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Figure S1. 1H NMR spectrum of  [tBu4L-RuH(CO)(PPh3)]Cl in DMSO-d6. 
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Figure S2. 31P{1H} NMR spectrum of [tBu4L-RuH(CO)(PPh3)]Cl in DMSO-d6. 
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Figure S3. 13C{1H} NMR spectrum of [tBu4L-RuH(CO)(PPh3)]Cl in DMSO-d6. 
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Figure S4. 1H NMR spectrum of [tBu4L-RuH(CO)(PPh3)]TFA in DMSO-d6.  
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Figure S5. 31P{1H} NMR spectrum of [tBu4L-RuH(CO)(PPh3)]TFA in DMSO-d6. 
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Figure S6. 1H NMR spectrum of [H4L-Ru(TFA)(CO)(PPh3)]TFA in DMSO-d6. 
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Figure S7. 31P {1H} NMR spectrum of  [H4L-Ru(TFA)(CO)(PPh3)]TFA in DMSO-d6. 
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Figure S8. 13C {1H} NMR spectrum of  [H4L-Ru(TFA)(CO)(PPh3)]TFA in DMSO-d6. 
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Figure S9. 1H NMR spectrum of [tBu4L-RuCl(CO)2]Cl in DMSO-d6. 
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Figure S10. 31P {1H} NMR spectrum of [tBu4L-RuCl(CO)2]Cl in DMSO-d6 
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Figure S11. 13C {1H} NMR spectrum of [tBu4L-RuCl(CO)2]Cl in DMSO-d6  
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Figure S12.  1H NMR spectrum of [H4L-RuCl(CO)2]TFA in DMSO-d6.  
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Figure S13.  31P {1H} NMR spectrum of [H4L-RuCl(CO)2]TFA in DMSO-d6. 
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Figure S14.  13C {1H} NMR spectrum of [H4L-RuCl(CO)2]TFA in DMSO-d6. 
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Figure S15. 31P {1H} NMR spectrum of cis/trans-tBu4L-RuCl2(CO) in DMSO-d6. 
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Figure S16.  1H NMR spectrum of cis/trans-tBu4L-RuCl2(CO) in DMSO-d6. 
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Figure S17. 1H NMR spectrum of cis/trans-H4L-RuCl2(CO) in DMSO-d6  
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Figure S18. 31P {1H} NMR spectrum of cis/trans- H4L-RuCl2(CO) in DMSO-d6 
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Figure S19. ATR-IR spectra of tBu4L-Ru-PNNNP pincer complexes 
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Figure S20. ATR-IR spectra of H4L-Ru-PNNNP pincer complexes 
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Figure S21. ATR-IR spectra of RuCl2(CO)3(HCO2H) and RuCl2(CO)3(THF)  
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Synchrotron X-ray Powder Diffraction, Structure Solution, and Rietveld Refinement of 1 

Synchrotron X-ray Powder diffraction (SXPD) data for 1 was collected on the 11-BM beamline at 

the Advanced Photon Source (APS, Argonne National Laboratory). Measurements were taken on 

a powder sample sealed in a 0.8 mm ID Kapton capillary at 298 K using a photon wavelength of 

λ = 0.414536 Å. Subsequent Pawley fits and Rietveld refinement were performed using TOPAS-

Academic (v6) over the data range 2θ = 0.5 – 10.0° and 0.5 – 20.0°, respectively. Indexing the 

SXPD data gave a hexagonal unit cell (a = 31.937(7) Å, c = 15.798(4) Å) with P6/mmm as a 

possible space group. An initial structure model was constructed with P6/mmm space group 

symmetry and Rietveld refinement was carried out using simulated annealing with two rigid 

bodies, a D4h Zr6O4(OH)4(OAc)4 cluster and idealized [L-RuCl3]
4– linker. The position and 

orientation of each rigid body is constrained by symmetry; the torsion angles of the benzoate group 

were allowed to freely refine, as described previously.1 Constraints were placed on the Zr-acetate 

and Zr-benzoate bond distances, to guarantee chemically reasonable Zr-O bond lengths. The best 

fit to the data provided Rwp = 14.03 with final lattice parameters of a = 31.9437(6) Å, c = 

15.8051(3) Å. 

Table S1. Fractional coordinates of the asymmetric unit  for framework structure 1. 

