=7.5,1.3 \mathrm{~Hz}, 1 \mathrm{H}$), 7.49 (ddd, $J=8.2,6.9,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{dd}, J=8.9,2.3$ $\mathrm{Hz}, 1 \mathrm{H}), 7.88(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.62(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.66(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 25.5,30.9,46.5,50.1,72.8,123.2,124.3,124.9,125.8,126.4,126.59,126.63,126.9,127.3,128.0,128.6$,
$129.5,129.6,130.3,130.4,130.9,132.5,138.5,138.7,141.9,145.4,201.6$ ppm; IR (neat) 3066, 3016, 2962, 2927, 1658 $\mathrm{cm}^{-1} ;$ HRMS-FAB $(m / z)[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{28} \mathrm{H}_{22} \mathrm{ClO} 409.1354$, found 409.1359.

Compound 4c

The gengeral procedure using $\mathbf{1 c}(40.5 \mathrm{mg}, 0.100 \mathrm{mmol})$ gave the title compound ($31.5 \mathrm{mg}, 78 \%$) as white solids: mp $200-201{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.87(\mathrm{~s}, 3 \mathrm{H}), 1.23(\mathrm{~s}, 3 \mathrm{H}), 3.24(\mathrm{~s}, 2 \mathrm{H}), 3.99(\mathrm{~s}, 3 \mathrm{H}), 6.34(\mathrm{~d}, J=9.7 \mathrm{~Hz}$, $1 \mathrm{H}), 6.48(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{td}, J=7.6,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.18-7.26(\mathrm{~m}, 3 \mathrm{H}), 7.32(\mathrm{dd}, J=$ $9.2,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{dd}, J=7.4,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.59(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, $1 \mathrm{H}), 8.66(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 25.6,31.0,46.9,50.0,55.4,72.9,105.7,116.5,122.8$, $124.9,125.3,125.4,125.5,126.5,127.1,127.5,128.2,129.4,130.4,130.6,131.4,137.9,138.8,142.2,145.3,158.3$, 201.8 ppm ; IR (neat) $3066,3008,2962,2931,1658 \mathrm{~cm}^{-1}$; HRMS-FAB (m / z) $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{29} \mathrm{H}_{25} \mathrm{O}_{2} 405.1849$, found 405.1855.

Compound 4d

The general procedure using $\mathbf{1 d}(0.20 \mathrm{mmol})$ gave the title compound ($74.2 \mathrm{mg}, 92 \%$) as white solids: $\mathrm{mp} 204-206{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.89(\mathrm{~s}, 3 \mathrm{H}), 1.21(\mathrm{~s}, 3 \mathrm{H}), 3.27(\mathrm{~s}, 2 \mathrm{H}), 3.49(\mathrm{~s}, 3 \mathrm{H}), 6.04(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.22(\mathrm{~d}, J$ $=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{dd}, J=8.3,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{ddd}, J=8.1,7.0,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=$ $8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{ddd}, J=8.3,7.02,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{td}, J=7.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{ddd}, J=$ $8.1,6.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{dd}, J=7.7,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.69(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.74(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 25.3,31.0,46.5,50.0,55.0,72.8,110.9,115.4,123.20,123.25,123.9,124.1,125.0,125.4,126.3$, $126.49,126.54,126.6,128.6,129.3,131.0,131.2,131.3,137.4,139.3,144.5,145.2,160.7,201.5 \mathrm{ppm}$; IR (neat) 3059, 3020, 2962, 2927, $1654 \mathrm{~cm}^{-1}$; HRMS-FAB $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{29} \mathrm{H}_{25} \mathrm{O}_{2} 405.1849$, found 405.1855 .

Compound 4e

4e

5e

The general procedure using $\mathbf{1 e}(38.1 \mathrm{mg}, 0.100 \mathrm{mmol})$ gave compounds $\mathbf{4 e}(23.6 \mathrm{mg}, 62 \%)$ and $\mathbf{5 e}(11.9 \mathrm{mg}, 31 \%) . \mathbf{4 e}$: pale yellow solids; mp $187-188{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.87(\mathrm{~s}, 3 \mathrm{H}), 1.22(\mathrm{~s}, 3 \mathrm{H}), 3.09(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H})$, $3.22(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.34(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.42(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{td}, J=7.5$,
$1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.19-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.60(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.06(\mathrm{~d}, J=5.4$ $\mathrm{Hz}, 1 \mathrm{H}), 8.35(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 25.5,30.6,47.4,51.0,72.3,122.8,124.5,125.1$, $125.2,125.4,126.37,126.41,127.2,127.8,128.3,129.4,129.9,130.4,134.1,135.9,136.1,137.0,142.3,145.3,201.8$ ppm; IR (neat) $3062,3008,2962,2924,1658 \mathrm{~cm}^{-1}$; HRMS-FAB (m / z) [M+H]+ calcd for $\mathrm{C}_{26} \mathrm{H}_{21} \mathrm{OS} 381.1308$, found 381.1313. 5e: pale yellow solids; $\mathrm{mp} 118-119{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.34(\mathrm{~s}, 3 \mathrm{H}), 1.48(\mathrm{~s}, 3 \mathrm{H}), 2.90(\mathrm{~d}, J=$ $14.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.96(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{ddd}, J=8.4,6.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.28(\mathrm{~m}, 1 \mathrm{H}), 7.36-7.42(\mathrm{~m}, 3 \mathrm{H}), 7.49$ $(\mathrm{d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{ddd}, J=8.2,7.0,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.90-7.96(\mathrm{~m}, 2 \mathrm{H}), 8.12(\mathrm{~d}, J=5.4 \mathrm{~Hz}$, $1 \mathrm{H}), 8.41(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 27.1,27.2,43.2,90.7,123.1,123.8,124.4,124.5$, $124.9,125.4,125.6,125.7,127.2,127.4,128.1,128.2,128.6,129.2,129.3,130.2,130.4,131.1,132.9,135.7,139.2$, 152.3 ppm ; IR (neat) $3059,3008,2974,2927 \mathrm{~cm}^{-1}$; HRMS-ESI $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{26} \mathrm{H}_{21} \mathrm{OS} 381.1308$, found 381.1310 .

