Supporting Information for

Genomic mushroom hunting decrypts coprinoferrin, a siderophore secondary metabolite vital to fungal cell development

Yuta Tsunematsu, †, § Jun Takanishi, †, § Shihori Asai, † Takahiro Masuya, † Takehito Nakazawa, ‡ and Kenji Watanabe*, †

†Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan.
 ‡Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan.
 §These authors contributed equally to this work.

*Correspondence e-mail: kenji55@u-shizuoka-ken.ac.jp

Table of Contents

1.	Supp	oorting Methods and Results	3
1	.1 F	eagents, strains and general techniques for DNA manipulation.	3
1	.2 (construction of mutated strains of <i>C. cinerea</i> .	4
	1.2.1	General procedure for the construction of the disruption cassette.	5
	1.2.2	Procedure for <i>C. cinerea</i> transformation	7
	1.2.3	Confirmation of the targeted gene replacement in the $\Delta laeA$ and $\Delta laeA \Delta cpfl$ strains.	8
1	.3 I	ist of primer sequences	10
1	.4 C	ell culture and metabolite analysis	11
	1.4.1	Determination of the production of coprinoferrin.	11
	1.4.2	Effect of Fe(III) against the production of coprinoferrins in the $\Delta laeA$ strain	13
	1.4.3	Effect of Fe(III) against the production of coprinoferrins in the $\Delta laeA$ strain	14
1	.5 C	hemical characterization	15
	1.5.1	Instrumental measurements.	15
	1.5.2	Culturing of the <i>C. cinerea</i> strains and purification of 1 and 2 .	16
	1.5.3	Structure elucidation of 1.	15
	1.5.4	Determination of the absolute configuration of 1 by advanced Marfey's method	20
	1.5.5	Fe(III)-binding assay of 1.	20
1	.6 B	ological activity of 1 and 2	21
	1.6.1	Antimicrobial tests against Bacillus subtilis, Staphylococcus aureus and E. coli	21
	1.6.2	Growth defect complementation assay.	21
	1.6.3	Fruiting body formation assay.	22
1	.7 B	ioinformatic analysis	23
2.	Supj	oorting References	27

1. Supporting Methods and Results

1.1 Reagents, strains and general techniques for DNA manipulation.

All chemicals were purchased from Merck KGaA, Tokyo Chemical Industry Co. Ltd. and Wako Pure Chemical Industries Ltd., unless otherwise specified. Purchased chemicals were of reagent grade and used without further purification. *Coprinopsis cinerea* ku3-24 was established previously^[1]. *Escherichia coli* XL1-Blue (Agilent Technologies) was used for plasmid propagation by standard procedures. DNA restriction enzymes were used as recommended by the manufacturer (Thermo Fisher Scientific Inc.). PCR was carried out using PrimeSTAR GXL DNA polymerase (TAKARA Bio Inc.) as recommended by the manufacturer. Sequences of PCR products were confirmed through DNA sequencing (Macrogen Japan Corporation). *Saccharomyces cerevisiae* BY4705^[2] was used for plasmid assembly.

1.2 Construction of mutated strains of *C. cinerea*

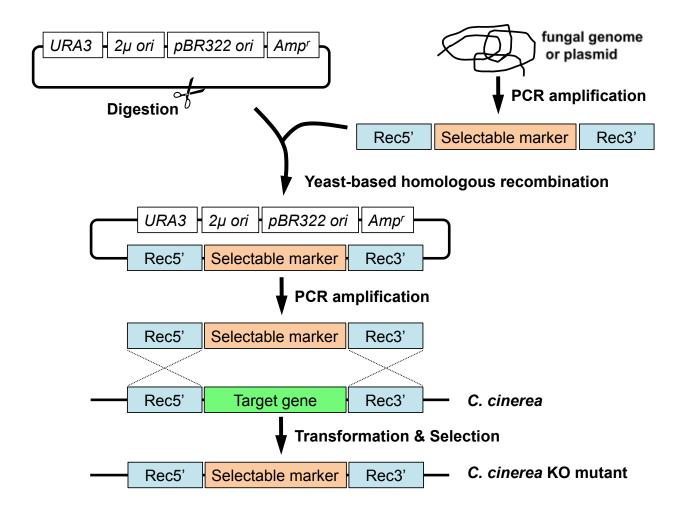

Strain name		Genotype	Parent strain	Source
 C. cinerea	ku3-24	A43mut B43mut pab1-1 Cc.ku70 (FltR)	_	[1]
	∆laeA	A43mut B43mut pab1-1 Cc.ku70 (FltR) laeA(CC1G_00498)::hph	ku3-24	This study
	∆laeA∆cpf1	A43mut B43mut pab1-1 Cc.ku70 (FltR) laeA(CC1G_00498)::hph cpf1(CC1G_04210)::pab1	∆laeA	This study

Table S1Coprinopsis cinerea strains used in this study.

1.2.1 General procedure for the construction of the disruption cassette.

The disruption cassette is comprised of a selection marker sandwiched in between a 5' side- and a 3' side-flanking fragment (Rec5' and Rec3', respectively) as shown in Figure S1. Rec5' and Rec3' are 1,500-base pair fragments that are homologous to the site of recombination at or near the 5' and 3' end of the target gene in the C. cinerea ku3-24 genome. The primer sets given in Tables S2–S4 were used to prepare the required flanking homologous regions for each of the target genes. The sequences of the primer sets are listed in Table S4. PCR amplification of Rec5', Rec3' and the selectable marker fragments were carried out using PrimeSTAR GXL DNA polymerase as recommended by the manufacturer (TAKARA Bio Inc.). For plasmid construction, the three fragments (Rec5', selection marker, and Rec3'), each at 50 to 150 ng in a total volume of 45 µL, were mixed with 2 µg of a suitable pre-digested delivery vector. For the preparation of the $\Delta laeA$ strain, pRS426^[3] was used as a delivery vector (Table S2). The mixture was transformed into S. cerevisiae BY4705 for constructing the plasmid possessing deletion cassette through *in vivo* homologous recombination. These four DNA fragments were joined *in situ* by the endogenous homologous recombination activity of S. cerevisiae through the 25-bp homologous sequences present at the ends of those DNA fragments. The desired transformants were selected for the presence of the selection marker. For the preparation of the $\Delta laeA$ strain, transformants were selected on an uracil-deficient plate, because pRS426 carried an URA3 selection marker. The resulting plasmid pKW22056 was recovered from the yeast transformant and transferred to E. coli. The plasmid was amplified in E. coli for subsequent characterization by restriction enzyme digestion and DNA sequencing to confirm its identity. For targeted homologous recombination, a PCR product was amplified from the plasmid carrying a desired cassette using the corresponding Rec5' forward and Rec3' reverse primers (Figure S1). Subsequently, the PCR product was used to transform C. cinerea.

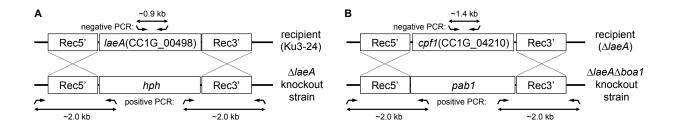
Figure S1. A schematic diagram showing the construction of a disruption cassettecontaining plasmid using a yeast homologous recombination method for preparation of a deletion mutant of *C. cinerea*.

1.2.2 Procedure for *C. cinerea* transformation.

The C. cinerea ku3-24 strain was initially cultured on an MYG agar medium (10 g/L malt extract, 4 g/L D-glucose and 4 g/L yeast extract medium with 15 g/L agar) at 30 °C for 5 days.^[4] Homogenized mycelia collected from a single plate were used to inoculate 200 mL of MYG liquid medium at 30 °C for 16 h with shaking at 180 r.p.m. Grown cells were collected by filtration and washed with 0.8 M sodium chloride. The cells were incubated with 1 mL of MM buffer pH 5.5 (0.5 M mannitol and 0.05 M maleic acid) containing 1 mg/mL chitinase and 50 mg/mL lysing enzyme (Sigma-Aldrich) at 30 °C for 4 h. The resulting protoplasts were filtered and subsequently centrifuged at $2,500 \times g$ for 5 min at room temperature. The collected protoplasts were washed with 0.8 M sodium chloride and centrifuged to remove the wash solution. Approximately 0.5×10^8 to 1×10^8 of protoplasts were suspended in 200 µL of MMC buffer at pH 5.5 (0.5 M mannitol, 0.05 M maleic acid and 0.05 M calcium chloride). Then 40 µL of PEG solution at pH 8.0 (400 mg/mL polyethylene glycol 8,000, 50 mM calcium chloride and 50 mM Tris-HCl) was added to the protoplast suspension. The mixture was subsequently combined with 5 µg of the DNA fragment with which the cells were to be transformed. The mixture was incubated on ice for 30 min to allow the transformation to proceed. After incubation on ice, 1 mL of the PEG solution was added to the reaction mixture, and the mixture was incubated at room temperature for additional 15 min. In the case of the $\Delta laeA$ strain construction, hph was used for the selection marker. The cells were plated on RM agar (RM medium: 2.0 g/L L-asparagine, 0.12 g/L MgSO₄, 5.0 g/L D-glucose, 171.2 g/L sucrose, 1.0 mg/L thiamine, 5.0 g soluble starch, 1.5 g/L NH₄Cl, 1.25 g/L KH₂PO₄, 0.3 g/L Na₂SO₄, 1.45 g/L Na₂HPO₄; and 15.0 g/L agar was added) plates containing 1 mM p-aminobenzoic acid in order to recover the transformed C. cinerea ku3-24. After 24 h at 30 °C incubation, the plate was overlaid with RM top agar (RM medium with 0.5 g/L agar) containing 0.6 mg/mL hygromycin B and incubated at 30 °C for 7 days to select for desired mutant strains of C. cinerea ku3-24. Second selection was carried out by using an RM agar plate containing 1 mM p-aminobenzoic acid and 0.15 mg/mL hygromycin B at 30 °C for 7 days. In the case of the $\Delta laeA \Delta cpfl$ strain construction, pabl marker was used for the selection. The cells were plated on RM agar plates and immediately overlaid with RM top agar. After a period of cultivation, the emerged colonies were transferred to a new RM agar plate and incubated for 1 week for the second selection. In both cases, replacement of the target region was confirmed by diagnostic PCR (Figure S3).