 

Label Element Xfrac Yfrac Zfrac 

Ru Ru 0.186100 0.372200 0.000000 

Cla Cl 0.229870 0.459741 0.000000 

Clb Cl 0.110287 0.372200 0.000000 

P1 P 0.181952 0.363905 -0.148726 

N1 N 0.152066 0.304132 -0.147269 

C1 C 0.137403 0.274806 -0.074540 

C2 C 0.111950 0.223900 -0.076341 

C3 C 0.099062 0.198124 0.000274 

N2 N 0.149818 0.299637 0.000101 

C11 C 0.151269 0.390328 0.205106 

C12 C 0.161653 0.437831 0.190923 

C13 C 0.136862 0.456403 0.236143 

C14 C 0.101685 0.427469 0.295546 

C15 C 0.091301 0.379966 0.309729 

C16 C 0.116093 0.361394 0.264509 

C17 C 0.075075 0.447403 0.344083 

O11 O 0.054313 0.430335 0.409705 

O12 O 0.076722 0.485714 0.307436 

Zr1a Zr 0.422372 0.422372 0.500000 

Zr2a Zr 0.468309 0.531691 0.610953 

O1a O 0.463860 0.463860 0.603326 

O2a O 0.506627 0.565653 0.500000 

O3a O 0.429834 0.570166 0.567662 

C3a C 0.418676 0.581324 0.500000 
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C3b C 0.391499 0.608501 0.500000 

O4a O 0.519326 0.480674 0.745654 

C4a C 0.500000 0.500000 0.784719 

C4b C 0.500000 0.500000 0.879866 

Pawley refinement of 1 

The Pawley refinement was performed using synchrotron X-ray powder diffraction data of 1. The 

Pawley fits were carried out in P6, P6/m, and P6/mmm space groups using a data range of 0.5 – 

10° 2𝜃, a 7 term Chebyshev polynomial, a 1/x term (low angle scattering), a PVII peak profile, a 

simple axial model term, a zero-point correction, and cell parameter refinement. An Rwp of ~12.6 

was found for the Pawley fit, which is not significantly different than the Rietveld refined Rwp of 

14.03 in P6/mmm, indicating the reasonableness of the Rietveld refined structure.  

Table S2. Pawley refinement parameters for 1 in P6/mmm space group. 

 

Parameters Value 

2θmin (°) 0.5  

2θmax (°) 10.0 

λ (°) 0.414536 

a (Å) 31.937(7) 

c (Å) 15.798(4) 

Rwp 12.598 

Goodness of Fit 1.972 
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Figure S22. CsF- and acid-digested 31P {1H} NMR spectra of 1,  2 and 3.   

1 was digested with CsF/DMSO-d6/D2O while 2 and 3 were digested with CF3CO2H/DMSO-d6.  
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Figure S23. CsF-digested 1H NMR spectrum (DMSO-d6/D2O) of 1 after MeOH  solvent exchange. 
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Figure S24. CsF-digested 1H NMR spectrum (DMSO-d6/D2O) of 1 after activation.  
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Figure S25. CsF-digested 31P{1H} NMR spectrum (DMSO-d6/D2O) of 1 after activation.  
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Figure S26. 31P{1H} NMR spectrum for MOF reaction supernatant of 1.  
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Figure S27. Solid-state NMR spectra of (a, d) 1, (b, e) 2 and (c, f) 3. (a-c): 31P NMR spectra 

recorded at 10 kHz MAS without (top blue line) and with (bottom red line) total suppression of 

spinning sidebands. “ssb”: spinning sideband. (d-f) Quantitative multiCP 13C NMR spectra 

without (top blue line) and with (bottom red line) recoupled 1H dipolar dephasing, recorded at 14 

kHz MAS. The spectrum in red shows nonprotonated carbons and highly mobile segments. Bound 

acetate and formate are identified by the signal reduction of their CHn groups after dipolar 

dephasing, and by inhomogeneous line broadening. For rotating CH3 groups in immobilized 

molecules, dephasing to 57% of the full signal is expected. 
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Figure S28. Acid-digested 1H NMR spectrum (CF3CO2H/DMSO-d6) of 2 after THF washing.  
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Figure S29. Acid-digested 1H NMR spectrum (CF3CO2H/DMSO-d6) of 2 after activation.  
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Figure S30. Acid-digested 31P{1H} NMR spectrum (CF3CO2H/DMSO-d6) of  2 after activation.  
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Figure S31. Acid-digested 1H NMR spectrum (CF3CO2H/DMSO-d6) of 3 after MeOH solvent 

exchange. 
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Figure S32. Solid-state 31P and 13C NMR spectra of MOF 3 synthesized with HCO2H as the 