Compound 4f

The general procedure using $\mathbf{1 f}(0.22 \mathrm{mmol})$ gave the title compound ($65.8 \mathrm{mg}, 87 \%$) as white solids: $\mathrm{mp} 190-191{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.40-2.48(\mathrm{~m}, 1 \mathrm{H}), 2.86-2.95(\mathrm{~m}, 1 \mathrm{H}), 3.53-3.70(\mathrm{~m}, 2 \mathrm{H}), 6.43(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H})$, $6.82(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{td}, J=7.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.50(\mathrm{~m}, 2 \mathrm{H})$, $7.65-7.74(\mathrm{~m}, 3 \mathrm{H}), 7.95-8.03(\mathrm{~m}, 1 \mathrm{H}), 8.67(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.70-8.76(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 30.8,43.2,66.3,123.2,123.3,125.2,125.3,125.6,126.6,126.75,126.81,127.0,127.4,128.2,128.4,129.4$, $129.5,130.5,131.2,131.4,138.6,141.7,145.5,146.7,202.9 \mathrm{ppm}$; IR (neat) $3062,3012,2939,2846,1654 \mathrm{~cm}^{-1}$; HRMSFAB $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{26} \mathrm{H}_{19} \mathrm{O} 347.1431$, found 347.1436.

Compound 4g

The general procedure using $\mathbf{1 g}(0.10 \mathrm{mmol})$ gave the title compound $(26.6 \mathrm{mg}, 74 \%)$ as pale yellow solids: $\mathrm{mp} 77-$ $78{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.32(\mathrm{~s}, 3 \mathrm{H}), 2.41(\mathrm{ddd}, J=13.1,8.4,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.87(\mathrm{ddd}, J=12.9,8.9,6.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.53-3.67(\mathrm{~m}, 2 \mathrm{H}), 6.40(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.23-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.49(\mathrm{~m}, 1 \mathrm{H}), 7.64-7.71(\mathrm{~m}, 3 \mathrm{H}), 7.97-8.00(\mathrm{~m}, 1 \mathrm{H}), 8.66(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.70-8.74$ (m, 1H) ppm; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 20.8,30.7,43.3,66.0,123.2,123.3,125.2,125.3,125.4,125.6,126.6$, 126.7, 126.8, 127.3, 128.3, 129.4, 130.0, 131.2, 131.3, 136.6, 138.8, 141.6, 143.8, 145.7, 203.2 ppm ; IR (neat) 3062, 3012, 2920, 2850, $1654 \mathrm{~cm}^{-1}$; HRMS-ESI $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{27} \mathrm{H}_{21} \mathrm{O} 361.1587$, found 361.1592.

Compound 4h

The general procedure using $\mathbf{1 h}(0.20 \mathrm{mmol})$ gave the title compound ($59.4 \mathrm{mg}, 79 \%$) as white solids: $\mathrm{mp} 103-105^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.44(\mathrm{ddd}, J=13.0,8.7,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.89(\mathrm{ddd}, J=12.9,9.2,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{~s}, 3 \mathrm{H})$, $3.56-3.68(\mathrm{~m}, 2 \mathrm{H}), 6.30(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.36(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{dd}, J=8.3,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{dd}, J=8.2$, $0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.29(\mathrm{~m}, 1 \mathrm{H}), 7.39(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.45-7.49(\mathrm{~m}, 1 \mathrm{H}), 7.63-7.71(\mathrm{~m}, 3 \mathrm{H}), 7.96-7.99(\mathrm{~m}, 1 \mathrm{H})$, $8.66(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.70-8.74(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 30.8,43.5,55.2,66.4,111.6,114.0$, $121.9,122.7,123.2,123.3,125.36,125.44,125.6,126.6,126.8,128.2,129.4,131.1,131.2,131.4,138.9,141.6,145.4$, 149.1, 161.6, 202.9 ppm ; IR (neat) $3062,3008,2939,2846,1651 \mathrm{~cm}^{-1}$; $\operatorname{HRMS}-E S I(\mathrm{~m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{27} \mathrm{H}_{21} \mathrm{O}_{2}$ 377.1536 , found 377.1540 .

Compound 4i

The general procedure using $1 \mathbf{i}(42.5 \mathrm{mg}, 0.100 \mathrm{mmol})$ gave the title compound ($35.7 \mathrm{mg}, 84 \%$) as white solids: 204$205{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.89(\mathrm{~s}, 3 \mathrm{H}), 1.24(\mathrm{~s}, 3 \mathrm{H}), 3.34(\mathrm{~s}, 2 \mathrm{H}), 6.35(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.43(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{td}, J=7.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{td}, J=7.5,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{dd}, J=7.4,1.1$ $\mathrm{Hz}, 1 \mathrm{H}), 7.51-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.60-7.64(\mathrm{~m}, 2 \mathrm{H}), 7.66-7.73(\mathrm{~m}, 2 \mathrm{H}), 7.86(\mathrm{dd}, J=7.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.99-8.03(\mathrm{~m}, 1 \mathrm{H})$, $9.06(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 9.15(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 25.5,31.0,46.5,50.4,73.0,124.5$, $124.8,125.5,125.76,125.82,126.0,126.4,126.9,127.2,127.7,128.17,128.25,128.3,128.6,128.9,129.5,130.1,130.3$, $130.6,131.0,132.7,137.6,140.0,142.4,145.3,202.1 \mathrm{ppm}$; IR (neat) $3062,3012,2962,2927,1662 \mathrm{~cm}^{-1}$; HRMS-FAB $(m / z)[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{32} \mathrm{H}_{25} \mathrm{O} 425.1900$, found 425.1905.

Compound 4j

The general procedure using $\mathbf{1 j}(0.20 \mathrm{mmol})$ gave the title compound ($66.8 \mathrm{mg}, 79 \%$) as white solids: $\mathrm{mp} 228-230{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.89(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{~s}, 3 \mathrm{H}), 3.32(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.35(\mathrm{~d}, J$ $=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.19-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.28(\mathrm{t}, J$ $=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.54-7.62(\mathrm{~m}, 3 \mathrm{H}), 8.03-8.09(\mathrm{~m}, 1 \mathrm{H}), 8.11-8.18(\mathrm{~m}$, $1 \mathrm{H}), 8.36(\mathrm{~s}, 1 \mathrm{H}), 8.84(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 9.22(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 25.5,31.1,47.0,50.0,73.0$, $122.2,123.3,123.5,125.7,125.9,126.5,126.7,127.2,127.8,128.0,128.1,128.6,128.7,129.5,129.7,130.4,131.6$, $131.8,131.9,137.2,139.5,142.1,145.3,201.9 \mathrm{ppm}$; IR (neat) $3055,3012,2962,2927,1658 \mathrm{~cm}^{-1} ;$ HRMS-FAB (m / z) $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{32} \mathrm{H}_{25} \mathrm{O} 425.1900$, found 425.1905.

