Precise Wettability Characterization of Carbonate Rocks to Evaluate Oil Recovery Using Surfactant-based Nanofluids

Foad Haeri and Dandina N. Rao

Craft and Hawkins Department of Petroleum Engineering, Louisiana State University, 3207 Patrick F. Taylor Hall, Baton Rouge, LA 70803

Supporting Information

Details of all the coreflood experiments of this study, including the core parameters, experimental conditions, oil recovery and pressure drop history-match, and relative permeability curves.

Table 1. Initial parameters for waterflood using brine (2 wt.% NaCl) at 500 psi and 72 °F.

Core name:	Indiana Limestone-10 (12X2)	
Porosity:	18.14	%
Abs. Perm:	23.59	md
Pore Volume	112	СС
Oil	Yates crude oil	
Brine (NaCl)	2% wt	
Injection rate	2	cc/min
Oil Recovery	20.43	%

Figure 1. History match of oil recovery and pressure drop for waterflood (2 wt.% NaCl) at 500 psi and 72 °F.

Figure 2. Relative permeability curves for waterflood (2 wt.% NaCl) at 500 psi and 72 °F.

Table 2. Initial parameters for coreflood using surfactant (ALF 13S, 2000 ppm) at 500 psi and 72 °F.

Core name:	Indiana	Indiana Limestone-15 (12X2)	
Porosity:	16.03	%	
Abs. Perm:	26.24	md	
Pore Volume	99	сс	
Oil	Yates c	Yates crude oil	
Brine (NaCl)	2%	wt	
Surfactant	ALF 13S	ALF 13S (2000 ppm)	
Injection rate	2	cc/min	
Oil Recovery	20.73	%	

Figure 3. History match of oil recovery and pressure drop using surfactant (ALF 13S, 2000 ppm) at 500 psi and 72 °F.

Figure 4. Relative permeability curves for coreflood using surfactant (ALF 13S, 2000 ppm) at 500 psi and 72 °F.

Table 3. Initial parameters for coreflood using brine-based nanofluid (0.4 wt.% NP in 2% NaCl) at 500 psi and 72 °F.

Core name:	Indiana	Limestone-14 (12X2)
Porosity:	14.73	%
Abs. Perm:	18.59	md
Pore Volume	91	сс
Oil	Yates crude oil	
Brine (NaCl)	2%	wt
Nanofluid (brine-based)	0.4 wt.% NP	
Injection rate	2	cc/min
Oil Recovery	30.51	%

Figure 5. History match of oil recovery and pressure drop using brine-based nanofluid (0.4 wt.% NP in 2% NaCl) at 500 psi and 72 °F.

Figure 6. Relative permeability curves for coreflood using brine-based nanofluid (0.4 wt.% NP in 2% NaCl) at 500 psi and 72 °F.

Table 4. Initial parameters for coreflood using surfactant-based nanofluid (0.4 wt.% NP + ALF 13S, 2000 ppm) at 500 psi and 72 °F.

Core name:	Indiana Limestone-16 (12X2)	
Porosity:	16.52 %	
Abs. Perm:	8.49	md
Pore Volume	102 cc	
Oil	Yates crude oil	
Brine (NaCl)	2%	wt
Nanofluid (surfactant-based)	0.4 wt.% NP + ALF 13S (2000 ppm)	
Injection rate	2	cc/min
Oil Recovery	57.33	%

Figure 7. History match of oil recovery and pressure drop using surfactant-based nanofluid (0.4 wt.% NP + ALF 13S, 2000 ppm) at 500 psi and 72.

Figure 8. Relative permeability curves for coreflood using surfactant-based nanofluid (0.4 wt.% NP + ALF 13S, 2000 ppm) at 500 psi and 72 °F.

Table 5. Initial parameters for coreflood using surfactant-based nanofluid (0.4 wt.% NP + ALF 13S, 1000 ppm) at 500 psi and 72 °F.

