Supporting Information

Sub-nanocatalysis for Efficient Aqueous Nitrate Reduction: Effect of Strong Metal—Support Interaction

Jiacheng Li, Miao Li*, Xu Yang, Sai Wang, Yu Zhang, Fang Liu, Xiang Liu.

*Corresponding Author.

Tel: 86-10-62772485

E-mail: miaoli@tsinghua.edu.cn

School of Environment, Tsinghua University

30# Shuangqing Road, Hai Dian Distract, Beijing, 100084, China

Table S1 Adsorption energies of H or NO_2 on the NO adsorbed $Pd_3In/Fe_3O_4(111)$ or Pd_4/Fe_3O_4 (111) surfaces.

Pd ₃ In/Fe ₃ O ₄	ΔE (eV)	E _{Pd3In-X} (eV)	E _{Pd3In} (eV)	$E_X(eV)$
Reaction 1	-2.73	-1257.141	-1253.296	-1.116
Reaction 2	-2.99	-1273.366	-1253.296	-17.081
Pd ₄ /Fe ₃ O ₄	ΔE (eV)	$E_{Pd4-X}(eV)$	$E_{Pd4}(eV)$	$E_X(eV)$
Reaction 1	-0.67	-1259.181	-1257.394	-1.116
Reaction 2	-0.40	-1274.878	-1257.394	-17.081

Reaction steps:

- (1) $NO_{ad}+H_{ad}\rightarrow HNO_{ad}$
- (2) $NO_{ad}+NO_{2,ad}\rightarrow N_2O_{3,ad}$

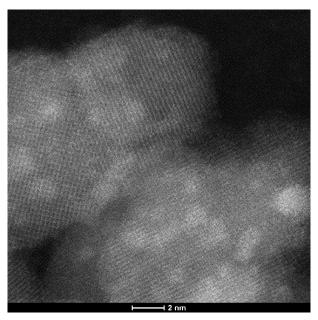
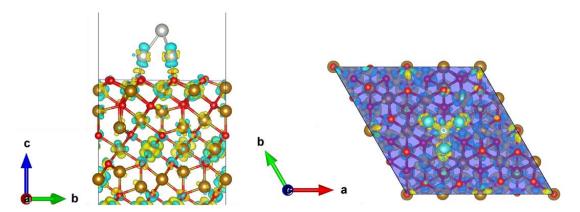



Figure S1.HAADF-STEM images of 10-PI/F in high magnification

Figure S2. Charge density difference for Pd₃In/Fe₃O₄(111). The yellow balls represent the Fe atoms, the Red balls are oxygen atoms denote, the grey balls represent Pd atoms. The violet areas suggest enriched electron density.

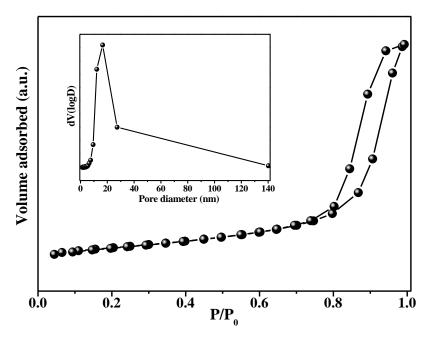
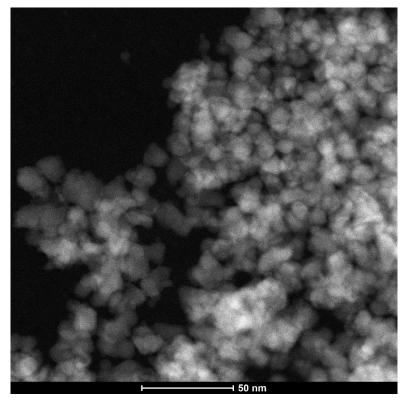
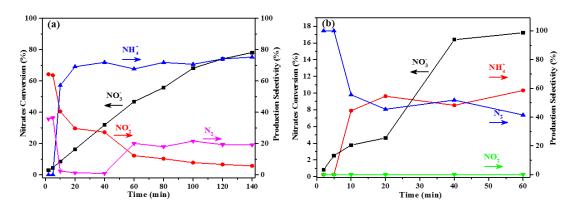




Figure S3. N_2 adsorption- desorption isotherms and pore size distribution (inset) of Fe_3O_4 supports

Figure S4. HAADF-STEM images of 0.4-PI/F.