Chirality Transfer Experiments

(+)-4a

The general procedure using (+)-1a ($14.8 \mathrm{mg}, 0.0395 \mathrm{mmol}, 99 \%$ ee) gave the title compound ($12.8 \mathrm{mg}, 86 \%$ yield, 99% ee) as white solids. Analytical HPLC (column: Daicel Chiralpak AD-H, eluent: hexane $/ i-\mathrm{PrOH}=90 / 10$, flow rate: 0.75 $\mathrm{mL} / \mathrm{min}$, detection: UV 254 nm , temperature: $25^{\circ} \mathrm{C}$) (+)-4a $17.0 \mathrm{~min},(-)-4 \mathrm{a} 25.2 \mathrm{~min} .[\alpha]^{21} \mathrm{D}+37.2\left(\mathrm{c} 1.28, \mathrm{CHCl}_{3}\right.$, 99% ee). Recrystalization from CHCl_{3} gave colorless, clear plates suitable for X-ray crystalography. The abusolute configuration was determined by X-ray crystalography.

Racemic Sample of 4a
mV

SPD-20A 254 nm

peak\#	time	area	height	area $\%$
1	16.999	54545608	2066424	49.804
2	25.191	54975082	1593477	50.196
合計		109520690	3659901	100.000

Optically Active Sample of (+)-4a (99\% ee)
mV

SPD-20A 254 nm

peak\#	time	area	height	area $\%$
1	16.699	18745275	802299	100.003
2	24.288	-477	0	-0.003
合計		18744798	802299	100.000

(+)-4f

The general procedure using (+)-1f ($7.3 \mathrm{mg}, 0.021 \mathrm{mmol}, 99 \%$ ee) gave the title compound ($6.0 \mathrm{mg}, 82 \%$ yield, 99% ee) as white solids. Analytical HPLC (column: Daicel Chiralpak AS-H, eluent: hexane $/ i-\operatorname{PrOH}=90 / 10$, flow rate: 0.75 $\mathrm{mL} / \mathrm{min}$, detection: UV 254 nm , temperature: $25^{\circ} \mathrm{C}$) (+)-4f $25.2 \mathrm{~min},(-)-4 \mathbf{f} 15.4 \mathrm{~min} .[\alpha]^{21} \mathrm{D}+39.8\left(\mathrm{c} 0.59, \mathrm{CHCl}_{3}, 99 \%\right.$ ee). Recrystalization from hexanes/EtOH gave colorless, clear plates suitable for X-ray crystalography. The abusolute configuration was determined by X-ray crystalography.

Chromatogram of racemic $\mathbf{4 f}$

Chromatogram of (+)-4f (99\% ee)

6. Derivertizations of Products

Compound 6 and epi-6

To a stirred solution of compound $4 \mathbf{4}(69.3 \mathrm{mg}, 0.200 \mathrm{mmol})$ and $\mathrm{CeCl}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}(112 \mathrm{mg}, 0.300 \mathrm{mmol})$ in THF (0.6 mL) and $\mathrm{MeOH}(1.4 \mathrm{~mL})$ was added five portions of $\mathrm{NaBH}_{4}(11.3 \mathrm{mg}, 0.300 \mathrm{mmol}$ each, totally 1.50 mmol$)$ every 5 min . After stirring another 5 min , the reaction was quenched with sat. aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and diluted with EtOAc. Phases were separated, and the aqueous phase was extracted three times with EtOAc. The combined organic phases were washed with brine, dried over MgSO_{4} and concentrated. The residue was purified by silica gel column chromatography (hexanes/EtOAc) to give compound $\mathbf{6}(57.0 \mathrm{mg}, 82 \%)$ along with epi-6 ($9.2 \mathrm{mg}, 13 \%$). Recrystalization of compound $\mathbf{6}$ from $\mathrm{CHCl}_{3} / \mathrm{EtOH}$ gave colorless, clear plates prisms for X-ray crystalographic studies. 6: white solids; mp $85-87{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.40(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.94-2.04(\mathrm{~m}, 1 \mathrm{H}), 3.35-3.49(\mathrm{~m}, 3 \mathrm{H}), 5.58-5.62(\mathrm{~m}, 1 \mathrm{H}), 5.99$ (dd, $J=10.0,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.51(\mathrm{dd}, J=9.9,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.91-6.98(\mathrm{~m}, 1 \mathrm{H}), 7.13-7.19(\mathrm{~m}$, $2 \mathrm{H}), 7.33-7.39(\mathrm{~m}, 1 \mathrm{H}), 7.51-7.58(\mathrm{~m}, 1 \mathrm{H}), 7.65-7.74(\mathrm{~m}, 2 \mathrm{H}), 7.77(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.91-7.97(\mathrm{~m}, 1 \mathrm{H}), 8.71-8.79$ (m, 2H) ppm; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 31.6,33.1,62.7,74.0,123.0,123.7,125.32,125.34,125.9,126.7,126.76$, $126.85,126.9,127.0,127.1,127.5,128.1,128.4,129.4,131.0,131.5,131.67,131.70,135.9,142.4,142.9 \mathrm{ppm} ;$ IR (neat) 3564, 3062, 3016, 2939, 2924, $2846 \mathrm{~cm}^{-1}$; HRMS-ESI (m / z) [M+Na] calcd for $\mathrm{C}_{26} \mathrm{H}_{20} \mathrm{ONa} 371.1406$, found 371.1403. epi-6: white solids; mp $165-166{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.44(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.04$ (dt, $J=12.9,10.2 \mathrm{~Hz}$, $1 \mathrm{H}), 2.76(\mathrm{dd}, J=12.9,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.33-3.49(\mathrm{~m}, 2 \mathrm{H}), 4.34(\mathrm{t}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.24(\mathrm{dd}, J=9.6,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{~d}$, $J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{td}, J=7.5,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.52$ $(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.63-7.76(\mathrm{~m}, 3 \mathrm{H}), 7.88-8.02(\mathrm{~m}, 1 \mathrm{H}), 8.73(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.76(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 29.3,38.7,60.1,69.7,122.8,123.1,125.1,125.5,125.6,126.46,126.48,126.5,126.7$, 127.6, $128.2,128.5,128.9,129.7,130.3,130.5,130.7,130.8,130.9,137.0,141.1,141.4 \mathrm{ppm}$; IR (neat) $3545,3062,3016,3020$, 2924, $2850 \mathrm{~cm}^{-1}$; HRMS-ESI $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{26} \mathrm{H}_{20} \mathrm{ONa} 371.1406$, found 371.1411.