Core name:	Indiana Limestone-17 (12X2)	
Porosity:	17.17 %	
Abs. Perm:	15.81	md
Pore Volume	106	сс
Oil	Yates crude oil	
Brine (NaCl)	2%	wt
Nanofluid (surfactant-based)	0.4 wt.% NP + ALF 13S (1000 ppm)	
Injection rate	2	cc/min
Oil Recovery	52.63	%

Figure 9. History match of oil recovery and pressure drop using surfactant-based nanofluid (0.4 wt.% NP + ALF 13S, 1000 ppm) at 500 psi and 72.

Figure 10. Relative permeability curves for coreflood using surfactant-based nanofluid (0.4 wt.% NP + ALF 13S, 1000 ppm) at 500 psi and 72 °F.

Table 6. Initial parameters for coreflood using surfactant (ALF 9S, 2000 ppm) at 500 psi and 72 °F.

Core name:	Indiana Limestone-X (12X2)	
Porosity:	16.36	%
Abs. Perm:	17.95	md
Pore Volume	101	СС
Oil	Yates crude oil	
Brine (NaCl)	2%	wt
Surfactant	ALF 9S (2000 ppm)	
Injection rate	2	cc/min
Oil Recovery	48.19	%

Figure 11. History match of oil recovery and pressure drop using surfactant (ALF 9S, 2000 ppm) at 500 psi and 72 °F.

Figure 12. Relative permeability curves for coreflood using surfactant (ALF 9S, 2000 ppm) at 500 psi and 72 °F.

Table 7. Initial parameters for coreflood using surfactant-based nanofluid (0.4 wt.% NP+ALF 9S, 2000 ppm) at 500 psi and 72 °F.

Core name:	Indiana Limestone-X (12X2)	
Porosity:	16.36 %	
Abs. Perm:	17.95	md
Pore Volume	101	СС
Oil	Yates crude oil	
Brine (NaCl)	2%	wt
Nanofluid (surfactant-based)	0.4 wt.% NP + ALF 9S (2000 ppm)	
Injection rate	2	cc/min
Oil Recovery	92.68	%

Figure 13. History match of oil recovery and pressure drop using surfactant-based nanofluid (0.4 wt.% NP+ALF 9S, 2000 ppm) at 500 psi and 72 °F.

Figure 14. Relative permeability curves for coreflood using surfactant-based nanofluid (0.4 wt.% NP+ALF 9S, 2000 ppm) at 500 psi and 72 °F.

Table 8. Initial parameters for coreflood using surfactant-based nanofluid (0.4 wt.% NP+ALF 9S, 1000 ppm) at 500 psi and 72 °F.

Core name:	Indiana Li	mestone-X (12X2)
Porosity:	16.36 %	
Abs. Perm:	17.95	md
Pore Volume	101	СС
Oil	Yates crude oil	
Brine (NaCl)	2%	wt
Nanofluid (surfactant-based)	0.4 wt.% NP + ALF 9S (1000 ppm)	
Injection rate	2	cc/min
Oil Recovery	86.25	%

Figure 15. History match of oil recovery and pressure drop using surfactant-based nanofluid (0.4 wt.% NP+ALF 9S, 1000 ppm) at 500 psi and 72 °F.

Figure 16. Relative permeability curves for coreflood using surfactant-based nanofluid (0.4 wt.% NP+ALF 9S, 1000 ppm) at 500 psi and 72 °F.

Table 9. Initial parameters for waterflood using brine (2 wt.% NaCl) at reservoir conditions (700 psi & 150 °F).

Core name:	Indiana	Indiana Limestone-12 (12X2)	
Porosity:	16.35	%	
Abs. Perm:	14.87	md	
Pore Volume	101	СС	
Oil	Yates crude oil		
Brine (NaCl)	2%	wt	
Injection rate	2	cc/min	
Oil Recovery	17.5	%	

Figure 17. History match of oil recovery and pressure drop for waterflood (2 wt.% NaCl) at reservoir conditions.