modulator. (a): 31P NMR spectra recorded at 10 kHz MAS without (top blue line) and with (bottom 

red line) total suppression of spinning sidebands. “ssb”: spinning sideband. (b) Quantitative 

multiCP 13C NMR spectra without (top blue line) and with (bottom red line) recoupled 1H dipolar 

dephasing, recorded at 14 kHz MAS. Bound formate is identified by the signal reduction after 

dipolar dephasing. 
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Figure S33. TGA for MeOH soaked sample of 1 measured at a ramp rate of 5 °C/min under 

flowing N2 (50 mL/min). 
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Figure S34. TGA for MeOH soaked sample of 3 measured at a ramp rate of 5 °C/min under 

flowing N2 (50 mL/min).  
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Figure S35. TGA for THF-exchanged sample of  2 measured at ramp rate of 5 °C/min under 

flowing N2 (50 mL/min). 1H NMR analysis of THF-exchanged MOF prior to TGA showed the 

presence of both THF and DMF solvents. As a result, 30.5 % mass loss up to 200 °C is attributed 

to volatilization of these solvents. 
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Figure S36. XRPD patterns (Cu-Kα radiation, λ = 1.5418 Å)  for as synthesized, THF and 

MeOH solvent exchanged samples of 2.   
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Figure S37. N2 adsorption isotherm (77 K) for MeOH soaked sample of 1 after desolvation at 100 

°C and 10
-4

 torr for 16 h. 
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Figure S38. N2 adsorption isotherm (77 K) for THF soaked sample of 2 after desolvation at 100 

°C and 10
-4

 torr for 16 h. 
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Figure S39. N2 adsorption isotherm (77 K) for MeOH soaked sample of 3 after desolvation at 

100 °C and 10
-4

 torr for 16 h. 
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Figure S40. XRPD patterns (Cu-Kα radiation, λ = 1.5418 Å) for activated samples of 1, 2 and 3.  
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Figure S41. ATR-IR spectra for samples of  1, 3 (MeOH soaked), and 2 (THF soaked). 
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Figure S42. ATR-IR spectra for 2 before and after activation.  
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Figure S43. Diffuse reflectance IR spectra of 2 at room temperature and have heating to100 and 

150 °C under an N2 atmosphere.  
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Figure S44. ATR-IR spectra of 2, 2-a, and 2-b.   
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Figure S45. XRPD patterns (Cu-Kα radiation, λ = 1.5418 Å) of 2, 2-a and 2-b.   
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Figure S46. XRPD patterns (Cu-Kα radiation, λ = 1.5418 Å) of 1 and 1-KOtBu.  
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Figure S47. XRPD patterns (Cu-Kα radiation, λ = 1.5418 Å) of 3 and 3-KOtBu. 
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Figure S48. ATR-IR spectra for [tBu4L-RuCl(CO)2]Cl reaction with KOtBu and Me3NO. 
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Figure S49. ATR-IR spectra for 2-b before and after catalysis, and regeneration of 2-b with 

Me3NO.   
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Table S3. Hydrosilylation of aryl aldehydes catalyzed by 2-ba 

 

 
 

Entry Substrate Product % Yieldb 

1 
 

 

91 

2 
  

86 

3 
  

92 

4 
  

69 

 

5 

  

 

9 

6c 
  

< 5 

aReaction conditions: substrate (0.2 mmol), catalyst (0.01 mmol), Et3SiH (0.4 mmol),1,4- 

dioxane (1 mL), 12 h, 100 °C. bYields were determined by 1H NMR with respect to an internal 

standard (hexamethylbenzene). cPh3SiH (0.4 mmol) was used in place of Et3SiH. 
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Figure S50. 1H NMR spectrum for hydrosilylation of benzaldehyde with 2-b. (Substrate: 

hexamethylbenzene = 3.8:1) . Asterisk (*) is used to denote suppressed 1,4-dioxane.  
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Figure S51. GC/MS chromatogram for the hydrosilylation of benzaldehyde with 2-b.  
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Figure S52. 1H NMR spectrum for hydrosilylation of benzaldehyde with 2. (Substrate: 

hexamethylbenzene = 3.8:1). Asterisk (*) is used to denote suppressed 1,4-dioxane.  
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Figure S53. 1H NMR spectrum for hydrosilylation of benzaldehyde with 2-a. (Substrate: 

hexamethylbenzene = 3.8:1). Asterisk (*) is used to denote suppressed 1,4-dioxane.  
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Figure S54. 1H NMR spectrum for hydrosilylation of benzaldehyde with 2 treated with Me3NO. 