Compound 7

To a stirred solution of compound $\mathbf{6}(34.8 \mathrm{mg}, 0.100 \mathrm{mmol})$ in HFIP $(1.0 \mathrm{~mL})$ was added three portions of MsOH (20 $\mu \mathrm{L}, 0.30 \mathrm{mmol}$ each, totally 0.90 mmol) every 10 min . After stirring another 10 min , the reaction was quenched with sat. aqueous NaHCO_{3} and dilueted with CHCl_{3}. Phases were separated and the organic phase was washed with water, dried over MgSO_{4} and concentrated. The residue was purified by silica gel column chromatography (hexanes/EtOAc) followed by preparative HPLC (column: YMC-GPC T-2000 and YMC-GPC T-4000, eluent: CHCl_{3}) to give the title compound ($25.1 \mathrm{mg}, 76 \%$) as white solids. Recrystalization from cyclohexane $/ \mathrm{CHCl}_{3}$ gave colorless, clear plates suitable for X-ray crystalography: mp 91-92 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.08-3.65(\mathrm{~m}, 4 \mathrm{H}), 7.49-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.56-7.62(\mathrm{~m}, 2 \mathrm{H})$, $7.63-7.70(\mathrm{~m}, 3 \mathrm{H}), 7.83(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.91(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.97(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.21-8.29(\mathrm{~m}, 2 \mathrm{H}), 8.47$
(dd, $J=8.3,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.72-8.81(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 23.9,25.5,123.0,123.2,123.7,124.0$, $125.2,125.5,125.8,126.1,126.2,126.4,126.5,126.9,127.2,128.5,129.2,130.0,130.5,130.6,131.2,131.3,131.9$, $132.7,133.6,134.5 \mathrm{ppm}$; IR (neat) $3066,3012,2958,2885,2827 \mathrm{~cm}^{-1}$; HRMS-FAB $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{26} \mathrm{H}_{19}$ 331.1482, found 331.1487.

Compound 8

To a stirred solution of compound $9(69.7 \mathrm{mg}, 0.200 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(69 \mu \mathrm{~L}, 0.50 \mathrm{mmol})$ in dry DCM (2.0 mL) was added $\mathrm{MsCl}(31 \mu \mathrm{~L}, 0.40 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. After stirreing for 1.5 h , the reaction was quenched with water and diluted with EtOAc and $\mathrm{Et}_{2} \mathrm{O}(1 / 1)$. Phases were separated and the organic layer was washed with water followed by brine, dried over MgSO_{4} and concentrated. The resulting crude product was used without further purifications.
To a stirred solution of the crude product above in dry EtOAc was added silica gel (Wakogel 60N, dried at $100^{\circ} \mathrm{C}$ under reduced presure prior to use, 400 mg). After stirring for 20 h , the reaction mixture was diluted with CHCl_{3}, the silica gel was filtered off, washed with CHCl_{3}, and the filterate was concentrated. The resulting solids were washed with hexanes $/ \mathrm{Et}_{2} \mathrm{O}$ to give the title compound ($40.4 \mathrm{mg}, 61 \%$) as white solids: $\mathrm{mp} 207-209{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \mathrm{NMR}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 2.89(\mathrm{td}, J=14.75,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.95-3.09(\mathrm{~m}, 2 \mathrm{H}), 3.55-3.63(\mathrm{~m}, 1 \mathrm{H}), 7.15-7.20(\mathrm{~m}, 1 \mathrm{H}), 7.32(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.37-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.56-7.64(\mathrm{~m}, 3 \mathrm{H}), 7.64-7.73(\mathrm{~m}, 2 \mathrm{H}), 7.86(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.22-$ $8.28(\mathrm{~m}, 1 \mathrm{H}), 8.75(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.77-8.83(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 26.2,30.6,122.9,123.1$, $124.0,124.6,124.8,125.4,125.6,126.0,126.3,126.8,127.2,127.7,128.0,128.3,129.6,129.9,130.0,130.2,130.6$, $130.8,131.2,133.2,136.4,138.2 \mathrm{ppm}$; IR (neat) $3051,3008,2943,2889,2831 \mathrm{~cm}^{-1}$; HRMS-FAB $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{26} \mathrm{H}_{19} 331.1482$, found 331.1487.

Formations of Compounds 7 and 8 from epi-6

Analogous procedure to that for the synthesis compound 7 using epi- 6 ($7.0 \mathrm{mg}, 0.020 \mathrm{mmol}$) instead of compound $\mathbf{6}$ yielded compound $7(53 \%)$ and $\mathbf{8}(16 \%)$ along with recovered starting material (31%). Yields were determined by NMR using triphenylmethane as an internal standard.

On the other hand, analogous procedure to that for the synthesis compound $\mathbf{8}$ using epi-6 ($7.0 \mathrm{mg}, 0.020 \mathrm{mmol}$) instead of compound 6 yielded compound $7(9 \%)$ and $\mathbf{8}(60 \%)$. Yields were determined by NMR using triphenylmethane as an internal standard.

Compound 9

To a test tube containing compound $7(33.0 \mathrm{mg}, 0.100 \mathrm{mmol})$ and triphenylcarbenium tetrafluoroborate $(99.0 \mathrm{mg}, 0.300$ mmol) was added dry DCE $(3.0 \mathrm{~mL})$, and the resulting solution was heated to $80^{\circ} \mathrm{C}$. After stirring for 2 h , the reaction was quenched with water and diluted with CHCl_{3}. Phases were separated and the organic phase was washed with water, dried over MgSO_{4} and concentrated. The residue was purified by silica gel column chromatography (hexanes/EtOAc) and the resulting solids were washed with hexanes $/ \mathrm{Et}_{2} \mathrm{O}$ to give the title compound ($25.3 \mathrm{mg}, 77 \%$) as white solids: mp $152-153{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.62-7.79(\mathrm{~m}, 6 \mathrm{H}), 7.90(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{dd}, J=7.73,1.1 \mathrm{~Hz}, 1 \mathrm{H})$, 8.68-8.78 (m, 3H), 8.79-8.88(m, 4H), $8.91(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 121.0,122.1,123.1$, $123.2,123.5,123.6,125.9,126.1,126.66,126.69,126.82,126.85,127.2,127.4,128.11,128.14,128.4,128.5,129.4$, 129.7, 130.0, 130.1, 130.23, 130.25, 131.1, 131.6 ppm ; IR (neat) 3059, 3028, $2924 \mathrm{~cm}^{-1}$; UV-vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda_{\max }(\varepsilon) 298$ (78400), 288 (58400), 247 (25900) $\mathrm{nm}\left(\mathrm{L} \mathrm{mol}^{-1} \mathrm{~cm}^{-1}\right)$; Fluorescence $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda_{\text {max }}$ (normalized intensity) 409 (1.0), 390 (0.91) nm; HRMS-FAB $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{26} \mathrm{H}_{17}$ 329.1325, found 329.1330.