1.2.3 Confirmation of the targeted gene replacement in the $\triangle laeA$ and $\triangle laeA \triangle cpf1$ strains.

To verify that the target gene was replaced with the cassette, the genomic DNA isolated from the transformants was analyzed by diagnostic PCR. Three sets of PCR primers were designed for this verification (**Figure S2** and

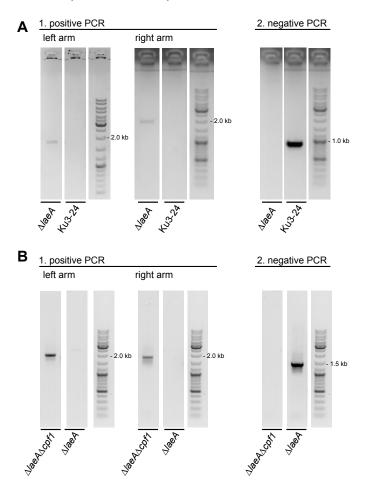

). For the first set, one primer that anneals to the selection marker and another primer that anneals at the 3' side of the Rec3' region were designed (the "right arm" set in

). With this primer set, gDNA from the recipient strain will not produce any PCR product with this primer set. However, a PCR product around 1.5–3.0 kb in size will be formed from the gDNA of a strain containing the desired gene deletion. For the second set, one primer that anneals to the selection marker and another primer that anneals at the 5' side of the Rec5' region were designed (the "left arm" set in

). It works basically in an identical manner to the right arm set. For the third primer set, one primer that anneals near the 3' end of the target gene and another primer that anneals approximately 500 bp inside of the target gene (**Figure S2**, the "negative PCR" set in

). With this primer set, PCR on the gDNA of an unaltered parent strain, such as *C. cinerea* ku3-24, will yield a PCR product approximately 1.0 kb in size. PCR on the gDNA of strains having the target gene replaced by a selection marker will not yield the 1.0 kb PCR product. Combination of the results from those three separate PCR reactions ensured us that we had the targeted gene replaced by a selection marker. Results of the PCR analyses are given in **Figure S3** in the main text.

Figure S2. A schematic diagram showing the primer annealing locations for the PCR reactions and the expected products formed that are used to confirm the desired knockout event in the genomic DNA of the modified strains. For the construction of the $\Delta laeA$ (**A**) and $\Delta laeA \Delta cpf1$ (**B**) strains are represented.



Plasmid name	Target gene	Marker	Primer set for Rec5'	Primer set for marker	Primer set for Rec3'	Digested original vector
pKW22056	laeA (CC1G_00498)	hph	pKW22056-LF	Ma13F	pKW22056-RF	pRS426/BamHI, EcoRI
			pKW22056-LR	Ma13R	pKW22056-RR	
pKW22091	cpfl (CC1G_04210)	pabl	pKW22091-LF	c.cinerea_pab1_F	pKW22091-RF	pRS426/BamHI, EcoRI
			pKW22091-LR	c.cinerea_pab1_R	pKW22091-RR	

Table S2. The list of primer sets used to generate the *C. cinerea* mutant strains, $\Delta laeA$ and $\Delta laeA \Delta cpf1$.

Figure S3. PCR analyses for the confirmation of the deletion of target genes. (**A**) PCR analysis for confirming the deletion of *laeA* (CC1G_00498) using the genomic DNA of the $\Delta laeA$ strain and the parent strain ku3-24 as templates. (**B**) PCR analysis for confirming the deletion of *cpf1* (CC1G_04210) using the genomic DNA of the $\Delta laeA\Delta cpf1$ strain and the parent strain $\Delta laeA$ as templates. The primer sets used in this study are shown in

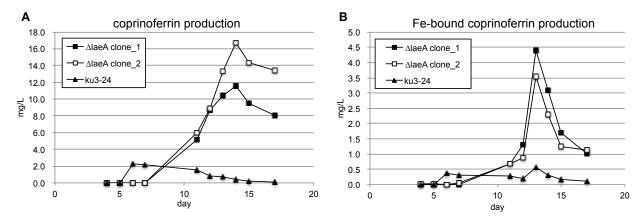
. The sequences of the primer sets are listed in Table S4.

Table S3. The list of primer sets used to confirm successful preparation of the *C. cinerea* mutant strains, $\Delta laeA$ and $\Delta laeA \Delta cpf1$.

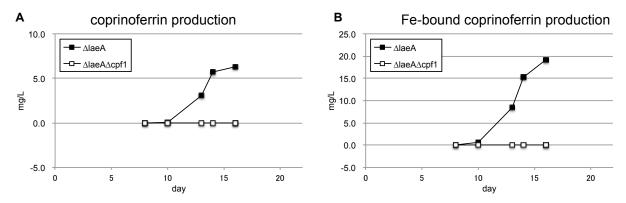
Plasmid name	Target gene	Marker	Primer set for positive PCR (left arm)	Primer set for positive PCR (right arm)	Primer set for negative PCR
pKW22056	laeA (CC1G_00498)	hph	pKW22056-pos-LF	Cchph-pos-RF	CC1G_00498-neg-F
			Cchph-pos-LR	pKW22056-pos-RR	CC1G_00498-neg-R
pKW22091	cpf1 (CC1G_04210)	pabl	pKW22091-pos-LF	Ccpab1-pos-RF	CC1G_04210-neg-F
			Ccpab1-pos-LR	pKW22091-pos-RR	CC1G_04210-neg-R

1.3 List of primer sequences

Table S4.Oligonucleotide primer sequences. DNA primers were designed on the basis ofsequence data obtained from the *C. cinerea* sequence database.

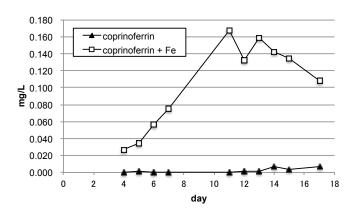

Primer name	Sequence, 5'-3'
pKW22056-LF	gacggtatcgataagcttgatatcgcaatgaccgcccctagtacacg
pKW22056-LR	tactagtggatccgagctcggtaccgacatcggtgctcgagttcagtcg
Ma13F	ggtaccgagctcggatccactagtaacg
Ma13R	gtaatacgactcactatagggcgaattgggc
pKW22056-RF	ttcgccctatagtgagtcgtattactacataattgtgttcaggatttgccttgttatacgc
pKW22056-RR	ggtggcggccgctctagaactagtgtccattgagatgtgtctacagaaaatgttccg
pKW22091-LF	gacggtatcgataagcttgatatcgcctcttgtgttcggacgttgcg
pKW22091-LR	acgeteggaaageegtttaaatgaaceaacagaatgteagaggegee
c.cinerea_pab1_F	ttcatttaaacggctttccgagcgtc
c.cinerea_pab1_R	caatattcatctctcaactgaaggagcgttgag
pKW22091-RF	tccttcagttgagagatgaatattgggagggtcgctggtggagg
pKW22091-RR	ggtggcggccgctctagaactagtgcggcgtttgcgacggc
pKW22056-pos-LF	ttcacattgaattgttggaactcttggagc
Cchph-pos-LR	aagtcagcttcattttccgtgtggc
Cchph-pos-RF	ctctccacctacctaccacctacg
pKW22056-pos-RR	cggataaactggtgttatcgatctccacg
CC1G_00498-neg-F	gcggatgaagaggagtgggatcg
CC1G_00498-neg-R	gacttgctcgaaacctggatgcg
pKW22091-pos-LF	aaggggtteeteeaggtgeg
Ccpab1-pos-LR	gcgttaccccacttctccatggtagg
Ccpab1-pos-RF	gctgtctgcgttcctatccttggatca
pKW22091-pos-RR	cetettecaattgtteetetteetege
CC1G_04210-neg-F	gatcgtgtggctgtctgtctaagtcgc
CC1G_04210-neg-R	ccttgatctgggtgtcgatgcg