(Substrate: hexamethylbenzene = 3.3:1).  
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Figure S55. 1H NMR spectrum for hydrosilylation of benzaldehyde with 1.(Substrate: 

hexamethylbenzene = 3.98:1). Asterisk (*) is used to denote suppressed 1,4-dioxane.  
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Figure S56. 1H NMR spectrum for hydrosilylation of benzaldehyde with 1-KOtBu. (Substrate: 

hexamethylbenzene = 4:1). Asterisk (*) is used to denote suppressed 1,4-dioxane.  
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Figure S57. 1H NMR spectrum for hydrosilylation of benzaldehyde with 3. (Substrate: 

hexamethylbenzene = 3.8:1). Asterisk is used to denote suppressed 1,4-dioxane.  
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Figure S58. 1H NMR spectrum for hydrosilylation of benzaldehyde with 3-KOtBu. (Substrate: 

hexamethylbenzene = 4:1). Asterisk is used to denote suppressed 1,4-dioxane.   
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Figure S59. 1H NMR spectrum for hydrosilylation of benzaldehyde with [tBu4L-RuCl(CO)2]Cl. 

(Substrate: hexamethylbenzene = 3.8:1). Asterisk (*) is used to denote suppressed 1,4-dioxane.  
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Figure S60. 1H NMR spectrum for hydrosilylation of benzaldehyde with cis/trans-tBu4L-

RuCl2(CO). (Substrate: hexamethylbenzene = 3.8:1). Asterisk (*) is used to denote suppressed 1,4-

dioxane.  
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Figure S61. 1H NMR spectrum for hydrosilylation of benzaldehyde with  [tBu4L-RuCl(CO)2]Cl 

pretreated with KOtBu and Me3NO. (Substrate: hexamethylbenzene = 3.8:1). Asterisk (*) is used 

to denote suppressed 1,4-dioxane.  
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Figure S62. 1H NMR spectra before (bottom) and after (top) hot filtration for  hydrosilylation of 

benzaldehyde with 2-b. (Substrate: hexamethylbenzene = 3.8:1). Asterisk (*) is used to denote 

suppressed 1,4-dioxane.  
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Figure S63. 1H NMR spectrum for hydrosilylation of o-anisaldehyde with 2-b. (Substrate: 

hexamethylbenzene = 3.8:1). Asterisk (*) is used to denote suppressed 1,4-dioxane.  
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Figure S64. GC/MS chromatogram for the hydrosilylation of O-anisaldehyde with 2-b. 
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Figure S65. 1H NMR spectrum for hydrosilylation of 4-methylbenzaldehyde with 2-b. (Substrate: 

hexamethylbenzene = 4:1). The substrate had some impurity that was not removed after 

distillation. GC/MS analysis of the substrate predicts the impurity as methyl benzoate. Asterisk (*) 

is used to denote suppressed 1,4-dioxane.  
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Figure S66. GC/MS chromatogram for the hydrosilylation of 4-methylbenzaldehyde with 2-b.  
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Figure S67. 1H NMR spectrum for hydrosilylation of 4-(Trifluoromethyl)benzaldehyde with 2-b. 

(Substrate: hexamethylbenzene = 4.6:1). Asterisk (*) is used to denote suppressed 1,4-dioxane.  
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Figure S68. GC/MS chromatogram for the hydrosilylation of 4-(Trifluoromethyl)benzaldehyde 

with 2-b.  
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Figure S69. 1H NMR spectrum for for the hydrosilylation of 4-methoxybenzaldehyde with 2-b. 

(Substrate: hexamethylbenzene = 4.1:1). Asterisk (*) is used to denote suppressed 1,4-dioxane.  
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Figure S70. GC/MS chromatogram for the hydrosilylation of 4-methoxybenzaldehyde with 2-b. 
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Figure S71. 1H NMR spectrum for the hydrosilylation of 3,5-dibenzyloxybenzaldehyde with 2-b. 

(Substrate: hexamethylbenzene = 2.9:1) 
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Figure S72. GC/MS chromatogram for the hydrosilylation of 3,5-dibenzyloxybenzaldehyde with 

2-b.   
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Figure S73. 1H NMR spectrum for the hydrosilylation of acetophenone with 2-b. (Substrate: 

hexamethylbenzene = 4.6:1) 
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Figure S74. GC/MS chromatogram for the hydrosilylation of acetophenone with 2-b. 
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