Compound 10

To a test tube containing compound $\mathbf{8}(16.5 \mathrm{mg}, 0.0500 \mathrm{mmol})$ and triphenylcarbenium tetrafluoroborate ($49.5 \mathrm{mg}, 0.150$ $\mathrm{mmol})$ was added dry DCE $(1.5 \mathrm{~mL})$, and the resulting solution was heated to $80^{\circ} \mathrm{C}$. After stirring for 5 h , the reaction was quenched with water and diluted with CHCl_{3}. Phases were separated and the organic phase was washed with water, dried over MgSO_{4} and concentrated. The residue was purified by silica gel column chromatography (hexanes/EtOAc). The resulting solids were washed with hexanes $/ \mathrm{Et}_{2} \mathrm{O}$ to give the title compound ($14.1 \mathrm{mg}, 86 \%$) as white solids. The spectroscopic data were in good agreement with those reported. ${ }^{3}$

7. DFT Calculations

All the calculations were performed using Gaussian 16 program. ${ }^{4}$ Geometry optimizations were performed at B3LYP/6$31 \mathrm{G}(\mathrm{d}, \mathrm{p}) / \mathrm{CPCM}(\mathrm{DCE})$ level of theory. The TS geometries were verified by vibrational frequency analysis and intrinsic reaction coordinate calculations were also performed at the same level of theory. Single point energies were calculated at the mPW1PW91/6-311+G(2d,p)/CPCM (DCE) theoretical level for the optimized geometries. This level of theory was previously applied for the rearrangements of carbocations in literature. ${ }^{5}$

1f- \mathbf{H}^{+}

Thermal correction to Energy $=$	0.391748
Thermal correction to Enthalpy=	0.392692
Thermal correction to Gibbs Free Energy=	0.328271
Sum of electronic and zero-point Energies=	-1076.885335
Sum of electronic and thermal Energies=	-1076.866611
Sum of electronic and thermal Enthalpies=	-1076.865667
Sum of electronic and thermal Free Energies=	-1076.930087

C	1.01095	-1.18636	0.4928
O	0.37913	-2.0436	-0.77781
C	0.5745	-1.78798	1.82811
C	2.43859	-0.96169	0.21861
C	-0.97965	-1.57583	-0.87172
C	-1.23012	-0.52805	-0.02226
C	-1.91212	-2.24097	-1.67531
C	0.04626	-0.00799	0.64766
C	0.55772	1.32565	0.12176
C	0.08435	-0.35264	2.19112
H	-1.6201	-3.06185	-2.3194
C	-3.21178	-1.79515	-1.58948
C	-3.58438	-0.76797	-0.67881
H	-3.98195	-2.25904	-2.19713
C	-2.59234	-0.12953	0.14781
C	-4.9459	-0.38202	-0.54645
H	-5.68364	-0.85868	-1.18497
C	-5.32806	0.5614	0.37878
C	-4.36102	1.1553	1.22291
H	-6.37188	0.84215	0.47401
C	-3.02905	0.82123	1.11131
H	-4.67162	1.87809	1.97052
H	-2.31035	1.27947	1.7804
H	-0.25443	-2.49055	1.73144
H	1.36554	-2.22937	2.43279
H	-0.86132	-0.28237	2.72696
H	0.8487	0.23145	2.70525
C	3.33414	-2.0384	0.32617
C	2.88357	0.33861	-0.11165
C	4.26864	0.50697	-0.29823
C	-0.30175	2.41907	-0.03688
C	1.92508	1.46729	-0.23082

C	2.36063	2.70995	-0.72797
H	-1.35089	2.31896	0.20283
C	0.15579	3.64571	-0.51178
C	1.49671	3.79009	-0.86163
H	3.39048	2.83869	-1.03615
H	1.86915	4.73375	-1.24702
H	-0.53607	4.47522	-0.61649
C	5.15113	-0.56409	-0.20466
H	4.67656	1.48691	-0.50952
H	6.21148	-0.39201	-0.36009
H	2.95686	-3.02269	0.58642
C	4.68998	-1.84926	0.09831
H	5.38096	-2.68182	0.1729
H	0.89825	-1.89756	-1.59632

TS1

Zero-point correction $=$	0.372077 (Hartree/Particle)
Thermal correction to Energy $=$	0.390390
Thermal correction to Enthalpy $=$	0.391335
Thermal correction to Gibbs Free Energy=	0.327721
Sum of electronic and zero-point Energies=	-1076.884461
Sum of electronic and thermal Energies =	-1076.866147
Sum of electronic and thermal Enthalpies=	-1076.865203
Sum of electronic and thermal Free Energies=	-1076.928816

C	1.04717	-1.16597	0.54241
O	0.35793	-2.07288	-0.89067
C	0.5714	-1.82817	1.81854
C	2.45199	-0.9442	0.26184
C	-0.96885	-1.57089	-0.93444
C	-1.21691	-0.55322	-0.04196
C	-1.92978	-2.18134	-1.75489
C	0.05109	-0.02962	0.64453
C	0.54993	1.312	0.12717
C	0.06674	-0.39675	2.19341
H	-1.65056	-2.9754	-2.43748
C	-3.22544	-1.73488	-1.63974
C	-3.58241	-0.74526	-0.68348
H	-4.00407	-2.16787	-2.2596

C	-2.5751	-0.14923	0.15502
C	-4.93937	-0.3539	-0.52295
H	-5.68677	-0.80129	-1.17153
C	-5.30542	0.55892	0.43875
C	-4.32354	1.11627	1.29029
H	-6.34587	0.84443	0.55486
C	-2.99577	0.7743	1.15279
H	-4.61838	1.81809	2.06391
H	-2.26795	1.21055	1.82647
H	-0.25921	-2.51923	1.67266
H	1.33987	-2.28733	2.43831
H	-0.89362	-0.34627	2.70389
H	0.8161	0.18387	2.73173
C	3.36077	-2.01119	0.3995
C	2.88232	0.35159	-0.11929
C	4.26217	0.52235	-0.33504
C	-0.32021	2.39842	-0.02388
C	1.91382	1.46785	-0.23659
C	2.33559	2.71621	-0.7333
H	-1.36639	2.28952	0.22417
C	0.12371	3.62967	-0.49874
C	1.461	3.7878	0.85853
H	3.36278	2.85637	-1.0449
H	1.8216	4.73623	-1.24329
H	-0.57594	4.45363	-0.59491
C	5.15211	-0.53988	-0.21606
H	4.66156	1.49521	-0.58992
H	6.20829	-0.36658	-0.39663
H	2.99239	-2.98839	0.69518
C	4.70864	-1.81852	0.14503
H	5.41017	-2.64001	0.23874
H	0.85865	-1.88684	-1.70879