Figure S5. Nitrates conversion and products selectivity on 0.4-PI/F (a) and 1.25-I/F (b) catalysts as a function of time

Effect of External Mass Transfer

The mass transfer between aqueous nitrates solution and solid catalysts were evaluated based on previous study. ^[1-3] First, the slip velocity of the catalyst particle was calculated according to Stokes' law:

$$u_{t} = \frac{gd_{p}^{2}(\rho_{p} - \rho)}{18\mu}$$
; (S1)

where g is gravity constant (9.81 m·s⁻²), d_p is the particle diameter of the catalysts (~20 nm as shown in Figure S3), ρ_p is the density of the catalysts and is assumed to be same to ferroferric oxide (5.18 g·cm⁻³), ρ is water density (1×10⁶ g·m⁻³ at 20 °C) and μ is absolute viscosity of water (1.002 g·m⁻¹·s⁻¹ at 20 °C). Consequently, the slip velocity is 9.09×10^{-10} m·s⁻¹.

Moreover, the Reynolds number (Re), Peclet number (Pe) and Sherwood number (Sh) were calculated by the following expression:

$$R_e = \frac{d_p u_t}{D} \quad ; (S2)$$

$$Pe = \frac{d_p u_t}{D} \quad ; (S3)$$

$$Sh = \frac{4}{Pe} l \, \text{n}(\frac{1}{1 - \frac{Pe_{1}}{2}})$$
 ; (S4)

where v is kinematic viscosity of water $(1.003 \times 10^{-6} \text{ m}^2 \cdot \text{s}^{-1} \text{ at } 20 \text{ }^{\circ}\text{C})$ and D is the nitrate diffusion coefficient in pure water $(1.7 \times 10^{-9} \text{ m}^2 \cdot \text{s}^{-1})$.

Then the aqueous/solid mass transfer coefficient could be determined based on the following expression:

$$k_{aq/s} = \frac{D}{d_p} Sh = \frac{4D}{Pe \times dp} l \operatorname{n}(\frac{1}{1 - \frac{Pe}{2}})$$
; (S5)

The value of $k_{aq/s}$ is $3.54 \times 10^{-4} \,\mathrm{m}\cdot\mathrm{s}^{-1}$, moreover, the geometric surface area of the catalyst per volume of solution (a) is determined as follows:

$$a = \frac{total \ surface \ area}{total \ volume} = \frac{SA_p \times M}{\rho_p \times V_p} \times \frac{1}{V_R} \quad ; (S6)$$

in which, SA_p is the surface area of one catalyst aggregate, M is the total mass of catalyst (0.2 g), V_p is the volume of one catalyst aggregate, and V_R is the volume of the reaction solution (160 mL).

At last, mass transfer rate constant is equal to the $k_{aq/s}$ multiplied by a:

$$k_{aq/s} \cdot a = 6.19 \times 10^7 / s = 1.03 \times 10^6 / min$$

This value is much larger than the measured $k_{obss.I-PUF}$ value (1.56×10⁻²), which indicates the aqueous/solid mass transfer is negligible in the reaction.

Effect of Intraparticle Mass Transfer

The potential of intraparticle diffusion resistance was also discussed based on the following ceria:

No resistance:
$$\frac{k_{obs}L^2\tau}{D\theta} < 1$$
; (S7)

Significant resistance:
$$\frac{k_{obs}L^2\tau}{D\theta} > 1$$
; (S8)

where L=d_p/6 (3.3×10⁻⁹ m), τ is the tortuosity factor (ranging from 2 to 10), D is the nitrate diffusion coefficient in pure water (1.7×10⁻⁹ m²·s⁻¹) and θ is the porosity of the catalyst particle(ranging from 0.2 to 0.7). Here 0.2 and 10 was used as values for θ and τ in order to get the largest ceria value. The calculated value is 5.0×10^{-9} <<1, suggesting the reaction is rarely affected by the intraparticle mass transfer resistance.

References

[1] D. P. Durkin, T. Ye, J. Choi, K. J. T. Livid, H. C. D. Longe, P. C. Trulovef, D. H. Fairbrothera, L. M. Haverhalsg, D. Shuai, Appl. Catal. B Environ. **2018**, 221, 290.

[2] Q. M. Zheng, D. P. Durkin, J. E. Elenewski, Y. X. Sun, N. A. Banek, L. K. Hua, H. N. Chen, M. J. Wagner, W. Zhang, D. M. Shuai, Environ. Sci. Technol. **2016**, 50, 12938.

[3] T. Ye, D. P. Durkin, N. A. Banek, M. J. Wagner, D. Shuai, ACS Appl. Mater. Interfaces. 2017, 9, 27421.