Figure 18. Relative permeability curves for waterflood (2 wt.% NaCl) at reservoir conditions (700 psi & 150 °F).

Table 10. Initial parameters for coreflood using surfactant (SOL 938, 2000 ppm) at reservoir conditions (700 psi & 150 °F).

Core name:	Indiana	Indiana Limestone-18 (12X2)	
Porosity:	15.71	%	
Abs. Perm:	24.92	md	
Pore Volume	97	СС	
Oil	Yates ci	Yates crude oil	
Brine (NaCl)	2%	wt	
Surfactant	SOL 938	SOL 938 (2000 ppm)	
Injection rate	2	cc/min	
Oil Recovery	21.52	%	

Figure 19. History match of oil recovery and pressure drop using surfactant (SOL 938, 2000 ppm) at reservoir conditions (700 psi & 150 °F).

Figure 20. Relative permeability curves for coreflood using surfactant (SOL 938, 2000 ppm) at reservoir conditions (700 psi & 150 °F).

Table 11. Initial parameters for coreflood using brine-based nanofluid (0.4 wt.% NP in 2% NaCl) at reservoir conditions (700 psi & 150 °F).

Core name:	Indiana Limestone-19 (12X2)	
Porosity:	17.00	%
Abs. Perm:	31.29	md
Pore Volume	105	СС
Oil	Yates crude oil	
Brine (NaCl)	2%	wt
Nanofluid (brine-based)	0.4 wt.% NP	
Injection rate	2	cc/min
Oil Recovery	28.57	%

Figure 21. History match of oil recovery and pressure drop using brine-based nanofluid (0.4 wt.% NP in 2% NaCl) at reservoir conditions (700 psi & 150 °F).

Figure 22. Relative permeability curves for coreflood using brine-based nanofluid ((0.4 wt.% NP in 2% NaCl) at reservoir conditions (700 psi & 150 °F).

Table 12. Initial parameters for coreflood using surfactant-based nanofluid (0.4 wt.% NP + SOL 938, 2000 ppm) at reservoir conditions (700 psi & 150 °F).

Core name:	Indiana Limestone-20 (12X2)	
Porosity:	15.06 %	
Abs. Perm:	49.70	md
Pore Volume	93	CC
Oil	Yates crude oil	
Brine (NaCl)	2%	wt
Nanofluid (surfactant-based)	0.4 wt.% NP + SOL 938 (2000 ppm)	
Injection rate	2	cc/min
Oil Recovery	51.56	%

Figure 23. History match of oil recovery and pressure drop using surfactant-based nanofluid (0.4 wt.% NP + SOL 938, 2000 ppm) at reservoir conditions (700 psi & 150 °F).

Figure 24. Relative permeability curves for coreflood using surfactant-based nanofluid (0.4 wt.% NP + SOL 938, 2000 ppm) at reservoir conditions (700 psi & 150 °F).

Table 13. Initial parameters for coreflood using surfactant-based nanofluid (0.4 wt.% NP + SOL 938, 1000 ppm) at reservoir conditions (700 psi & 150 °F).

Core name:	Indiana Limestone-21 (12X2)	
Porosity:	17.17	%
Abs. Perm:	62.77	md
Pore Volume	106	сс
Oil	Yates crude oil	
Brine (NaCl)	2%	wt
Nanofluid (surfactant-based)	0.4 wt.% NP + SOL 938 (1000 ppm)	
Injection rate	2	cc/min
Oil Recovery	45.07	%

Figure 25. History match of oil recovery and pressure drop using surfactant-based nanofluid (0.4 wt.% NP + SOL 938, 1000 ppm) at reservoir conditions (700 psi & 150 °F).

Figure 26. Relative permeability curves for coreflood using surfactant-based nanofluid (0.4 wt.% NP + SOL 938, 1000 ppm) at reservoir conditions (700 psi & 150 °F).