2

Zero-point correction $=$	0.371561 (Hartree/Particle)
Thermal correction to Energy $=$	0.390974
Thermal correction to Enthalpy $=$	0.391918
Thermal correction to Gibbs Free Energy=	0.325830
Sum of electronic and zero-point Energies=	-1076.892450

Sum of electronic and thermal Energies=			
Sum of electronic and thermal Enthalpies=			
Sum of electronic and thermal Free Energies			
C	1.06905	-1.1726	0.61099
O	0.19594	-1.60807	-1.76697
C	0.4287	-1.99312	1.66196
C	2.45334	-0.99241	0.4311
C	-1.07339	-1.29737	-1.3741
C	-1.22379	-0.51242	-0.23601
C	-2.18773	-1.77548	-2.10501
C	0.0668	-0.09024	0.48099
C	0.62216	1.2428	0.04737
C	-0.02116	-0.54575	2.06287
H	-2.02228	-2.38936	-2.9857
C	-3.45618	-1.46756	-1.68862
C	-3.67346	-0.64907	-0.5496
H	-4.31466	-1.84356	-2.23693
C	-2.54554	-0.13837	0.18266
C	-4.99294	-0.31787	-0.14237
H	-5.82411	-0.72141	-0.71385
C	-5.2212	0.5002	0.94009
C	-4.12109	1.03323	1.64722
H	-6.23387	0.74738	1.24146
C	-2.82644	0.7279	1.28141
H	-4.29241	1.70059	2.48624
H	-2.01784	1.19202	1.83213
H	-0.43376	-2.57897	1.34832
H	1.08057	-2.5467	2.33232
H	-1.03954	-0.49193	2.43827
H	0.68898	-0.01689	2.69392
C	3.33612	-2.08189	0.66079
C	2.94213	0.27539	-0.01802
C	4.32543	0.37789	-0.24727
C	-0.23485	2.32568	-0.19639
C	2.01779	1.40497	-0.176
C	2.49323	2.67005	-0.58328
H	-1.30231	2.20262	-0.07367
C	0.25834	3.56398	-0.58941
C	1.63235	3.73792	-0.77898

H	3.55074	2.82427	-0.7545
H	2.02727	4.70007	-1.0879
H	-0.42702	4.38967	-0.75058
C	5.16985	-0.70677	-0.04542
H	4.76176	1.30834	-0.58486
H	6.23155	-0.58831	-0.23748
H	2.93177	-3.02837	1.00175
C	4.68369	-1.94656	0.40895
H	5.36178	-2.77848	0.5608
H	0.17867	-2.25161	-2.48955

TS2

| Zero-point correction $=$ | 0.370718 (Hartree/Particle) |
| :--- | :---: | :---: |
| Thermal correction to Energy= | 0.389768 |
| Thermal correction to Enthalpy $=$ | 0.390712 |
| Thermal correction to Gibbs Free Energy= | 0.325439 |
| Sum of electronic and zero-point Energies= | -1076.893345 |
| Sum of electronic and thermal Energies = | -1076.874295 |
| Sum of electronic and thermal Enthalpies= | -1076.873351 |
| Sum of electronic and thermal Free Energies= | -1076.938624 |

C	-1.04989	-1.20158	-0.46718
O	0.0689	-1.77312	1.93522
C	-0.4344	-2.1423	-1.43087
C	-2.46981	-0.99208	-0.39099
C	1.26737	-1.38133	1.42304
C	1.26505	-0.53773	0.31375
C	2.47853	-1.82974	2.00652
C	-0.09725	-0.14127	-0.22007
C	-0.64365	1.18723	0.15081
C	-0.12301	-0.73098	-1.94828
H	2.4386	-2.48949	2.86837
C	3.67967	-1.44141	1.47471
C	3.73873	-0.56616	0.35822
H	4.60735	-1.79816	1.91188
C	2.51735	-0.08166	-0.2222
C	4.98796	-0.15587	-0.17599
H	5.8953	-0.54079	0.28086
C	5.05596	0.71322	-1.24148

C	3.86173	1.21874	-1.79991
H	6.01641	1.02029	-1.64213
C	2.63049	0.8377	-1.30629
H	3.90892	1.92548	-2.6226
H	1.74227	1.28626	-1.73571
H	0.45806	-2.67415	-1.11603
H	-1.11483	-2.74932	-2.0174
H	0.91351	-0.54928	-2.2095
H	-0.85507	-0.24615	-2.58477
C	-3.34516	-2.08074	-0.6069
C	-2.97734	0.29252	-0.04978
C	-4.37478	0.43059	0.05472
C	0.22032	2.23562	0.51734
C	-2.04992	1.4055	0.1792
C	-2.5213	2.69607	0.49604
H	1.28722	2.06227	0.54868
C	-0.27027	3.49347	0.83393
C	-1.64975	3.72738	0.80815
H	-3.58452	2.89858	0.50692
H	-2.04285	4.71039	1.04606
H	0.4169	4.28976	1.09987
C	-5.22139	-0.64873	-0.15521
H	-4.81386	1.38588	0.31057
H	-6.29342	-0.50766	-0.06207
H	-2.93866	-3.05731	-0.84347
C	-4.71138	-1.91534	-0.48006
H	-5.38121	-2.75465	-0.63033
H	0.20557	-2.37368	2.68175

3

Zero-point correction $=$	0.371362 (Hartree/Particle)
Thermal correction to Energy $=$	0.391052
Thermal correction to Enthalpy $=$	0.391996
Thermal correction to Gibbs Free Energy $=$	0.325138
Sum of electronic and zero-point Energies=	-1076.915051
Sum of electronic and thermal Energies $=$	-1076.895362
Sum of electronic and thermal Enthalpies=	-1076.894418
Sum of electronic and thermal Free Energies=	-1076.961275

