Supporting Information for:

Regulating phase separation behavior of DEEA-TETA biphasic

solvent using sulfolane for energy-saving CO2 capture

Lidong Wang^{1,2}, Shanshan Liu^{1,2}, Rujie Wang^{1,2*}, Qiangwei Li^{1,2}, Shihan Zhang³

1 Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of

Environmental Science and Engineering, North China Electric Power University,

Baoding, 071003, PR China

2 MOE Key Laboratory of Resources and Environmental Systems Optimization,

College of Environmental Science and Engineering, North China Electric Power

University, Beijing, 102206, PR China

3 College of Environment, Zhejiang University of Technology, Hangzhou, 310014

Summary: this file includes 10 Pages, 4 Figures, 2 Tables and 31 Equations

*Corresponding author. Tel.: +86 312 7525528.

Supporting Information

Apparatus and methodology for the mass transfer study, apparatus for measuring the latent heat of CO₂ desorption, ¹H NMR spectra and the calculation of concentration ratio C_{sulfolane}/C_{DEEA}, species distribution in upper and lower phases, kinetics of CO₂ absorption using the TETA-DEEA-sulfolane absorbent, and the possible reactions during CO₂ absorption.

Figure S1. The wet-wall column experimental apparatus

Figure S2. The detailed parameters of the wet-wall column

Figure S3. Apparatus for measuring the latent heat of CO₂ absorption

Figure S4. ¹H NMR spectra of DEEA-TETA-sulfolane: fresh, upper phase (CO₂ loading=0.516mol/L), lower phase (CO₂ loading=4.631mol/L)

Table S1. Quantitative species distribution in upper and lower phases

Table S2. Kinetics of CO₂ absorption using TETA-DEEA-sulfolane absorbent in a wet-wall column

Figure S1. The wet-wall column experimental apparatus: 1. N₂ gas, 2. CO₂ gas, 3. gas distribution cabinet, 4. thermostat water bath (SHP), 5. WWC, 6. thermostat water bath magnetic stirrer, 7. peristaltic pump, 8. condensate tube, 9. drying tube, 10. infrared CO₂ analyzer (GHX-3011N).

Figure S2. The detailed parameters of the wet-wall column

Calculation on kinetics of CO₂ absorption

According to previous study^{1 2}, the relationships among gas film mass transfer resistance $(1/k_g)$, liquid film mass transfer resistance $(1/k_L)$, and total mass transfer resistance $(1/K_G)$ were determined as follows:

$$\frac{1}{K_G} = \frac{1}{k_g} + \frac{1}{k_L} = \frac{1}{k_g} + \frac{H}{Ek_L^0}$$
 (S1)

where k_g , k_L , and K_G represent the gas film mass transfer coefficient, liquid film mass transfer coefficient, and total mass transfer coefficient, respectively (mol/cm²·s·Pa); The total mass transfer resistance K_G was obtained through the slope of flux in relation to the logarithmic mean pressure, which is expressed described as follows:

$$K_{G} = \frac{Flux}{P_{CO_{2}} - P_{CO_{2}}^{*}} = \frac{dFlux}{dP_{CO_{2}}}$$
 (S2)

$$Flux = \frac{\left(C_{CO_2,in}\% - C_{CO_2,out}\%\right)V_g}{22.4F}$$
 (S3)

where $P_{\text{CO}_2}^*$ is the equilibrium partial pressure of CO_2 (Pa); P_{CO_2} is the operating partial pressure of CO_2 in the WWC (Pa); and Flux is the gas absorption rate, which was estimated using Eq.(S3). F is the gas-liquid contact area of the WWC. P_{CO_2} was estimated using the logarithmic mean as follows:

$$P_{CO_2} = \frac{P_{CO_2,in} - P_{CO_2,out}}{\ln(P_{CO_2,in} / P_{CO_2,out})}$$
(S4)

The equilibrium partial pressure, $P_{\text{CO}_2}^*$, was calculated at Flux = 0. The gas film mass transfer coefficient (k_g) in the WWC was estimated as follows³⁻⁸:

$$\frac{RTk_g h}{D_{co_2}} = Sh = 1.075 \left(\text{Re } Sc \frac{d}{h} \right)^{0.85}$$
(S5)

where Sh is the Sherwood number, Re is the Reynolds number, Sc is the Schmidt

number, d is the hydraulic diameter (cm), h is the height of the WWC (cm), and D_{CO_2} is the diffusion coefficient (cm²/s).

Regeneration Energy consumption estimation:

$$Q_{reg} = Q_{rxn} + Q_{sens} + Q_{latent} \tag{S6}$$

$$Q_{rxn} = -m_{am} \int_{lean}^{rich} \Delta H_{rxn}(\alpha) d\alpha$$
 (S7)

$$Q_{sens} = m_{am}(c_{am} + r_{w}c_{w} + \alpha_{lean}c_{CO_{2}})\Delta T$$
(S8)

$$Q_{latent} = m_{w} \lambda \tag{S9}$$

$$m_{w} = MP_{w}(T_{top}) / p_{CO_{2}}^{*}(T_{top}, \alpha_{top})$$
 (S10)

In these equations, m_{am} is defined as the molar amount of amines in the circulating solvent per ton of CO₂ product (mol/t CO₂); ΔH_{rxn} is the reaction enthalpy (kJ/mol); α and α_{lean} represent the CO₂ loading of the absorbent and lean solutions, respectively (mol/mol); c_{am} , c_{w} and $c_{CO_{2}}$ are the heat capacity of the amines, water, and CO₂ per ton of CO₂ product, respectively (kJ/(mol·K)); r_{w} is the molar ratio of water to amine in the fresh solvent; m_{w} is the molar amount of water vapor in the outlet gas steam per ton of CO₂ product (mol); λ is the latent heat of water (kJ/mol); M is the molar amount per ton of CO₂ (mol); P_{w} is the partial pressure of water vapor (kPa); and $P_{CO_{2}}^{*}$ is the partial pressure of CO₂.

The schematic for determining $P_{\text{CO}_2}^*$ of the CO₂-loaded phase-splitting solvent is illustrated in Fig. S3. The total pressure (P_{total}) was measured by a 50-ml high-pressure reactor at different CO₂ loadings (0.25–0.48 mol/mol) and temperatures (110 and 120 °C). The partial pressure of water vapor was calculated according to Raoult's law and $P_{\text{CO}_2}^*$ was obtained by subtracting P_{W} from P_{total} . Accordingly, m_{W} was calculated

using Equation S10 and the corresponding Q_{latent} was obtained using Equation S9.

Figure S3. Apparatus for measuring the latent heat of CO₂ desorption

Figure S4. ¹H NMR spectra of DEEA-TETA-sulfolane: fresh, upper phase (CO₂ loading=0.516mol/L), lower phase (CO₂ loading=4.631mol/L).

The calculation of concentration ratio C_{sulfolane}/C_{DEEA} from ¹H NMR spectra:

$$C_{sulfolane} / C_{DEEA} = S_b / 2S_a \tag{S11}$$

where S_a and S_b represent the integral areas of group a and group b, respectively.

Table S1. Quantitative species distribution in upper and lower phases

Category	Component	Loading (mol/l)	Volume (%)		
11	DEEA	5.51	61		
Upper phase	sulfolane	2.89	61		
	DEEA	1.64			
Lower phase	TETA	2.56	39		
	sulfolane	0.61			

Table S2. Kinetics of CO₂ absorption using TETA-DEEA-sulfolane absorbent in a wet-wall column

Loading	T	Vg	μ	ρ	$D_{{\scriptscriptstyle CO_2}}$	K_{G}	$k_{ m g}$	$k_{ m L}$	$K_{\rm G}/k_{\rm g}$	$K_{ m G}/k_{ m L}$
(mol/l)	(K)	(ml/s)	(cp)	(g/ml)	(cm^2/s)	(mol/cm ² .	(mol/cm ² .	(mol/cm ² .	(%)	(%)
						s.Pa)	s.Pa)	s.Pa)		
1.23	303	16.67	13.10	1.07	3.93E-06	1.88E-11	1.21E-10	2.23E-11	15.58	84.42
1.23	318	16.67	7.98	1.07	5.67E-06	2.66E-11	1.21E-10	3.40E-11	21.87	78.13
1.23	333	16.67	4.50	1.07	7.93E-06	3.15E-11	1.22E-10	4.24E-11	25.80	74.20
1.23	348	16.67	3.37	1.07	1.09E-05	3.33E-11	1.22E-10	4.57E-11	27.17	72.83
0.00	333	8.33	4.20	1.02	8.24E-06	6.21E-11	6.80E-11	7.05E-10	91.20	8.80
0.00	333	16.67	4.20	1.02	8.24E-06	1.07E-10	1.23E-10	8.08E-10	86.83	13.17
0.00	333	25.00	4.20	1.02	8.24E-06	1.45E-10	1.73E-10	9.08E-10	83.98	16.02
0.00	333	33.33	4.20	1.02	8.24E-06	1.80E-10	2.21E-10	9.68E-10	81.41	18.59
0.54	333	8.33	4.32	1.06	8.11E-06	4.54E-11	6.80E-11	1.37E-10	66.87	33.13
0.54	333	16.67	4.32	1.06	8.11E-06	7.05E-11	1.22E-10	1.66E-10	57.63	42.37
0.54	333	25.00	4.32	1.06	8.11E-06	8.62E-11	1.73E-10	1.72E-10	49.93	50.07
0.54	333	33.33	4.32	1.06	8.11E-06	9.97E-11	2.20E-10	1.82E-10	45.22	54.78
1.23	333	8.33	4.50	1.07	7.93E-06	2.11E-11	6.77E-11	3.06E-11	31.15	68.85
1.23	333	16.67	4.50	1.07	7.93E-06	3.15E-11	1.22E-10	4.24E-11	25.80	74.20
1.23	333	25.00	4.50	1.07	7.93E-06	3.47E-11	1.72E-10	4.35E-11	20.16	79.84
1.23	333	33.33	4.50	1.07	7.93E-06	3.77E-11	2.20E-10	4.55E-11	17.16	82.84

The possible reactions during CO₂ absorption:

Dissociation of water:

$$2H_2O \leftrightarrow H_3O^+ + OH^-$$
 (S12)

Dissociation of carbonic acid:

$$CO_2 + H_2O \leftrightarrow H^+ + HCO_3^-$$
 (S13)

Dissociation of HCO₃:

$$HCO_3^- \leftrightarrow H^+ + CO_3^{2-}$$
 (S14)

Dissociation of protonated TETA:

$$TETAH^+ \leftrightarrow H^+ + TETA$$
 (S15)

Dissociation of deprotonated TETA:

$$TETAH_2^{2+} \leftrightarrow H^+ + TETAH^+ \tag{S16}$$

Dissociation of triprotonated TETA:

$$TETAH_3^{3+} \leftrightarrow H^+ + TETAH_2^{2+} \tag{S17}$$

Dissociation of tetraprotonsted TETA:

$$TETAH_4^{4+} \leftrightarrow H^+ + TETAH_3^{3+} \tag{S18}$$

Formation of zwitterion:

$$TETA + CO_2 \leftrightarrow TETAH^+COO^-(I/IV)$$
 (S19)

Formation of primary carbamate:

$$TETAH^{+}COO^{-} + TETA \leftrightarrow TETACOO^{-}(I/IV) + TETAH^{+}$$
(S20)

Formation of secondary carbamate:

$$2TETA + CO_{2} \leftrightarrow TETACOO^{-}(II/III) + TETAH^{+}$$
(S21)

Formation of primary-primary dicarbamate:

$$2TETA + 2CO_2 \leftrightarrow TETA(COO)_2^{2-}(I \text{ IV}) + TETAH^+$$
(S22)

Formation of primary-secondary dicarbamate:

$$2TETA + 2CO_2 \leftrightarrow TETA(COO)_2^{2-}(I II) + TETAH^+$$
 (S23)

Formation of primary-secondary dicarbamate:

$$2TETA + 2CO_2 \leftrightarrow TETA(COO)_2^{2-}(I III) + TETAH^+$$
 (S24)

Formation of secondary-secondary dicarbamate:

$$2TETA + 2CO_2 \leftrightarrow TETA(COO)_2^{2-}(IIIII) + TETAH^+$$
(S25)

Formation of primary-secondary tricarbamate:

$$2TETA + 3CO_2 \leftrightarrow TETA(COO)_3^{3-}(I IIIII) + TETAH^+$$
 (S26)

Formation of primary-secondary-primary tricarbamate:

$$2TETA + 3CO_2 \leftrightarrow TETA(COO)_3^{3-}(I II IV) + TETAH^+$$
 (S27)

Formation of tetracarbamate:

$$2TETA + 4CO_2 \leftrightarrow TETA(COO)_4^{4-}(I II III IV) + TETAH^+$$
 (S28)

Dissociation of carbamate:

$$TETACOO^{-} + H_{2}O \leftrightarrow HCO_{3}^{-} + TETAH^{+}$$
(S29)

Formation of bicarbonate:

$$DEEA + CO_2 + H_2O \leftrightarrow DEEAH^+ + HCO_3^-$$
 (S30)

Dissociation of protonated DEEA:

$$DEEAH^{+} \leftrightarrow H^{+} + DEEA \tag{S31}$$

References

1. Suda, T.; Iijima, M.; Tanaka, H.; Mitsuoka, S.; Iwaki, T., Countercurrent absorption of CO₂ in a real flue gas into aqueous alkanolamine solutions in a wetted wall column. *Environmental progress* **1997**, *16*,

- (3), 200-207.
- 2. Dugas, R.; Rochelle, G., Absorption and desorption rates of carbon dioxide with monoethanolamine and piperazine. *Enrgy Proced* **2009**, *1*, (1), 1163-1169.
- 3. Chen, X., Carbon dioxide thermodynamics, kinetics, and mass transfer in aqueous piperazine derivatives and other amines. **2011**.
- 4. Pacheco, M. A.; Kaganoi, S.; Rochelle, G. T., CO₂ absorption into aqueous mixtures of diglycolamine® and methyldiethanolamine. *Chemical Engineering Science* **2000**, *55*, (21), 5125-5140.
- 5. Hobler, T.; Danckwerts, P. V., *Mass Transfer and Absorbers: International Series of Monographs in Chemical Engineering*. Elsevier Science: **2013**.
- 6. Sherwood, T., Mass Transfer and Absorbers: International Series of Monographs in Chemical Engineering. In Pergamon: **1967**.
- 7. Chen, S. M.; Hu, G. P.; Smith, K. H.; Mumford, K. A.; Zhang, Y. C.; Stevens, G. W., Kinetics of CO2 Absorption in an Ethylethanolamine Based Solution. *Ind. Eng. Chem. Res.* **2017**, *56*, (43), 12305-12315.
- 8. Di, S.; Rochelle, G. T., Reaction kinetics of carbon dioxide and hydroxide in aqueous glycerol. *Chemical Engineering Science* **2017**, *161*, 151-158.