1.4 Cell culture and metabolite analysis


1.4.1 Determination of the production of coprinoferrin.

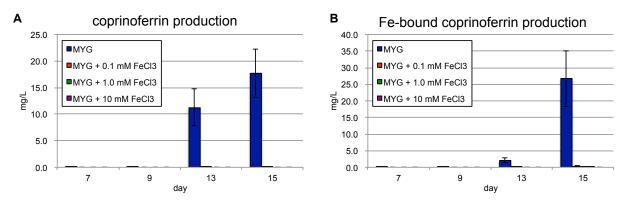
The *C. cinerea* ku3-24, $\Delta laeA$ and $\Delta laeA \Delta cpf1$ strains were initially cultured on MYG agar plates at 30 °C for 5 days. Approximately one square centimeter of the fungal mycelia collected from a plate and was used to inoculate 25 mL of MYG medium. This culture was shaken at 30 °C with 180 r.p.m. For the analysis of metabolites throughout the cultivation period, a portion of the cultured broth (0.5 mL) was sampled from the culture and directly extracted with EtOAc (0.4 mL). The resultant organic layer (0.2 mL) was concentrated *in vacuo*, dissolved in 50 μ L of DMF containing 2.0 μ g/mL anthraquinone as an internal standard, and analyzed by LC–MS. LC–MS analysis was performed with a Thermo SCIENTIFIC Q Exactive Focus mass spectrometer coupled with liquid chromatography system UltiMate 3000 using both positive and negative electrospray ionization. The HPLC traces were monitored at $\lambda = 280$ nm. Metabolites were separated for analysis on an AQUITY UPLC 1.8 μ m, 2.1 × 50 mm C18 reverse-phase column (Waters) using a linear gradient of 10–50% (v/v) CH₃CN in H₂O supplemented with 0.05% (v/v) formic acid at a flow rate of 500 μ L/min. The production titer of coprinoferrin was determined based on the area of *m*/*z* 744.487 in the selected ion monitoring mode (SIM).

Figure S4. Time-course plots of the production of (**A**) coprinoferrin or (**B**) the Fe-bound form of coprinoferrin by the *C. cinerea* strains, ku3-24 and $\Delta laeA$. Production titers (mg/L culture) of two individual clones of the $\Delta laeA$ strain (closed and opened squares) and a single strain of the ku3-24 strain (closed triangle) are presented.


Figure S5. Time-course plots of the production of (**A**) coprinoferrin or (**B**) the Fe-bound form of coprinoferrin by the *C. cinerea* strains, $\Delta laeA$ and $\Delta laeA \Delta cpf1$. Production titers of a single strain each of the $\Delta laeA$ (closed square) and $\Delta laeA \Delta cpf1$ strains are presented.

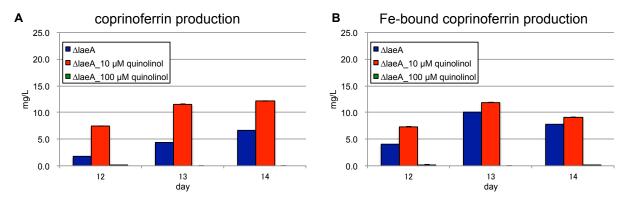
1.4.2 Determination of the coprinoferrin production in the iron-limited condition.

To investigate whether the coprinoferrin production is induced in a low iron medium, *C. cinerea* ku3-24 strain was inoculated in 25 mL of MM medium (2.0 g/L L-asparagine, 0.12 g/L MgSO₄, 5.0 g/L D-glucose, 1.0 mg/L thiamine, 5.0 g soluble starch, 1.5 g/L NH₄Cl, 1.25 g/L KH₂PO₄, 0.3 g/L Na₂SO₄, 1.45 g/L Na₂HPO₄) supplemented with 1 mM *p*-aminobenzoic acid. This culture was shaken at 30 °C with 180 r.p.m. Procedure of the production analysis is essentially same as described in the previous section.


Figure S6

1.4.3 Effect of Fe(III) against the production of coprinoferrins in the $\Delta laeA$ strain

To test whether environmental Fe(III) affects the production of coprinoferrins, the *C.* cinerea $\Delta laeA$ strain was cultured in MYG liquid medium supplemented with various concentrations of FeCl₃. Procedure of this experiment is essentially same as described in the previous section.


Figure S7. Time-course plots of the production of (**A**) coprinoferrin or (**B**) the Fe-bound form of coprinoferrin production by the *C. cinerea* $\Delta laeA$ strain. MYG medium (blue) and MYG medium supplemented with 0.1 mM (red), 1.0 mM (green) or 10 mM (purple) of FeCl₃ were used for this assay. Quantification was carried out at 7, 9, 13, 15 days after inoculation.

1.4.4 Effect of Fe(III) against the production of coprinoferrins in *\(\Delta\)laeA* strain.

To test whether Fe(III) chelator affects the production of coprinoferrins, *C. cinerea* $\Delta laeA$ strain was cultured in MYG liquid medium supplemented with various concentrations of 8quinolinol. Procedures of this experiment are essentially same as described in the previous section.

Figure S8 Time-course of coprinoferrin(**A**) or Fe-bound form of coprinoferrin(**B**) production by the *C. cinerea* Δ *laeA* strain. MYG medium (blue) and MYG medium supplemented with 10 μ M (red) or 100 μ M (green) of 8-quinolinol were used for this assay. It should be noted that growth defect was observed in the MYG medium containing 100 μ M 8-quinolinol.

1.5 Chemical characterization

1.5.1 Instrumental measurements.

Optical rotations were measured with JASCO P-2020 polarimeter, and infrared (IR) spectra were obtained on JASCO FT/IR-4100 FT-IR spectrometer with JASCO ATR PRO450-S. NMR spectra were recorded using Bruker AVANCE III HD 500 MHz spectrometer, and chemical shifts δ (ppm) were calibrated by solvent residual hydrogen (¹H) or carbon (¹³C) peaks of DMSO-*d*₆ (δ_{H} : 2.50 ppm, δ_{C} : 39.52 ppm).

1.5.2 Culturing of the *C. cinerea* strains and purification of 1 and 2.

The C. cinerea $\Delta laeA$ strain was initially cultured on MYG agar plates at 30 °C for 5 days. Approximately 1 square centimeter of the mycelia collected from a single plate were used to inoculate 25 mL of MYG medium. This culture was shaken at 180 r.p.m. for 24 h at 30 °C. Grown cells were transferred to 7 x 1.0 L of MYG liquid media, and the incubation was continued under the same condition. After 13 days, the mycelia and the broth were separated by filtration. The mycelia are extracted twice with 1.0 L of acetone. After the acetone solution was concentrated under the reduced pressure, it was then dissolved in 0.5 L of H₂O and extracted twice with 0.5 L of EtOAc. On the other hand, the cultured broth was directly extracted with EtOAc (7.0 L x 2 times). Each EtOAc layer was concentrated, and the extracted metabolites were analyzed on LC-MS. Since the desired compound was detected in the EtOAc layers from both the mycelia and the broth, they were combined and subjected to silica gel column chromatography with a combination of CHCl₃ and MeOH as eluents. One of the fractions containing 1 (52.8 mg, $CHCl_3/MeOH = 100/20$ elution) was further purified by reversed phase HPLC with a gradient solvent system (MeCN/H₂O = 20/80 to 100:0 in 30 min., Column: Cosmosil 5C₁₈ MS-II, ϕ 20 x 250 mm, Nacalai tesque Inc.) to give 3.3 mg of nearly purified 1. Final purification was carried out by isocratic HPLC (MeCN/H₂O = 40/60, Column: Cosmosil $5C_{18}$ AR-II, $\phi 10 \ge 250$ mm, Nacalai tesque Inc.) to afford 2.1 mg of 1 as a colorless powder.

For the purification of **2**, a part of the fractions (1.4 mg) previously described was subjected to isocratic HPLC (MeCN/H₂O = 50/50, Column: Cosmosil 5C₁₈ AR-II, ϕ 10 x 250 mm, Nacalai tesque Inc.) to provide 0.3 mg of **2** as a brown powder.

1.5.3 Structure elucidation of 1.

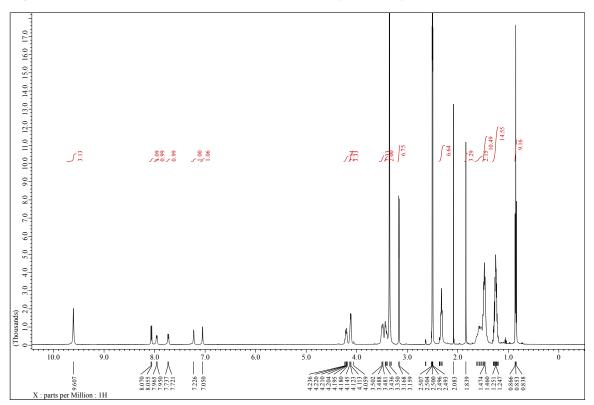
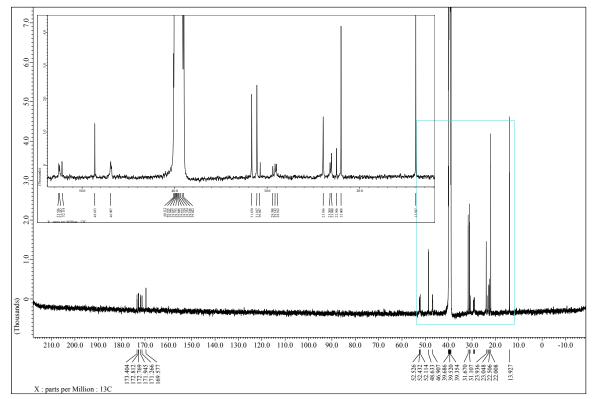
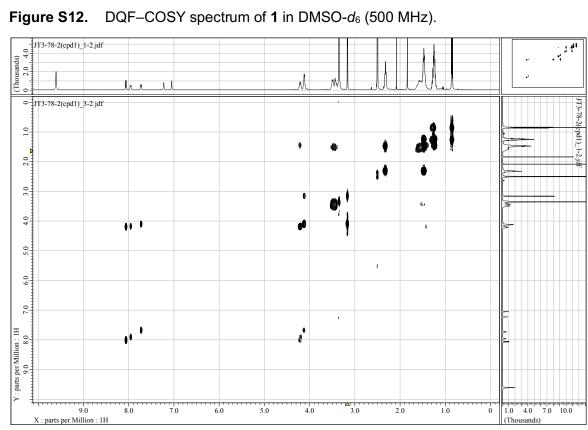
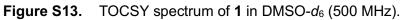

The molecular formula of **1** ($C_{35}H_{65}N_7O_{10}$) was established by the mass data [HRESIMS: m/z 744. 4866[M+H]⁺, calcd. for $C_{35}H_{66}N_7O_{10}^+$ to be 744. 4866, $\Delta = 0.0$ mmu]. [α]_D²² -10.5 (c 0.17, MeOH), IR (ATR) 1620, 3330 cm⁻¹.

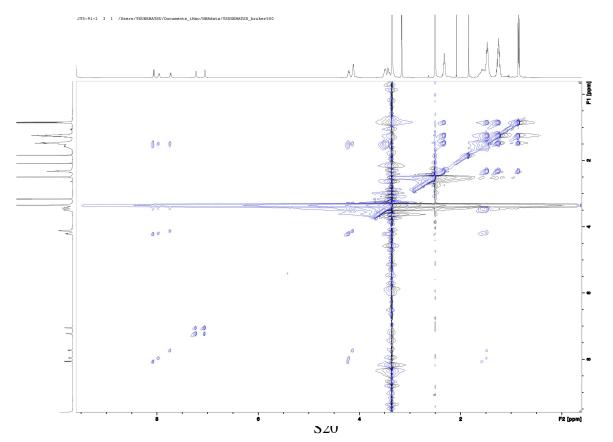
Figure S9 The chemical structure of coprinoferrin (1).

Position	$\delta_{\rm H}{}^{a)}$		mult. (J in Hz)	HMBC	$\delta_{C}^{b)}$
1					171.9
2	4.21	1H	m		52.4
2-NH	8.07	1H	d (7.6)	2, 12	
3	1.46	1H	m		29.4 ^{c)}
	1.59	1H	m		
4	1.48	1H	m		23.2 ^{d)}
	1.52	1H	m		
5	3.44	1H	m		46.9 ^{e)}
5	3.48	1H			+0. <i>)</i> *
			m		
5-N-OH	9.61	$1 \mathrm{H}$	br s		1.50
6					172.8
7	2.32	2H	t (6.9)	6, 8, 9	31.7
8	1.47	2H	m		23.9
9	1.23	2H	m	10, 11	31.1
10	1.26	2H	m	9, 11	22.0
11	0.85	3H	t (7.0)	9, 10	13.9
12	0.85	511	t (7.0)), 10	169.6
	1.04	211		12	109.0
13	1.84	3Н	S	12	22.5
1'					171.3
2'	4.20	1H	m		52.5
2'-NH	7.96	1H	d (7.6)	1, 1'	
3'	1.46	1H	m		29.1 ^{c)}
-	1.59	1H	m		_,
4'	1.48	1H	m		23.2 ^{d)}
+					23.2 '
	1.52	1H	m		((0 0)
5'	3.44	1H	m		46.9 ^{e)}
	3.48	1H	m		
5'-N-OH	9.61	1H	br s		
6'					172.8
7'	2.32	2H	t (6.9)	6', 8', 9'	31.7
, 8'	1.47	2H	m	0,0,9	23.9
9'	1.23	211 2H		10', 11'	31.1
	1.25		m		31.1
10'	1.26	2H	m	9', 11'	22.0
11'	0.85	3H	t (7.0)	9', 10'	13.9
1"					173.4
1"-NH2	7.05	1H	br s	1", 2"	
	7.23	1H	br s	2"	
2"	4.12	1H	m	-	52.1
2"-NH	7.73	1H		1'	52.1
			d (7.9)	1	(20.00)
3"	1.46	1H	m		28.9 ^{c)}
	1.59	1H	m		
4''	1.48	1H	m		23.0 ^{d)}
	1.52	1H	m		
5"	3.44	1H	m		46.8 ^{e)}
-	3.48	1H	m		10.0
5"-N-OH	9.61	1H	br s		
	9.01	П	01.5		172.0
6"	• • •				172.8
7"	2.32	2H	t (6.9)	6", 8", 9"	31.7
8"	1.47	2H	m		23.9
9"	1.23	2H	m	10", 11"	31.1
	1.26	2H	m	9", 11"	22.0
10''					


Table S5.NMR data of compound 1 in DMSO- d_6 .


a) Recorded at 500 MHz. b) Recorded at 125 MHz. c) interchangeable. d) interchangeable. e) interchangeable.


Figure S10. ¹H NMR spectrum of **1** in DMSO- d_6 (500 MHz).


Figure S11. ¹³C NMR spectrum of **1** in DMSO- d_6 (125 MHz).

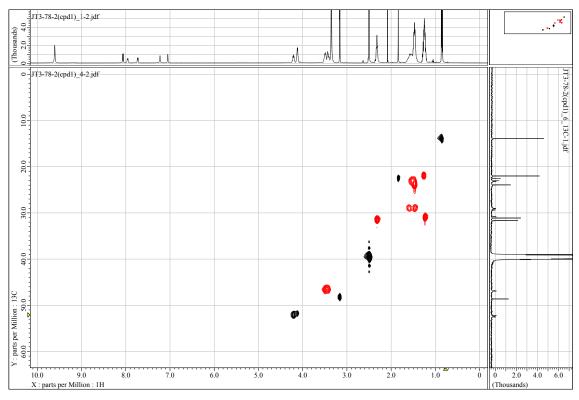


Figure S12. DQF–COSY spectrum of **1** in DMSO-*d*₆ (500 MHz).

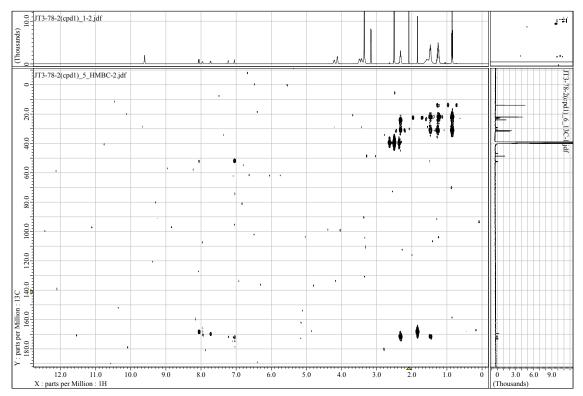


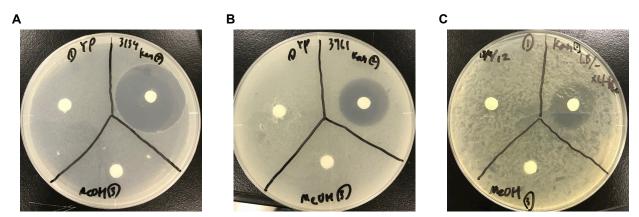
Figure S14. Edited-HSQC spectrum of **1** in DMSO-*d*₆ (500 MHz).

Figure S15. HMBC spectrum of **1** in DMSO- d_6 (500 MHz).

1.5.4 Determination of the absolute configuration of 1 by the advanced Marfey's method.

Purified 1 (0.1 mg) was dissolved in 100 μ L of 1 N HCl and hydrolyzed at 100 °C for 12 h. The solution was added 100 μ L of H₂O and 50 μ L of 1M NaHCO₃. After the solution was divided into two portions, one portion was mixed with 50 μ L of 1% w/v L-FDLA (N^{α} -(5-Fluoro-2,4-dinitrophenyl)-L-leucinamide) in acetone, and the other portion was mixed with 50 μ L of 1% w/v D-FDLA in acetone. These solutions were incubated at 50 °C for 1 h and were neutralized by 0.1 N HCl. Commercially available L- and D-ornithine were also derivatized by L- and D-FDLA in the same procedure and used as the references. All FDLA-derivatives were analyzed on LC–MS for determination of the absolute configuration of 1. The results are given in **Figure 1C** in the main text.

1.5.5 Fe(III)-binding assay of 1.


Purified 1 (0.1 mg, 0.13 μ mol) in 50 μ L MeOH was added with 1.3 μ L of 100 nM FeCl₃ solution (0.13 μ mol, 1.0 eq.) and mixed gently. The mixture was analyzed by LC–MS according to the method previously described. Anthraquinone was used as an internal standard. The result is given in **Figure 1D** in the main text.

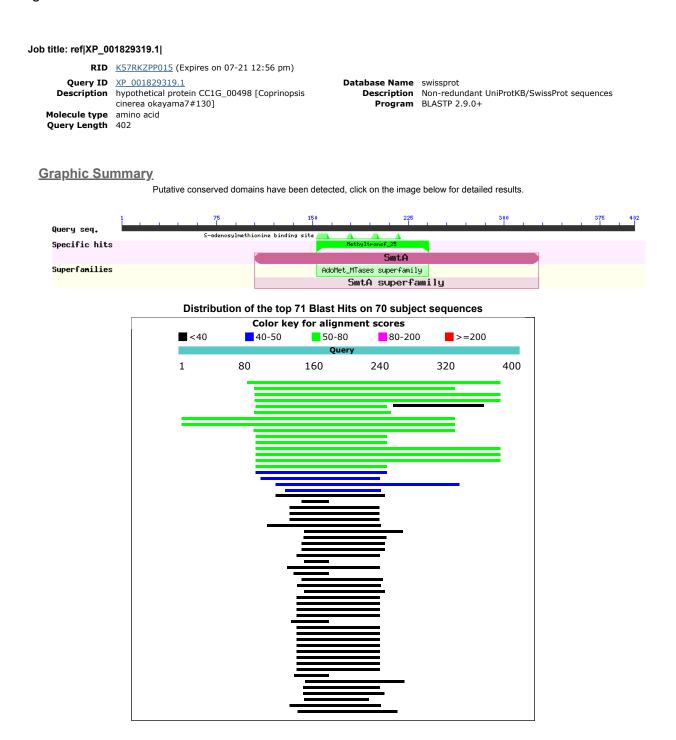
1.6 Biological activity of 1 and 2

1.6.1 Antimicrobial tests against *Bacillus subtilis, Staphylococcus aureus and E. coli.*

Bacillus subtilis (NBRC 3134) and *Staphylococcus aureus* (NBRC 3761) were purchased from National Institute of Technology and Evaluation, Japan. Each bacterium was cultured in YPD medium (10 g/L yeast extract, 20 g/L peptone, 20 g/L dextrose) at 30°C for 12 h with shaking at 180 r.p.m. Three paper disks respectively containing 50 µg of **1**, MeOH as a negative control, or 50 µg of kanamycin as a positive control were plated on a YPD agar plate (YPD medium with 2% agar). The resultant plate was overlaid with 10 mL of YPD soft agar (YPD with 0.5% agar) containing 1.0 mL of the culture of a single bacterium prepared earlier, and incubated at 30 °C for 12 h. Antimicrobial test for *E. coli* XL1-blue was conducted in essentially similar procedure as described above.

Figure S16. Antimicrobial tests against *B. subtilis* (A), *S. aureus* (B) and *E. coli* (C). The assay used paper disk containing 50 µg of **1** (left upper), 50 µg of kanamycin (right upper), and MeOH (lower center), respectively.

1.6.2 Growth defect complementation assay.


The *C. cinerea* $\Delta laeA\Delta cpf1$ strain was initially cultured on an MYG agar medium at 30 °C for 5 days. Approximately 1 square millimeter of the fungal mycelia collected from the plate was inoculated at the center of an RM plate. Two paper disks respectively containing 74.4 μ g of **1** (100 nmol) or DMSO were plated at the position depicted in **Figure 4C(i)** in the main text. The plate was incubated at 30 °C for 20 days. The result is given in **Figure 4C(ii)**.

1.6.3 Fruiting body formation assay.

Each of the *C. cinerea* strains, $\Delta laeA\Delta cpf1$, $\Delta laeA$ and ku3-24, was initially cultured on an MYG agar medium at 30 °C for 5 days. Approximately 1 square millimeter of the fungal mycelia collected from each plate was inoculated at the center of an MYG plate. Two paper disks respectively containing the test compound (either 1 at 22.3 µg, 2 at 23.9 µg or FeCl₃ at 243 µg), or the negative control (DMSO or H₂O) were plated at the position depicted in Figure 5A in the main text. The plate was incubated at 30 °C for 22 days. Fruiting body formation was confirmed visually. The result is given in Figure 5B–D in the main text.

1.7 Bioinformatic analysis

Figure S17. Conserved domains of LaeA (CC1G_00498) as determined by a BLASTP search against the Swiss-Prot database.^[5]

Table S6.List of homologous proteins of LaeA (CC1G_00498) determined by a BLASTPsearch against the Swiss-Prot database.^[5]

Description		Total Score	Query Cover	E value	Per. Ident	Accession
Description	Penicillium rubens Wisconsin 54-	50010	Cover	L value	I CI. Idelit	Accession
Secondary metabolism regulator laeA	1255	79.7	75%	5.00E-15	25.63%	B6H9U8.1
Secondary metabolism regulator laeA	Aspergillus niger ATCC 1015	77.4	59%	2.00E-14	28.05%	G3XRG4.1
Secondary metabolism regulator later	hspergulus higer three tots	,,	5770	2.001 11	20.0570	A0A0H4LJ
Secondary metabolism regulator laeA	Aspergillus fumisynnematus	76.6	73%	4.00E-14	25.71%	X8.1
Secondary metabolism regulator laeA	Aspergillus fumigatus Af293	75.9	73%	6.00E-14	25.71%	Q4WRY5.1
Secondary metabolism regulator		15.7	1570	0.001-14	23.7170	Q+WR15.1
LAE1	Bipolaris maydis C5	74.7	39%	9.00E-14	30.62%	M2SNN6.1
Secondary metabolism regulator laeA	Aspergillus nidulans FGSC A4	73.2	40%	5.00E-13	30.98%	C8VQG9.1
Secondary metabolism regulator laeA	Aspergillus flavus NRRL3357	72.4	81%	9.00E-13	25.89%	B8N406.2
Secondary metabolism regulator laeA	Aspergillus oryzae RIB40	134	81%	2.00E-12	25.89%	Q2ULA2.2
Secondary metabolism regulator laeA	Monascus pilosus	69.3	59%	9.00E-12	28.34%	A2SUH3.1
Secondary metabolism regulator	Monuscus puosus	07.5	5770	7.00L-12	20.5470	A0A0B5L7
LAE1	Botrytis cinerea B05.10	67.8	39%	3.00E-11	32.93%	R4.1
Secondary metabolism regulator	Donyus emered Doo.10	07.0	5770	5.001 11	52.9570	101.1
LAE1	Trichoderma atroviride IMI 206040	63.5	39%	6.00E-10	31.93%	G9P9X3.1
Secondary metabolism regulator		00.0	3,7,0	0.001 10	51.5570	0,1,110,1
LAE1	Fusarium verticillioides 7600	58.5	73%	2.00E-08	23.92%	W7LAD1.2
	Fusarium oxysporum f. sp.	00.0	1570	2.001 00	23.9270	A0A0J9UB
Secondary metabolism regulator laeA	lycopersici 4287	58.5	73%	2.00E-08	23.92%	D6.1
Secondary metabolism regulator						
LAE1	Fusarium fujikuroi IMI 58289	57	73%	8.00E-08	23.59%	S0DQI7.2
Secondary metabolism regulator laeA	Fusarium graminearum PH-1	52.8	39%	2.00E-06	27.95%	I1RAW4.2
Secondary metabolism regulator		02.0	5770	2.002.00	27.5070	1110111112
LAE1	Trichoderma reesei QM6a	48.9	39%	3.00E-05	27.71%	G0RNN3.2
Malonyl-[acyl-carrier protein] O-	Calditerrivibrio nitroreducens					
methyltransferase	DSM 19672	41.2	35%	0.007	22.07%	E4TI44.1
Phosphoethanolamine N-						
methyltransferase 3	Arabidopsis thaliana	41.2	54%	0.011	24.27%	Q9C6B9.2
Uncharacterized protein RP028	Rickettsia prowazekii str. Madrid E	40.4	28%	0.014	26.15%	O05972.1
Phosphoethanolamine N-	· · · · ·					
methyltransferase 1	Arabidopsis thaliana	39.3	32%	0.049	28.47%	Q9FR44.1
Malonyl-[acyl-carrier protein] O-	Legionella pneumophila subsp.					
methyltransferase	pneumophila str. Philadelphia 1	37.7	7%	0.12	51.61%	Q5ZT34.2
Ubiquinone biosynthesis O-	Coxiella burnetii Dugway 5J108-					
methyltransferase	111	37.4	26%	0.13	24.32%	A9KGL7.1
Ubiquinone biosynthesis O-						
methyltransferase	Coxiella burnetii CbuK_Q154	37.4	26%	0.13	24.32%	B6J5Y2.1
Ubiquinone biosynthesis O-						
methyltransferase	Coxiella burnetii RSA 331	37.4	26%	0.14	24.32%	A9NBI0.1
Ubiquinone biosynthesis O-						
methyltransferase	Yersinia pestis Pestoides F	37	33%	0.16	24.83%	A4TNI8.1
Demethylmenaquinone	Lactococcus lactis subsp. lactis					
methyltransferase	II1403	36.6	29%	0.27	27.42%	P49016.1
2-methyl-6-phytyl-1,4-hydroquinone	Synechocystis sp. PCC 6803 substr.					
methyltransferase	Kazusa	36.2	24%	0.4	24.51%	P74388.1
Phosphoethanolamine N-						
methyltransferase	Spinacia oleracea	36.2	24%	0.41	26.92%	Q9M571.1
Phosphomethylethanolamine N-						
methyltransferase	Arabidopsis thaliana	36.2	24%	0.43	27.88%	Q944H0.2
Ubiquinone biosynthesis O-	Escherichia coli O127:H6 str.					
methyltransferase	E2348/69	35.8	24%	0.47	22.32%	B7UFP4.1
tRNA (guanine-N(7)-)-	Rubrobacter xylanophilus DSM					
methyltransferase	9941	35.4	6%	0.53	57.14%	Q1AUF5.1

Figure S18. Multiple alignment of amino acid sequence of *C. cinerea* LaeA with homologous proteins. Catalytically important GXGXG motif is highlighted in yellow. The data was generated using ClustalW.^[6]

	10	20	30	40	50	60	70	80	90	100
CC1G 00498 XP 0018293191	 MSLKYYLNDLSDSD									
LAEA ASPNA	MFEISRLLHQ									
LAEA_ASPES	MFLNGQGGQR									
LAEA_ASPFU	MFLNGQGGQR									
			103133011	** :*	.*. *:					** :
Prim.cons.	MSLKMFLNGQGGQRI		IVRGSTSS4FN					SPSTNSTSS		
			11105155411	ALONSININSDA				51 51101 551		
	110	120	130	140	150	160	170	180	190	200
	I			I			l I			
CC1G_00498_XP_0018293191	NFKKAIYHLPADEE									
LAEA_ASPNA	GYRRGVYPLPCDEQ	-							-	
LAEA_ASPFS	GYRKGIYMLPCDEQ									
LAEA_ASPFU	GYRKGIYMLPCDEQ	EQDRLDIFHK	KLFTVAR	VSDGLIYA	PHPTNGRFLC	DL <mark>GCGTG</mark> IWA	ID <mark>VANK</mark> YPEAF	VVGVDLAPI	PPNHPRNCDF	YAPF <mark>D</mark> F
	.:::.:* **.**:>						:**:* .			*.
Prim.cons.	GYRKGIYMLPCDEQ	EQDRLDIFH	LFTVARGRKY	PPVSDGLIYA	PHPTNGRFLD	DLGCGTGIWA	IDVANKYPEAF	VVGVDLAPI	PPNHPRNCDF	YAPFDF
								200	290	200
	210	220								
	210	220	230	240	250	260	270	280	290	300
CC16 00/08 XP 0018203101			1	1						
CC1G_00498_XP_0018293191	 NLGLQHFFGRFDVVI	 ARLLSSGI	 (DYQLLIENIA	 RTLRPGGLVEI	 _Q <mark>eydf</mark> hiyd	 	 TNELAPPWWPR	 WMTFFNEAIF	 RKMQGDVDAAT	 HLLKWV
LAEA_ASPNA	 NLGLQHFFGRFDVVI EAPWTLGENSWDLII	 ARLLSSGIK LQMGCGSVL	 KDYQLLIENIA _GWQNLYKRIL	 RTLRPGGLVEI RHLQPGAWFE(LQEYDFHIYD QVEIDFEP-F	CNRRRFELS	TNELAPPWWPR SLNGLALRE	WMTFFNEAIF	 RKMQGDVDAAT QDTMRPIAHSS	 HLLKWV RDTIRH
LAEA_ASPNA LAEA_ASPFS	NLGLQHFFGRFDVVI EAPWTLGENSWDLII ESLWALGEDSWDLII	 ARLLSSGIK LQMGCGSVL MQMGSGSVA	 KDYQLLIENIA _GWQNLYKRIL ASWPNLYRRIY	RTLRPGGLVEI RHLQPGAWFE(SHLRPGAWFE(_QEYDFHIYD QVEIDFEP-F QVEIDFEP-F	 	 TNELAPPWWPR SLNGLALRE SLEGLAIRQ	WMTFFNEAIF WYQYLKQATC	 RKMQGDVDAAT QDTMRPIAHSS EETMRPVAHNS	 HLLKWV RDTIRH RETIRN
LAEA_ASPNA	I NLGLQHFFGRFDVVI EAPWTLGENSWDLII ESLWALGEDSWDLII ESLWALGEDSWDLII	IARLLSSGIK ILQMGCGSVL IMQMGSGSVA	 KDYQLLIENIA _GWQNLYKRIL ASWPNLYRRIY ASWPNLYRRIY	RTLRPGGLVEI RHLQPGAWFEC SHLRPGAWFEC SHLRPGAWFEC	LQEYDFHIYC QVEIDFEP-F QVEIDFEP-F QVEIDFEP-F	 	 TNELAPPWWPR SLNGLALRE SLEGLAIRQ SLEGLAIRQ	WMTFFNEAI WYQYLKQATO WYQLLKQATO WYQLLKQATO	 RKMQGDVDAAT QDTMRPIAHSS EETMRPVAHNS EETMRPVAHNS	 HLLKWV RDTIRH RETIRN RETIRN
LAEA_ASPNA LAEA_ASPFS LAEA_ASPFU	I NLGLQHFFGRFDVVI EAPWTLGENSWDLII ESLWALGEDSWDLII : :::::	 ARLLSSGIK LQMGCGSVL MQMGSGSVA MQMGSGSVA	 KDYQLLIENIA _GWQNLYKRIL ASWPNLYRRIY ASWPNLYRRIY .: **	 RTLRPGGLVEL RHLQPGAWFEC SHLRPGAWFEC *:***	LQEYDFHIYD QVEIDFEP-F QVEIDFEP-F QVEIDFEP-F * **.	 	 TNELAPPWWPR SLNGLALRE SLEGLAIRQ SLEGLAIRQ .*	WMTFFNEAIF WYQYLKQATC WYQLLKQATE WYQLLKQATE	 RKMQGDVDAAT QDTMRPIAHSS EETMRPVAHNS EETMRPVAHNS	 HLLKWV RDTIRH RETIRN RETIRN :
LAEA_ASPNA LAEA_ASPFS	I NLGLQHFFGRFDVVI EAPWTLGENSWDLII ESLWALGEDSWDLII ESLWALGEDSWDLII	 ARLLSSGIK LQMGCGSVL MQMGSGSVA MQMGSGSVA	 KDYQLLIENIA _GWQNLYKRIL ASWPNLYRRIY ASWPNLYRRIY .: **	 RTLRPGGLVEL RHLQPGAWFEC SHLRPGAWFEC *:***	LQEYDFHIYD QVEIDFEP-F QVEIDFEP-F QVEIDFEP-F * **.	 	 TNELAPPWWPR SLNGLALRE SLEGLAIRQ SLEGLAIRQ .*	WMTFFNEAIF WYQYLKQATC WYQLLKQATE WYQLLKQATE	 RKMQGDVDAAT QDTMRPIAHSS EETMRPVAHNS EETMRPVAHNS	 HLLKWV RDTIRH RETIRN RETIRN :
LAEA_ASPNA LAEA_ASPFS LAEA_ASPFU	I NLGLQHFFGRFDVVI EAPWTLGENSWDLII ESLWALGEDSWDLII : :::::	 ARLLSSGIK LQMGCGSVL MQMGSGSVA MQMGSGSVA	 KDYQLLIENIA _GWQNLYKRIL ASWPNLYRRIY ASWPNLYRRIY .: **	 RTLRPGGLVEL RHLQPGAWFEC SHLRPGAWFEC *:***	LQEYDFHIYD QVEIDFEP-F QVEIDFEP-F QVEIDFEP-F * **.	 	 TNELAPPWWPR SLNGLALRE SLEGLAIRQ SLEGLAIRQ .*	WMTFFNEAIF WYQYLKQATC WYQLLKQATE WYQLLKQATE	 RKMQGDVDAAT QDTMRPIAHSS EETMRPVAHNS EETMRPVAHNS	 HLLKWV RDTIRH RETIRN RETIRN :
LAEA_ASPNA LAEA_ASPFS LAEA_ASPFU	NLGLQHFFGRFDVVI EAPWTLGENSWDLII ESLWALGEDSWDLII ESLWALGEDSWDLII	HARLLSSGIK HLQMGCGSVL HMQMGSGSVA HMQMGSGSVA	I KDYQLLIENIA GWQNLYKRIL ASWPNLYRRIY .: ** ASW2NLYRRIY	RTLRPGGLVEL RHLQPGAWFEC SHLRPGAWFEC SHLRPGAWFEC *:*** 2HLRPGAWFEC	QEYDFHIYD QVEIDFEP-F QVEIDFEP-F QVEIDFEP-F XVEIDFEP-F * **. QVEIDFEPYF	CDDR	 TNELAPPWWPR SLNGLALRE SLEGLAIRQ SLEGLAIRQ .* TNSLEGLAIRQ	WMTFFNEAIF WYQYLKQATG WYQLLKQATG WYQLLKQATG * :::* . WYQLLKQATG	I RKMQGDVDAAT DTMRPIAHSS EETMRPVAHNS EETMRPVAHNS EETMRPVAHNS	HLLKWV RDTIRH RETIRN RETIRN : RETIRN
LAEA_ASPNA LAEA_ASPFS LAEA_ASPFU	NLGLQHFFGRFDVVI EAPWTLGENSWDLII ESLWALGEDSWDLII ESLWALGEDSWDLII	HARLLSSGIK HLQMGCGSVL HMQMGSGSVA HMQMGSGSVA * ::: HMQMGSGSVA 320 	KDYQLLIENIA SWONLYKRIL ASWPNLYRRIY ASWPNLYRRIY .: ** ASW2NLYRRIY 330 	RTLRPGGLVEI RHLQPGAWFE(SHLRPGAWFE(SHLRPGAWFE(*:**, .* 2HLRPGAWFE(340 	QEYDFHIYC QVEIDFEP-F QVEIDFEP-F QVEIDFEP-F * **. QVEIDFEPYF 350 	CONRRRFELS CDDR CDDR CDDR CDDR *: * CCDDRRFELS 360 	 TNELAPPWWPR SLNGLALRE SLEGLAIRQ SLEGLAIRQ .* • TNSLEGLAIRQ 370 	WMTFFNEAI WYQYLKQAT WYQLLKQAT WYQLLKQAT * :::* . WYQLLKQAT 380 	RKMQGDVDAAT DTMRPIAHSS EETMRPVAHNS EETMRPVAHNS EETMRPVAHNS 390 	 HLLKWV RDTIRH RETIRN RETIRN : RETIRN 400
LAEA_ASPNA LAEA_ASPFS LAEA_ASPFU Prim.cons.	I NLGLQHFFGRFDVVI EAPWTLGENSWDLII ESLWALGEDSWDLII : : :*::; ESLWALGEDSWDLII 310	HARLLSSGIK HLQMGCGSVL HMQMGSGSVA HMQMGSGSVA * ::: HMQMGSGSVA 320 VIPIIPGNLC	GUYQLLIENIA GWQNLYKRIL SSWPNLYRRIY SSWPNLYRRIY SSWPNLYRRIY 330 I DPLEPMYAR	RTLRPGGLVEI RHLQPGAWFEC SHLRPGAWFEC SHLRPGAWFEC *:*** 2HLRPGAWFEC 340 -LQADVSVYLF	QEYDFHIYD QVEIDFEP-F QVEIDFEP-F QVEIDFEP-F XVEIDFEPYF 350 RSGRPLLLKS	CONRRRFELS CDDR CDDR CDDR CDDR *: * CCDDRRFELS 360 GGLSEMEVDI	I TNELAPPWWPR SLNGLALRE SLEGLAIRQ SLEGLAIRQ .* • TNSLEGLAIRQ 370 I LENNAIREFYE	WMTFFNEAI WYQLLKQAT WYQLLKQAT WYQLLKQAT * :::* WYQLLKQAT 380 :SETTQYTRL	RKMQGDVDAAT DTMRPIAHSS ETMRPVAHNS ETMRPVAHNS ETMRPVAHNS 390 I QCVCARRNNAV	 HLLKWV RDTIRH RETIRN : RETIRN 400 LDHLPP
LAEA_ASPNA LAEA_ASPFS LAEA_ASPFU Prim.cons. CC1G_00498_XP_0018293191	I NLGLQHFFGRFDVVI EAPWTLGENSWDLII ESLWALGEDSWDLII ESLWALGEDSWDLII : . :*::? ESLWALGEDSWDLII 310 I RTHPGFEQVRYEERU	HARLLSSGIK HLQMGCGSVL HMQMGSGSVA HMQMGSGSVA * ::: HMQMGSGSVA 320 J VIPIIPGNLL GLPLNPWHRC	GUYQLLIENIA GWQNLYKRIL SWPNLYRRIY SWPNLYRRIY SWPNLYRRIY 330 J DPLEPMYAR DEHEQKVARWY	RTLRPGGLVEI RHLQPGAWFEC SHLRPGAWFEC SHLRPGAWFEC *:*** 2HLRPGAWFEC 340 -LQADVSVYLF NLAISESIETI	QEYDFHIYD QVEIDFEP-F QVEIDFEP-F QVEIDFEP-F * **. QVEIDFEPYF 350 RSGRPLLLKS SLAPFSRIF	CONRRFELS CDDR CDDR CDDR CDDR-FELS 360 I GGLSEMEVDI THWDLDRIRQ	I TNELAPPWWPR SLNGLALRE SLEGLAIRQ SLEGLAIRQ 	WMTFFNEAIF WYQULKQAT WYQLLKQAT WYQLLKQAT * :::* WYQLLKQAT 380 I SETTQYTRLC IKEIHAYNILF	I RKMQGDVDAAT DTMRPIAHSS EETMRPVAHNS EETMRPVAHNS 390 I QCVCARRNNAV IIYQARKPGGP	 HLLKWV RDTIRH RETIRN ETIRN : RETIRN 400 LDHLPP SL
LAEA_ASPNA LAEA_ASPFS LAEA_ASPFU Prim.cons. CC1G_00498_XP_0018293191 LAEA_ASPNA	I NLGLQHFFGRFDVVI EAPWTLGENSWDLII ESLWALGEDSWDLII ESLWALGEDSWDLII : . :*:: ESLWALGEDSWDLII 310 I RTHPGFEQVRYEERI LEEAGFTQIDHQMV0	IARLLSSGIK HLQMGCGSVL HMQMGSGSVA HMQMGSGSVA * ::: HMQMGSGSVA 320 J VIPIIPGNLC GLPLNPWHRC GLPLNPWHRC	GUYQLLIENIA GWQNLYKRIL SWPNLYRRIY SWPNLYRRIY SWPNLYRRIY 3300 J DPLEPMYAR DEHEQKVARWY DEHERRVARWY	RTLRPGGLVEI RHLQPGAWFEC SHLRPGAWFEC SHLRPGAWFEC *:*** 2HLRPGAWFEC 340 -LQADVSVYLF NLAISESIETI NLAISESIETI	QEYDFHIYD QVEIDFEP-F QVEIDFEP-F QVEIDFEP-F * **. QVEIDFEPYF 350 RSGRPLLLKS SLAPFSRIF ISLAPFSRVF	CONRRFELS CDDR CDDR CDDR CDDR-FELS 360 J GGLSEMEVDI HWDLDRIRQ GWPIERIKQ	I TNELAPPWWPR SLNGLALRE SLEGLAIRQ SLEGLAIRQ 	WMTFFNEAIF WYQULKQATG WYQLLKQATG WYQLLKQATG * :::* w WYQLLKQATG 380 J SETTQYTRLC IKEIHAYNILF	RKMQGDVDAAT DTMRPIAHSS EETMRPVAHNS EETMRPVAHNS 390 QCVCARRNNAV HIYQARKPGGP HIYQARKPLAN	HLLKWV RDTIRH RETIRN ETIRN : RETIRN 400 LDHLPP SL
LAEA_ASPNA LAEA_ASPFS LAEA_ASPFU Prim.cons. CC1G_00498_XP_0018293191 LAEA_ASPNA LAEA_ASPFS	I NLGLQHFFGRFDVVI EAPWTLGENSWDLII ESLWALGEDSWDLII ESLWALGEDSWDLII : . :*:: ESLWALGEDSWDLII 310 I RTHPGFEQVRYEERI LEEAGFTQIDHQMVG LQEAGFTEIDHQMVG	IARLLSSGIK HLQMGCGSVL HMQMGSGSVA HMQMGSGSVA * ::: HMQMGSGSVA 320 J VIPIIPGNLC GLPLNPWHRC GLPLNPWHRC	GUYQLLIENIA GWQNLYKRIL SWPNLYRRIY SWPNLYRRIY SWPNLYRRIY 3300 J DPLEPMYAR DEHEQKVARWY DEHERRVARWY DEHERRVARWY	RTLRPGGLVEI RHLQPGAWFEC SHLRPGAWFEC SHLRPGAWFEC *:*** 2HLRPGAWFEC 340 -LQADVSVYLF NLAISESIETI NLAISESIETI	QEYDFHIYD QVEIDFEP-F QVEIDFEP-F QVEIDFEP-F * **. QVEIDFEPYF 350 RSGRPLLLKS SLAPFSRIF ISLAPFSRVF	CONRRFELS CDDR CDDR CDDR CDDRFELS 360 J GGLSEMEVDI HWDLDRIRQ GWPIERIKQ GWPIERIKQ	I TNELAPPWWPR SLNGLALRE SLEGLAIRQ SLEGLAIRQ 	WMTFFNEAIF WYQULKQATG WYQLLKQATG WYQLLKQATG * :::* : WYQLLKQATG * SETTQYTRLC IKEIHAYNILF IKEIHTYNILF	I RKMQGDVDAAT DTMRPIAHSS EETMRPVAHNS EETMRPVAHNS 390 J QCVCARRNNAV HIYQARKPGGP HIYQARKPLAN HIYQARKPLAN	HLLKWV RDTIRH RETIRN ETIRN : RETIRN 400 LDHLPP SL
LAEA_ASPNA LAEA_ASPFS LAEA_ASPFU Prim.cons. CC1G_00498_XP_0018293191 LAEA_ASPNA LAEA_ASPFS	I NLGLQHFFGRFDVVI EAPWTLGENSWDLII ESLWALGEDSWDLII ESLWALGEDSWDLII : . :*:: ESLWALGEDSWDLII 310 I RTHPGFEQVRYEERI LEEAGFTQIDHQMV0 LQEAGFTEIDHQMV0 LQEAGFTEIDHQMV0	HARLLSSGIK HLQMGCGSVL HMQMGSGSVA HMQMGSGSVA * ::: HMQMGSGSVA 320 J WIPIIPGNLC GLPLNPWHRC GLPLNPWHQC GLPLNPWHEC :*: * : *	I CDYQLLIENIA GWQNLYKRIL SWPNLYRRIY SWPNLYRRIY SW2NLYRRIY 330 I DPLEPMYAR DEHEQKVARWY DEHERRVARWY EHERRVARWY * ***	RTLRPGGLVEI RHLQPGAWFE(SHLRPGAWFE(SHLRPGAWFE(*:**, .* 2HLRPGAWFE(340 -LQADVSVYLF NLAISESIETI NLAISESIETI * . *:	LQEYDFHIYD QVEIDFEP-F QVEIDFEP-F QVEIDFEP-F * ***. QVEIDFEPYF 350 RSGRPLLLKS SLAPFSRJF 4SLAPFSRVF 4SLAPFSRVF * *:	CONRRFELS CDDR CDDR CDDR CDDR CDDRFELS 360 GGLSEMEVDI HWDLDRIRQ GWPIERIKQ GWPIERIKQ	I TNELAPPWWPR SLNGLALRE SLEGLAIRQ SLEGLAIRQ INSLEGLAIRQ 370 I LENNAIREFYE ITAEVKSQAFN IAADVKSEAFN I AADVKSEAFN	WMTFFNEAIF WYQULKQATG WYQLLKQATG WYQLLKQATG WYQLLKQATG 380 I SETTQYTRL(IKEIHAYNILF IKEIHTYNILF .* *. *	KKMQGDVDAAT DTMRPIAHSS ETMRPVAHNS ETMRPVAHNS ETMRPVAHNS 390 QCVCARRNNAV HIYQARKPGAP HIYQARKPLAN HIYQARKPLAN	 HLLKWV RDTIRH RETIRN : RETIRN 400 LDHLPP SL

Figure S19. Domain organization of *C. cinerea* Cpf1, predicted by Pfam 32.0.

quence se	earch results													
the detailed	l description of this results page.													
e found 7 Pfam-/	A matches to your search sequence (all signi	ficant)												
	AMP-binding			Con	densation				Condensa	tion		Conden	sation	
how the search c	options and sequence that you submitted.													
	ch form to look for Pfam domains on a new s	aulence												
to the searce	chronin to look for Fram domains on a new s	equence.												
anificant Pfa	am-A Matches													
ginneant Fla	III-A Hatches													
ow or hide all alig	anmente													
now or <u>hide</u> all alig		Entry		Enve	lope	Align	ment	нм	м	нмм	Bit		Predicted	Show/hide
<u>now</u> or <u>hide</u> all alig Family	ignments. Description	Entry type	Clan	Enve	elope End	Align Start	ment End	HM From	м	HMM length	Bit score	E-value	Predicted active sites	Show/hide alignment
			Clan <u>CL0378</u>	L	· · · · · · · · · · · · · · · · · · ·							E-value 2.8e-84		
Family	Description	type		Start	End	Start	End		То	length	score		active sites	alignment
Family AMP-binding	Description AMP-binding enzyme	type Family	<u>CL0378</u>	Start 237	End 646	Start 237	End 646	From 1	To 423	length 423	score 283.2	2.8e-84	active sites	alignment Show
Family AMP-binding PP-binding	Description AMP-binding enzyme Phosphopantetheine attachment site	type Family Domain	<u>CL0378</u> <u>CL0314</u>	Start 237 793	End 646 856	Start 237 808	End 646 856	From 1 19	To 423 67	length 423 67	score 283.2 25.6	2.8e-84 1.2e-05	active sites n/a n/a	alignment Show Show
Family AMP-binding <u>PP-binding</u> Condensation	Description AMP-binding enzyme Phosphopantetheine attachment site Condensation domain	Family Domain Family	CL0378 CL0314 CL0149	Start 237 793 889	End 646 856 1290	Start 237 808 891	End 646 856 1260	From 1 19 3	To 423 67 401	length 423 67 457	score 283.2 25.6 108.8	2.8e-84 1.2e-05 2.6e-31	active sites n/a n/a n/a	alignment Show Show Show
Family AMP-binding PP-binding Condensation PP-binding	Description AMP-binding enzyme Phosphopantetheine attachment site Condensation domain Phosphopantetheine attachment site	type Family Domain Family Domain	CL0378 CL0314 CL0149 CL0314	Start 237 793 889 1331	End 646 856 1290 1396	Start 237 808 891 1332	End 646 856 1260 1395	From 1 19 3 2	To 423 67 401 66	length 423 67 457 67	score 283.2 25.6 108.8 32.8	2.8e-84 1.2e-05 2.6e-31 6.5e-08	active sites n/a n/a n/a n/a	alignment Show Show Show Show

2. Supporting References

- [1] T. Nakazawa, Y. Honda, *FEMS Microbiol. Lett.* **2015**, *362*, fnv123.
- [2] T. Yamamoto, Y. Tsunematsu, H. Noguchi, K. Hotta, K. Watanabe, *Org. Lett.* **2015**, *17*, 4992–4995.
- [3] R. S. Sikorski, P. Hieter, *Genetics* **1989**, *122*, 19–27.
- [4] T. Nakazawa, Y. Tatsuta, T. Fujita, K. Nakahori, T. Kamada, *Curr. Genet.* **2010**, *56*, 361–367.
- [5] E. Boutet, D. Lieberherr, M. Tognolli, M. Schneider, P. Bansal, A. J. Bridge, S. Poux, L. Bougueleret, I. Xenarios, *Methods Mol. Biol.* **2016**, *1374*, 23–54.
- [6] M. A. Larkin, G. Blackshields, N. P. Brown, R. Chenna, P. A. McGettigan, H. McWilliam, F. Valentin, I. M. Wallace, A. Wilm, R. Lopez, J. D. Thompson, T. J. Gibson, D. G. Higgins, *Bioinformatics* 2007, 23, 2947–2948.