C	-0.90164	-1.23068	0.23411
O	0.89387	-0.08584	2.91471
C	-0.46217	-2.46837	1.16783
C	-2.34244	-1.12001	-0.07223
C	1.82823	-0.14372	1.92385
C	1.37328	-0.14957	0.61201
C	3.21382	-0.2044	2.21618
C	-0.09587	-0.05083	0.34461
C	-0.68625	1.22585	0.18726
C	-0.15002	-2.56323	-0.23654
H	3.53695	-0.20549	3.25324
C	4.12869	-0.25597	1.19546
C	3.71669	-0.2431	-0.16394
H	5.18964	-0.30269	1.42204
C	2.31677	-0.17943	-0.46834
C	4.65932	-0.28034	-1.22493
H	5.71592	-0.32974	-0.97736
C	4.24849	-0.25165	-2.5387
C	2.86879	-0.18083	-2.84149
H	4.97757	-0.27992	-3.34197
C	1.92603	-0.14444	-1.8362
H	2.54732	-0.1523	-3.87806
H	0.87373	-0.083	-2.09431
H	0.31414	-2.22949	1.88135
H	-1.32772	-2.97912	1.57293
H	0.86913	-2.40472	-0.56446
H	-0.76608	-3.16185	-0.8969
C	-3.15853	-2.26008	-0.20431
C	-2.92341	0.16536	-0.23557
C	-4.30526	0.25405	-0.53019
C	0.11556	2.40204	0.31479
C	-2.09285	1.35251	-0.09688
C	-2.61596	2.65395	-0.23388
H	1.17092	2.29161	0.52778
C	-0.43404	3.6526	0.17383
C	-1.8113	3.7727	-0.1024
H	-3.66634	2.80074	-0.44543
H	-2.2522	4.75809	-0.21474
H	0.18201	4.53906	0.27415
C	-5.08634	-0.87802	-0.65767

H	-4.77215	1.2214	-0.66181
H	-6.14297	-0.78442	-0.88451
H	-2.74186	-3.25327	-0.08264
C	-4.50812	-2.1455	-0.49275
H	-5.11421	-3.03997	-0.59123
H	1.32633	-0.09134	3.78078

TS3

Zero-point correction $=$	0.369378 (Hartree/Particle)
Thermal correction to Energy=	0.388875
Thermal correction to Enthalpy $=$	0.389819
Thermal correction to Gibbs Free Energy=	0.323330
Sum of electronic and zero-point Energies=	-1076.882344
Sum of electronic and thermal Energies=	-1076.862847
Sum of electronic and thermal Enthalpies=	-1076.861902
Sum of electronic and thermal Free Energies=	-1076.928391

C	-0.85794	-1.19977	0.00554
O	0.71958	0.23936	2.81698
C	0.36823	-2.57946	1.28038
C	-2.29871	-1.18928	-0.1349
C	1.69833	0.06374	1.89496
C	1.31824	-0.07505	0.55461
C	3.06609	0.04981	2.26963
C	-0.13573	-0.02831	0.20425
C	-0.78772	1.24638	0.05357
C	-0.07408	-2.52569	-0.09244
H	3.32986	0.13849	3.31941
C	4.0397	-0.06617	1.31019
C	3.71102	-0.15647	-0.07127
H	5.0856	-0.07877	1.60185
C	2.33175	-0.14095	-0.45948
C	4.71502	-0.2537	-1.0664
H	5.75588	-0.27203	-0.75627
C	4.3809	-0.32073	-2.40326
C	3.02312	-0.29503	-2.79009
H	5.15709	-0.39255	-3.15813
H	2.02076	-0.2142	-1.84351
	2.76333	-0.34124	-3.84304

H	0.98294	-0.19598	-2.1595
H	-0.3674	-2.64791	2.07585
H	1.41218	-2.55346	1.56652
H	0.73549	-2.48678	-0.81949
H	-0.76029	-3.3334	-0.35721
C	-3.06669	-2.37664	-0.17397
C	-2.96617	0.06861	-0.25052
C	-4.36655	0.06948	-0.42899
C	-0.04761	2.45311	0.15536
C	-2.19405	1.30403	-0.19165
C	-2.78823	2.57495	-0.34669
H	1.01501	2.40284	0.36053
C	-0.65807	3.6788	-0.0103
C	-2.03981	3.73685	-0.26422
H	-3.85011	2.65973	-0.53904
H	-2.52792	4.6979	-0.39115
H	-0.07652	4.59188	0.06086
C	-5.09347	-1.10781	-0.4726
H	-4.89814	1.00704	-0.53156
H	-6.16988	-1.07199	-0.60484
H	-2.59388	-3.34192	-0.0395
H	-4.43993	-2.34096	-0.339
H	-5.00563	-3.26649	-0.3582
	1.10527	0.31639	3.7018

$\mathbf{4 f}-\mathbf{H}^{+}$

Zero-point correction $=$	0.373877 (Hartree/Particle)
Thermal correction to Energy $=$	0.392880
Thermal correction to Enthalpy $=$	0.393824
Thermal correction to Gibbs Free Energy $=$	0.328407
Sum of electronic and zero-point Energies=	-1076.948119
Sum of electronic and thermal Energies=	-1076.929116
Sum of electronic and thermal Enthalpies=	-1076.928172
Sum of electronic and thermal Free Energies=	-1076.993590

C	-1.03165	-1.22314	0.44016
O	0.94283	0.51675	2.88278
C	1.04879	-2.00427	1.35278
C	-2.42421	-1.10615	0.10708

C
C
1.801150 .277171 .92071
$1.23938-0.511 \quad 0.7755$
$3.146020 .64848 \quad 2.00507$
$-0.20544-0.13731 \quad 0.4221$
-0.66558 1.172030 .04659
-0.30176-2.49293 0.79347
3.522871 .128612 .90227
3.973430 .423240 .92317
$3.5248-0.14553-0.3035$
5.015840 .720540 .9975
$2.16815-0.55185-0.42986$
$4.41314-0.26538-1.39711$
5.44409 0.05255-1.27713
$3.96473-0.77313-2.60449$
$2.62377-1.16029-2.73021$
4.64098 -0.86432 -3.44711
$1.73616-1.05248-1.65692$
$2.26248-1.54705-3.67772$
$0.70159-1.34732-1.78869$
$0.99496-1.952662 .44139$
1.89685 -2.63262 1.08039
$-0.17134-3.12725-0.09215$
-0.82748 $-3.09776 \quad 1.53895$
-3.28116-2.23119 0.12097
-2.94417 $0.17914-0.23539$
-4.32245 0.27219-0.53929
$0.19834-2.28916-0.02225$
$-2.05055 \quad 1.33474-0.27114$
-2.49922 $2.62829-0.62551$
$\begin{array}{lll}1.2543 & 2.16584 & 0.19725\end{array}$
$-0.2728 \quad 3.53875-0.37774$
$-1.635573 .70814-0.67667$
-3.54234 $2.79059-0.86895$
-2.01338 $4.68735-0.95342$
$0.40708 \quad 4.38336-0.42655$
-5.14426 -0.84118-0.51531
$-6.19797-0.73539-0.75409$
$-2.87474-3.204060 .37714$
-4.62274-2.10488 -0.18577

