Characterization of 3-((carboxymethyl)thio)picolinic acid – A novel inhibitor of phosphoenolpyruvate carboxykinase

Matthew J. Mcleodt, Anthony P. Krismanich‡, Abdeljalil Assoud‡, Gary I. Dmitrienko‡ and Todd Holyoakt*

[†]Departments of Biology[†] and ‡Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada

General Synthetic Experimental

NMR spectra were recorded on either a Bruker Avance 300 or Avance 500 spectrometer in deuterium oxide with automated calibration, in DMSO- d_6 manually calibrated to 2.49 ppm for residual DMSO- d_5 , or in methanol- d_4 manually calibrated to 3.30 ppm for residual CD₂HOD. High resolution mass spectra were recorded on a Thermo Scientific Q-Exactive Orbitrap mass spectrometer.

Synthetic Procedures

2-((2-cyanopyridin-3-yl)thio)acetic acid

Scheme S1. Initial steps in the chemical workup to produce the desired CMP.

To a solution of 3-bromopyridine-2-carbonitrile (382.2 mg, 2.09 mmol, 1 equiv.) in THF (10 mL) were added mercaptoacetic acid (145.1 µL, 2.09 mmol, 1 equiv.) and DBU (624.6 µL, 4.18 mmol, 2 equiv.) and the reaction was stirred at room temperature under an Ar atmosphere. The reaction was cooled, causing material to oil out and freeze. The liquid was removed. The solid was warmed and dissolved in CH_2Cl_2 (50 mL) and washed with sat. aq. NH_4Cl . The aqueous phase was washed with CH_2Cl_2 (30 mL). To the aqueous phase was added 2 M HCl (40 mL), causing it to turn yellow. The aqueous phase was washed with $CHCl_3$ (60 mL), followed by EtOAc (3 × 50 mL). The combined EtOAc extracts were dried (Na₂SO₄) and concentrated to give a pale yellow solid which did not require further purification (246.4 mg, 61%). ¹H NMR (CD₃OD, 300 MHz) δ 8.48 (1H, dd, J = 4.7, 1.4 Hz), 8.05 (1H, dd, J = 8.3, 1.4 Hz), 7.58 (1H, dd, J = 8.3, 4.7 Hz), 3.93 (2 H, s). HRMS-ESI+ (m/z): $[M + H]^+$ calcd for $C_8H_7N_2O_2S$, 195.02227; found, 195.02236 (Suppl. Figure 1).

s2

3-((carboxymethyl)thio)picolinic acid

Scheme S2. Final acidification in the chemical workup to produce the desired CMP.

An aqueous 6 M HCl solution of 2-((2-cyanopyridin-3-yl)thio) acetic acid was refluxed overnight and concentrated in vacuo. The concentrate was treated with TFA-CDCl₃ to give a suspension, and the solution was removed. The remaining solid was treated with D₂O and repeatedly heated and submerged in an ultrasonic bath, resulting in near-complete dissolution. In the first attempt of the reaction, the decanted D₂O NMR solution precipitated upon refrigeration. The sample was heated to restore complete dissolution. Standing at rt resulted in formation of crystals suitable for study by single-crystal X-ray diffraction, which gave an X-ray crystal structure and confirmed the intended product structure. In the second preparation attempt, the starting

S3

material (32.2 mg, 0.166 mmol) was refluxed in 6 M HCl (8 mL) overnight. After concentration in vacuo, the same sequence of treatments brought about a lesser extent of dissolution and furnished a D_2O solution whose ¹H NMR spectrum evidenced a mixture. A portion of the remaining solid film (2.3 mg, 6.5%) was dissolved in a weighed quantity of DMSO- d_6 and its ¹H NMR spectrum obtained, revealing homogeneous solution of 3а ((carboxymethyl)thio) picolinic acid. The DMSO- d_6 solution of known concentration (w:w) was suitable for direct use in enzymatic studies. ¹H NMR (DMSO- d_6 , 300 MHz) δ 8.39 (1H, m), 7.86 (1H, m), 7.51 (1H, m), 3.83 (2 H, s) (Suppl. Figure 2); ¹³C NMR (125 MHz, DMSO-*d*₆) δ 170.3, 166.8, 145.9, 144.8, 135.6, 135.2, 126.1, 34.1; HRMS-ESI+ (m/z) (Suppl. Figure 3): $[M + H]^+$ calcd for C₈H₈NO₄S, 214.01685; found, 214.01692.

Figure S1. Proton NMR spectrum of 2-((2-cyanopyridin-3-yl)thio)acetic acid (2).

Figure S2. Proton NMR spectrum of 3-((carboxymethyl)thio)picolinic acid (3).

Figure S4. HMQC NMR spectrum of 3-((carboxymethyl)thio)picolinic acid (3).

Figure S5. Difference NOE NMR spectra of 3-((carboxymethyl)thio)picolinic acid (3)

S9

Figure S6 The raw IC_{50} data graph of the of the various inhibitor/enzyme experiments. Error bars are contained within the points.

Figure S7. The raw data graphs of the K/V effect vs CMP concentration for the three isozymes tested.