H	-5.27075	-2.97553	-0.17099
H	1.35465	0.96813	3.64063

TS4

Zero-point correction $=$	0.369510
(Hartree/Particle)	
Thermal correction to Energy $=$	0.388801
Thermal correction to Enthalpy $=$	0.389745
Thermal correction to Gibbs Free Energy $=$	0.323766
Sum of electronic and zero-point Energies $=$	-1076.877221
Sum of electronic and thermal Energies $=$	-1076.857930
Sum of electronic and thermal Enthalpies=	-1076.856986
Sum of electronic and thermal Free Energies=	-1076.922965

C	0.94965	-1.1378	0.3225
O	-0.6845	-1.62997	-2.30017
C	0.44262	-3.16248	-0.6532
C	2.37028	-0.92562	0.49151
C	-1.70927	-1.12565	-1.52832
C	-1.33865	-0.40938	-0.40301
C	-3.06336	-1.37653	-1.84801
C	0.11749	-0.14315	-0.16803
C	0.65274	1.16053	-0.46792
C	0.34705	-2.51115	0.63983
H	-3.31072	-1.93624	-2.74544
C	-4.05007	-0.90645	-1.01533
C	-3.73223	-0.19156	0.1697
H	-5.09291	-1.09084	-1.25503
C	-2.35499	0.06128	0.48761
C	-4.74529	0.27765	1.04807
H	-5.78358	0.08292	0.79469
C	-4.42184	0.9609	2.19835
C	-3.06415	1.20439	2.51718
H	-5.20364	1.31359	2.86345
C	-2.05603	0.76936	1.68514
H	-2.81534	1.74101	3.42761
H	-1.0207	0.96368	1.94343
H	-0.39568	-3.66302	-1.12124
H	1.39756	-3.20653	-1.16858
H	-0.67592	-2.45938	1.00994

| C | 2.9174 | 0.36246 | 0.20847 |
| :--- | :--- | :--- | :--- | :--- |

$\begin{array}{llll}\text { C } & 4.29703 & 0.56751 & 0.4262\end{array}$
$\begin{array}{lllll}\text { C } & -0.18696 & 2.18929 & -0.97052\end{array}$
$\begin{array}{lllll}\text { C } & 2.0461 & 1.42122 & -0.28553\end{array}$
$\begin{array}{lllll}\mathrm{C} & 2.52986 & 2.70669 & -0.61184\end{array}$
$\begin{array}{lllll}\mathrm{H} & -1.24025 & 1.98453 & -1.11581\end{array}$
$\begin{array}{lllll}\text { C } & 0.31916 & 3.43435 & -1.28165\end{array}$
$\begin{array}{lllll}\text { C } & 1.68851 & 3.69358 & -1.0965\end{array}$
$\begin{array}{lllll}\mathrm{H} & 3.57997 & 2.9403 & -0.4905\end{array}$
H $\quad 2.09311 \quad 4.67166-1.33674$
H $\quad-0.33628 \quad 4.20832-1.66703$
$\begin{array}{llllll}\text { C } & 5.11976 & -0.44913 & 0.88164\end{array}$
$\begin{array}{llllll}\text { H } & 4.73538 & 1.53991 & 0.24058\end{array}$
$\begin{array}{llllll}\mathrm{H} & 6.17688 & -0.25885 & 1.03569\end{array}$
$\begin{array}{lllll}\mathrm{H} & 2.85571 & -2.94501 & 1.14337\end{array}$
$\begin{array}{lllll}\text { C } & 4.58621 & -1.71876 & 1.14201\end{array}$
$\begin{array}{llllll}\mathrm{H} & & 5.22611 & -2.52134 & 1.49349\end{array}$
H $\quad-1.04366$-2.1041 -3.06665

5f- \mathbf{H}^{+}

C	0.45003	-2.53884	0.56129
H	-3.26344	-2.84788	-1.86381
C	-4.03342	-1.25872	-0.63328
C	-3.71696	-0.17147	0.22407
H	-5.07321	-1.52972	-0.78369
C	-2.34544	0.20182	0.43552
C	-4.74254	0.53975	0.90411
H	-5.77564	0.25513	0.72853
C	-4.43419	1.55679	1.7772
C	-3.08207	1.90154	2.01353
H	-5.2247	2.08987	2.29557
C	-2.06346	1.2441	1.3603
H	-2.84551	2.69028	2.72061
H	-1.03329	1.51487	1.55641
H	-0.43086	-4.18616	-0.59242
H	1.05158	-3.46909	-1.33567
H	-0.46471	-2.48138	1.15678
H	1.12832	-3.18116	1.12494
C	3.32935	-1.83153	0.99254
C	2.91233	0.44796	0.20453
C	4.27685	0.72677	0.45493
C	-0.20578	2.06905	-1.18762
C	2.01539	1.44304	-0.36579
C	2.46908	2.7193	-0.77928
H	-1.24245	1.81549	-1.37216
C	0.27023	3.30135	-1.58876
C	1.61895	3.63343	-1.3714
H	3.50901	2.99211	-0.64964
H	1.99909	4.60165	-1.68178
H	-0.39498	4.00705	-2.07627
C	5.13549	-0.23583	0.95004
H	4.67015	1.71662	0.25987
H	6.17683	0.01059	1.13192
H	2.98986	-2.83664	1.20975
C	4.65874	-1.53067	1.21454
H	5.32955	-2.29325	1.59727
H	-0.92539	-2.79003	-2.46292

8. References

[1] Ogawa, N.; Yamaoka, Y.; Yamada, K.; Takasu, K. Org. Lett. 2017, 19, 3327-3330.
[2] Ogawa, N.; Yamaoka, Y.; Takikawa, H.; Tsubaki, K.; Takasu, K. J. Org. Chem. 2018, 83, 7994-8002.
[3] Carreras, J.; Patil, M.; Thiel, W.; Alcarazo, M. J. Am. Chem. Soc. 2012, 134, 16753-16758.
[4] Gaussian 16, Revision B.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2016.
[5] Matsuda, S. P. T.; Wilson, W. K.; Xiong, Q. Org. Biomol. Chem. 2006, 4, 530-543.

S3

220

1b

[^0]

raw

1j

4a

Chloroform
$\stackrel{8}{8}$

4 c

Chloroform-d

4d

-72.8413

[^1]

NMWM

[^2]

Chloroform-d

Chloretorm-a

4j

epi-6

[^0]:

[^1]:

[^2]:

