Pure-Supramolecular-Linker Approach to Highly Connected Metal-Organic Frameworks for CO₂ Capture

Xiaohui Song^{a‡}, Mingxing Zhang^{c‡}, Cong Chen^a, Jingui Duan^d, Wenwei Zhang^a, Yi Pan^a, and Junfeng Bai^{*a,b}

^a State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China

^b School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China

^c Department of Chemistry, Chongqing Normal University, Chongqing 401331, China

^d State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China

*Email: bjunfeng@nju.edu.cn; bjunfeng@snnu.edu.cn.

Table of contents

- S1. Materials and instrumentation
- S2. Single-crystal X-ray structure determination
- S3. The structures of NJU-Bai52 and NJU-Bai53
- S4. Powder X-ray diffraction patterns
- S5. Thermogravimetric analysis curves
- S6. In situ FTIR spectra
- S7. DRIFTS spectra
- S8. XPS spectra
- S9. Low-pressure gas sorption measurements
- S10. Calculations of isosteric heat of adsorption (Q_{st})
- S11. IAST calculations
- S12. Molar selectivity calculations
- S13. Adsorption stability tests
- S14. N₂ adsorption after water treatments
- S15. Breakthrough experiments
- S16. The computational simulation studies of gases adsorption
- S17. References

S1. Materials and general methods

General procedures. All chemical reagents were obtained from commercial sources and, unless otherwise noted, were used as received without further purification. Elemental analyses (C, H, N) were carried out on a Perkin-Elmer 240 analyzer. In situ FTIR (Fourier Transform Infrared Spectroscopy) spectra were collected in the 4000~600 cm⁻¹ on a Bruker Tensor 27 spectrometer using KBr pellets with heating rate 20 °C/min. DRIFTS (Diffuse Reflectance Infrared Fourier Transform Spectroscopy) spectra were collected in the 4000~600 cm⁻¹ on a Nicolet 5700 FTIR spectrometer with a liquid N₂ cooled detector. ¹H NMR spectra were recorded on a Bruker DRX-300 spectrometer with tetramethylsilane as an internal reference. Thermal gravimetric analyses (TGA) were performed under N₂ atmosphere (100 mL min⁻¹) with a heating rate of 20 °C min⁻¹ using a 2960 SDT thermogravimetric analyzer. Powder X-ray diffraction (PXRD) data were collected on a Bruker D8 ADVANCE X-ray diffractometer with Cu/Ka radiation. X-ray photoelectron spectroscopy (XPS) spectra were recorded using a PHI 5000 VersaProbe instrument. Gas sorption measurements were conducted using a Micrometritics ASAP 2020 surface area and pore size analyzer up to saturated pressure at different temperatures. Water stability measurements were carried out by directly immersing the as-synthesized samples into pure water or aqueous solutions with various pH values, and then samples were obtained for PXRD and N₂ adsorption measurements after a period of time.

1.1 Ligand synthesis

The organic linker N, N', N''-Tris(isophthalyl)-1,3,5-benzenetricarboxamide (TPBTM) was prepared according to literatures¹ and characterized by IR and ¹H NMR. Selected IR (KBr, cm⁻¹): 3078, 2662, 2570, 1835, 1711, 1652, 1608, 1556, 1451, 1430, 1407, 1336, 1270, 1245, 1229, 1107, 1059, 1018, 1002, 977, 909, 757, 727, 688, 664. ¹H NMR (DMSO- d_6 , δ ppm): 13.36 (broad peak, COO<u>H</u>), 10.97 (s, 3H,

CON<u>H</u>), 8.85 (s, 3H, Ar<u>H</u>), 8.74 (s, 6H, Ar<u>H</u>), 8.26 (s, 3H, Ar<u>H</u>).

1.2 Synthesis of {Fe₃O(TPBTM⁶⁻)(Cl⁻)(H₂O)₂}_∞ (NJU-Bai52)

A mixture of FeCl₃·6H₂O (5.8 mg, 0.021 mmol), TPBTM (10 mg, 0.014 mmol), CH₃COOH (0.8 mL) and 2 mL DMF was sealed in a 20 mL Pyrex tube, which was heated to 130 °C for 5 days. After cooling to the room temperature, the brown block crystals were obtained. The crystals of NJU-Bai52 were filtered and washed with DMF. Yield 10.0 mg. Selected IR (cm⁻¹): 3417, 3258, 3072, 2929, 2874, 2355, 1662, 1622, 1578, 1549, 1423, 1374, 1359, 1282, 1240, 1167, 1098, 1060, 1003, 964, 908, 867, 802, 777, 713, 663, 633. Anal. Calcd (Found), $C_{51}H_{66}O_{26.5}N_9Cl_1Fe_3$: C, 42.73 (42.77); H, 4.74 (4.64); N, 9.00 (8.80)%.

1.3 Synthesis of {Sc3O(TPBTM⁶⁻)(OH⁻)(H2O)2}[∞] (NJU-Bai53)

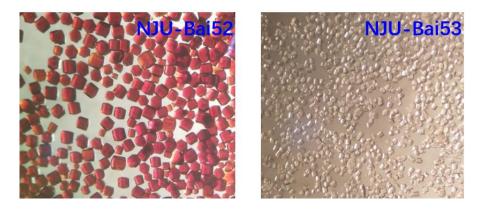
A mixture of $ScCl_3 \cdot 6H_2O$ (10 mg, 0.043 mmol), TPBTM (20 mg, 0.029 mmol), HNO₃ (3.5 mol/L, 1.6 mL) and 5 mL DMF was sealed in a 20 mL Pyrex tube, which was heated to 130 °C for 2 days. After cooling to the room temperature, the colorless block crystals were obtained. The crystals of NJU-Bai53 were filtered and washed with DMF. Yield 9.2 mg. Selected IR (cm⁻¹): 3266, 3078, 2939, 2878, 1667, 1627, 1583, 1553, 1431, 1384, 1281, 1238, 1098, 1061, 1004, 988, 963, 909, 869, 780, 711, 691, 663, 627. Anal. Calcd (Found), C₄₅H₅₂O₂₅N₇Sc₃: C, 44.23 (44.09); H, 4.46 (4.28); N, 7.77 (7.99)%.

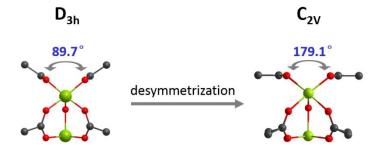
S2. Single-crystal X-ray structure determination

Single-crystal X-ray diffraction data were measured on a Bruker D8 Venture diffractometer using graphite monochromated Mo/K α radiation ($\lambda = 0.71073$ Å). Data reduction was made with the Bruker SAINT program. The structures were solved by direct methods and refined with full-matrix least squares technique using the

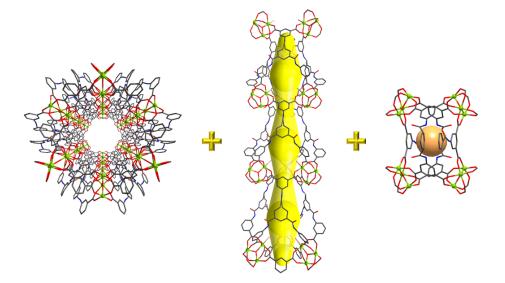
SHELXTL package². Non-hydrogen atoms were refined with anisotropic displacement parameters during the final cycles. Organic hydrogen atoms were placed in calculated positions with isotropic displacement parameters set to $1.2 \times U_{eq}$ of the attached atom. The hydrogen atoms of the ligated water molecules could not be located. The unit cell includes a large region of disordered solvent molecules, which could not be modelled as discrete atomic sites. We employed PLATON/SQUEEZE³ to calculate the diffraction contribution of the solvent molecules and, thereby, to produce a set of solvent-free diffraction intensities; structures were then refined again using the data generated.

A summary of the crystallographic data are given in Table S1. CCDC 1936061 and 1936060 contain the supplementary crystallographic data for NJU-Bai52 and NJU-Bai53. The data can be obtained free of charge at www.ccdc.cam.ac.uk/conts/retrieving.html or from the Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB2 1EZ, UK.




Figure S1. Optical microscope images of crystals of NJU-Bai52 and NJU-Bai53.

MOFs	NJU-Bai52	NJU-Bai53		
CCDC number	1936061	1936060		
Empirical formula	C33H15Fe3N3O19Cl	$C_{35}H_{15}Sc_{3}N_{3}O_{20}$		
Formula weight	960.48	932.38		
Temperature/K	153	153		
Crystal system	Trigonal	Trigonal		
Space group	$P\overline{3}m1$	$P\overline{3}m1$		
<i>a</i> (Å)	26.742(3)	27.121(8)		
b (Å)	26.742(3)	27.121(8)		
<i>c</i> (Å)	16.8667(19)	17.508(6)		
α (°)	90	90		
β (°)	90	90		
γ (°)	120	120		
<i>V</i> (Å ³)	10446(3)	11153(8)		
Ζ	6	6		
D _{calcd} (g cm ⁻³)	0.916	0.833		
μ/mm ⁻¹	0.702	0.312		
F(000)	2886.0	2814.0		
Crystal size [mm ³]	0.3 x 0.2 x 0.1	0.12 x 0.12 x 0.02		
Theta range [deg]	2.327 - 26.365	2.088 - 25.013		
Limiting indices	-33 < = h < = 33	-24 < = h < = 32		
	-31 < = k < = 33	-32 < = k < = 31		
	-21 < = 1 < = 18	-20 < = 1 < = 20		
Refins collected	7485	7025		
Reflns unique	2732	4676		
Completeness	98.3%	99.9%		
Data/restraints/parameters	7485 / 46 / 261	7025 / 227 / 265		
Goodness-of-fit on F ²	1.101	1.373		
R1, wR2 ^a $[I > 2\sigma(I)]$	0.1340, 0.3683	0.1623, 0.4097		
R1, wR2 [all data]	0.2076, 0.4112	0.1909, 0.4305		
$\Delta \rho_{max} / \Delta \rho_{min}$ [e. Å ⁻³]	1.789, -0.914	1.695 / -0.781		


Table S1. Crystallographic data and structure refinement results for NJU-Bai52 andNJU-Bai53.

^a R1 = $\Sigma ||F_o| - |F_c||/|F_o|$; wR2 = $[\Sigma w (\Sigma F_o^2 - F_c^2)^2 / \Sigma w (F_o^2)^2]^{1/2}$.

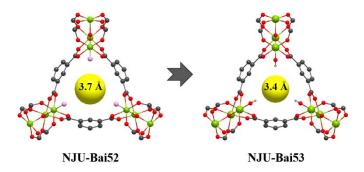

S3. The structures of NJU-Bai52 and NJU-Bai53

Figure S2. The dihedral angle between the two carboxylate moieties bridging Fe2 and Fe3 extends from usual 90° to 180°, which degrades the symmetry of Fe₃O cluster from familiar D_{3d} to C_{2v} without the variation of the connectivity.

Figure S3. NJU-Bai52 consists of three different types of pores: the 1D hexagonal nanotube size is 10.4 Å (NJU-Bai53, 9.7 Å) around the metallamacrocycle and 14.6 Å (NJU-Bai53, 14.6 Å) for maximum diameter, the hourglass-shaped nanotube has a window size of diameter 3.7 Å (NJU-Bai53, 3.4 Å), and the octahedron cage with an accessible diameter of about 6.5 Å (NJU-Bai53, 6.7 Å).

Figure S4. The triangular window of the 1D hourglass-shaped nanotube. Compared with 3.7 Å for NJU-Bai52, the window size of NJU-Bai53 decreases to 3.4 Å, which is quite close to the kinetic diameter of carbon dioxide (3.3 Å), enhancing the interaction between the framework and CO_2 molecule.

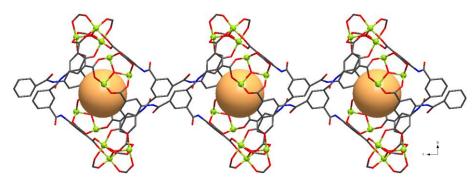
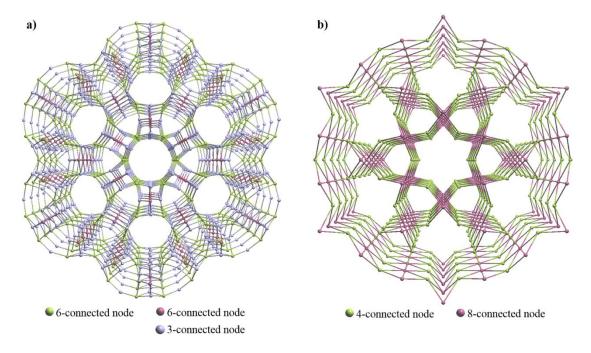



Figure S5. The stacking pattern between octahedral cages.

Figure S6. a) The topological network of NJU-Bai52 with the Schläfli symbol of $(4^2 \cdot 6)_6 (4^4 \cdot 6^2 \cdot 8^6 \cdot 10^3) (4^4 \cdot 6^3 \cdot 8^6 \cdot 10^2)_2$, in which the Fe₃O cluster is simplified as a

6-connected node, and the PSL is reduced to 6-connected node and the peripheral isophthalate is considered as 3-connected node. b) Alternatively, each Fe₃O cluster connects four PSLs being regarded as a 4-connected node, and each PSL bridges eight Fe₃O clusters through its 12 carboxylate groups being actually regarded as an 8-connected node. As a result, The framework could be simplified as a (4,8)-c network with a **csq** topology.

S4. Powder X-ray diffraction patterns

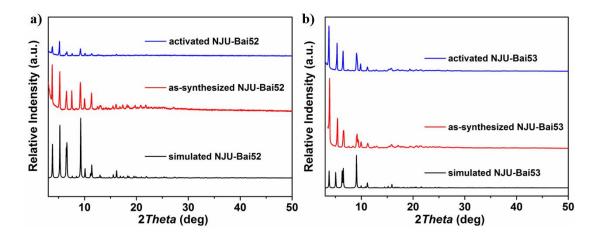


Figure S7. The PXRD patterns of NJU-Bai52 (a) and NJU-Bai53 (b).

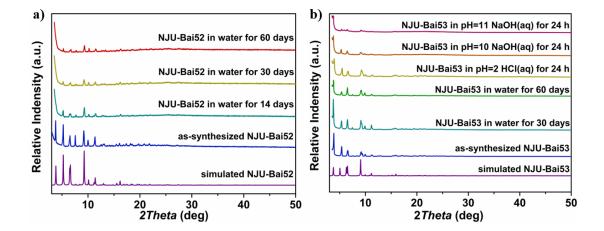


Figure S8. The PXRD patterns of NJU-Bai52 (a) and NJU-Bai53 (b) after different treatments, respectively.

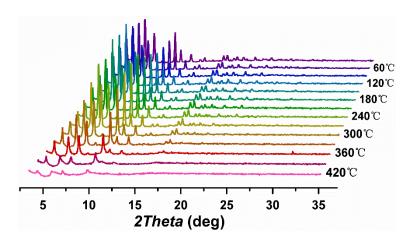


Figure S9. VT-PXRD patterns of as-synthesized sample of NJU-Bai52 under vacuum.

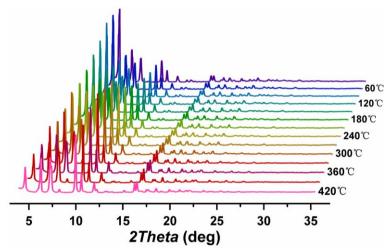


Figure S10. VT-PXRD patterns of as-synthesized sample of NJU-Bai53 under vacuum.

S5. Thermogravimetric analysis curves

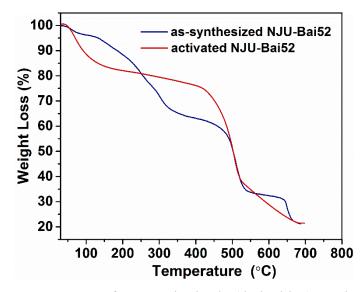


Figure S11. TGA curves of as-synthesized (dark blue) and activated (red) NJU-Bai52.

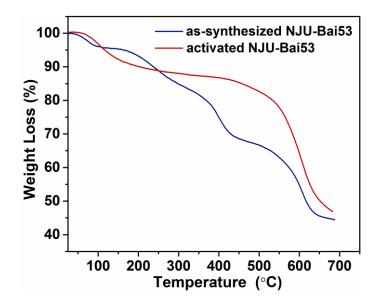
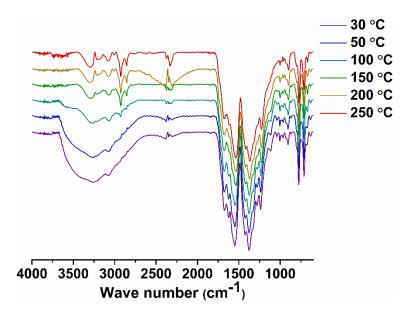
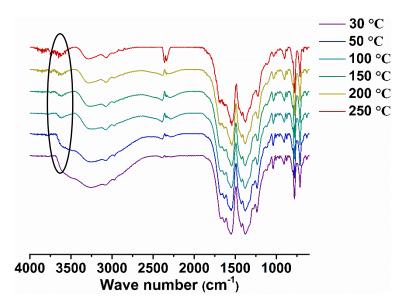




Figure S12. TGA curves of as-synthesized (dark blue) and activated (red) NJU-Bai53.

S6. In situ FTIR spectra

Figure S13. *In situ* FTIR spectra of the CH₃OH-exchanged sample **NJU-Bai52** at various temperatures under vacuum.

Figure S14. *In situ* FTIR spectra of the CH₃OH-exchanged sample **NJU-Bai53** at various temperatures under vacuum, which shows the peaks attributed to coordinated hydroxide.⁴

S7. DRIFTS spectra

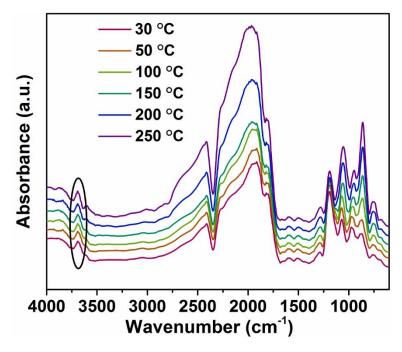


Figure S15. The DRIFTS spectra of the CH_3OH -exchanged sample NJU-Bai53 at various temperatures under flowing argon, in which the peaks appear at around 3670 cm⁻¹ attributed to coordinated hydroxide.

S8. XPS spectra

The solvent-exchanged samples (**NJUBai52** and **NJU-Bai53**) were activated at 170 °C under vacuum for 12 hours. Then, the activated samples are transferred to a PHI 5000 VersaProbe instrument for XPS analyses. As shown in Figure S14, XPS analyses confirm the presence of chloride in the activated sample **NJUBai52** and the absence of chloride in the activated sample **NJUBai53**. The relative atomic percentages measured are shown in Tables S2. The ratio of Fe/Cl according to their relative atomic percentages is calculated to be 3.3, which is almost consistent with one Cl⁻ anion per cluster.

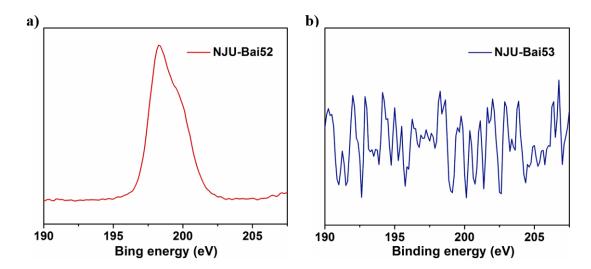


Figure S16. Cl 2p XPS spectra of NJU-Bai52 (a) and NJU-Bai53 (b).

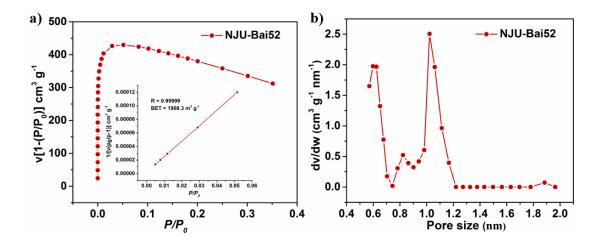
	Atomic %
C 1s	62.96
N 1s	6.83
Cl 2p	4.75
Fe 2p	25.46

 Table S2. Atomic percentage of Cl in the activated sample NJUBai52.

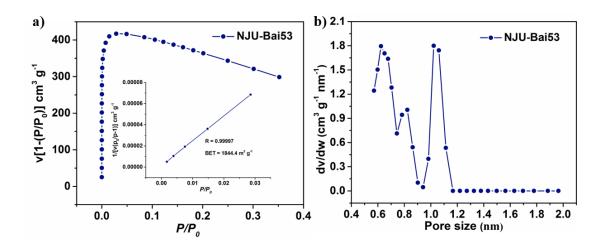
Table S3. Atomic percentage of Cl in the activated sample NJUBai53.

	Atomic %
C 1s	69.81
N 1s	7.04
Cl 2p	0.00
Sc 2p	23.15

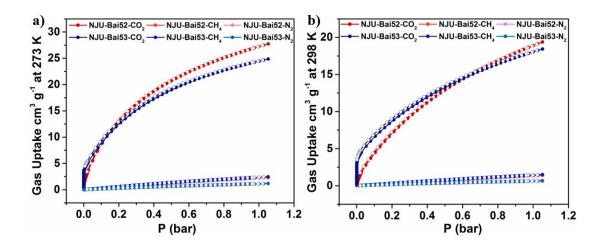
S9. Low-pressure gas sorption measurements


Sample activation. Before sorption experiment, as-synthesized NJU-Bai52 samples were soaked in dry methanol for 3 days with methanol refreshing every 8 hours. The as-synthesized samples of NJU-Bai53 were soaked in dry CH₂Cl₂ for 3 days with CH₂Cl₂ refreshing every 8 hours. After that, CH₂Cl₂ is decanted and sample is soaked in dry methanol for 3 days with methanol refreshing every 8 hours. Then, the solvent-exchanged samples (NJUBai52 and NJU-Bai53) were activated at 170 $^{\circ}$ C under vacuum for 12 hours.

Low-pressure gas (N₂, CO₂, CH₄) sorption isotherms (up to 1 bar) were performed on Micromeritics ASAP 2020 M+C surface area and pore size analyzer. Before gas sorption measurements, about 400 mg samples were activated by using the "outgas" function of the surface area analyzer. For all isotherms, warm and cold free space correction measurements were performed using ultra-high purity He gas (UHP grade 5.0, 99.999% purity). The specific surface areas were determined using the Brunauer-Emmett-Teller (BET) and the Langmuir equation from the N₂ sorption data at 77 K. When applying the BET theory, we made sure that our analysis satisfied the two consistency criteria as detailed by Walton and co-workers⁵. For the Langmuir surface area, data from the whole adsorption data were used. The pore size distribution (PSD) was obtained from the DFT model in the Micromeritics ASAP2020 software package based on the N₂ sorption isotherm.


The wt% gas uptake is defined by equation (1):

wt% =
$$(100 \text{ x N}) / (1000 + \text{N})$$
 (1)


in which N is excess (or total) adsorption (Nexc or Ntot, mg g⁻¹).

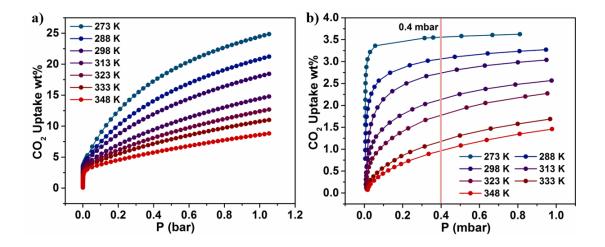
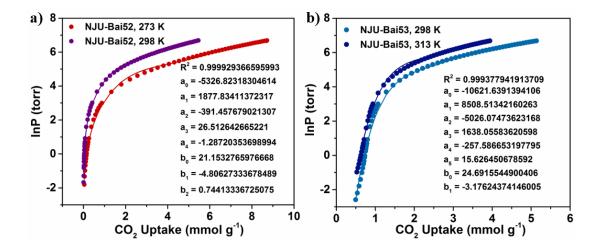

Figure S17. a) V[1-(P/P₀)] vs P/P₀ for NJU-Bai52, only the range below P/P₀ = 0.03 satisfies the first consistency criterion for applying the BET theory. Inset: Plot of the linear region for the BET equation. b) The pore size distribution curve of NJU-Bai52.

Figure S18. a) V[1-(P/P₀)] vs P/P₀ for NJU-Bai53, only the range below P/P₀ = 0.03 satisfies the first consistency criterion for applying the BET theory. Inset: Plot of the linear region for the BET equation. b) The pore size distribution curve of NJU-Bai53.

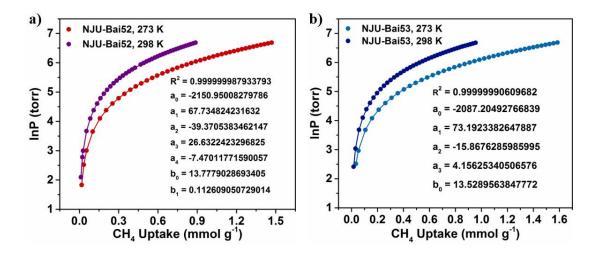
Figure S19. CO₂, CH₄, and N₂ adsorption (closed) /desorption (open) isotherms for **NJU-Bai52** and **NJU-Bai53** at 273 K (a) and 298 K (b), respectively.

Figure S20. a) CO₂ adsorption isotherms for **NJU-Bai53** at different temperatures. b) The isotherms at very low pressures.

S10. Calculations of isosteric heat of adsorption (Q_{st})


A virial-type⁶ expression comprising the temperature-independent parameters a_i and b_j was employed to calculate the enthalpies of adsorption for CO₂ and CH₄ (at 273, 298 and 313 K) on NJU-Bai52 and NJU-Bai53. In each case, the data were fitted using the equation (2):

$$\ln P = \ln N + 1/T \sum_{i=0}^{m} a_i N^i + \sum_{j=0}^{n} b_j N^j \quad (2)$$


Here, *P* is the pressure expressed in Torr, *N* is the amount adsorbed in mmol g^{-1} , *T* is the temperature in K, a_i and b_j are virial coefficients, and *m*, *n* represent the number of coefficients required to adequately describe the isotherms (*m* and *n* were gradually increased until the contribution of extra added *a* and *b* coefficients was deemed to be statistically insignificant towards the overall fit, and the average value of the squared deviations from the experimental values was minimized). The values of the virial coefficients a_0 through a_m were then used to calculate the isosteric heat of adsorption using the following expression (3).

$$Q_{st} = -R \sum_{i=0}^{m} a_i N^i \quad (3)$$

 Q_{st} is the coverage-dependent isosteric heat of adsorption and *R* is the universal gas constant. The heats of CO₂ and CH₄ sorption for **NJU-Bai52** and **NJU-Bai53** in the manuscript are determined by using the low pressure gas sorption data measured in the pressure range from 0-1 bar (273, 298 and 313 K), which is fitted by the virial-equation very well.

Figure S21. a, b) The details of virial equation (solid lines) fitting to the experimental CO₂ adsorption data (symbols) for NJU-Bai52 and NJU-Bai53, respectively.

Figure S22. a, b) The details of virial equation (solid lines) fitting to the experimental CH₄ adsorption data (symbols) for NJU-Bai52 and NJU-Bai53, respectively.

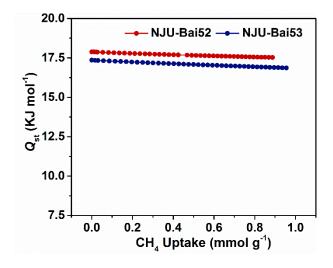


Figure S23. The isosteric CH₄ adsorption enthalpies of NJU-Bai52 and NJU-Bai53.

S11. IAST calculations

IAST (ideal adsorption solution theory)⁷ was used to predict binary mixture adsorption from the experimental pure-gas isotherms. In order to perform the integrations required by IAST, the singlecomponent isotherms should be fitted by a proper model. In practice, several methods to do this are available. We found for this set of data that the dual-site Langmuir-Freundlich equation was successful in fitting the data. As can be seen in Figure S21-22 and Table S2-3, the model fits the isotherms very well ($R^2 > 0.9999$).

$$q = \frac{q_{m,1}b_1p^{1/n_1}}{1+b_1p^{1/n_1}} + \frac{q_{m,2}b_2p^{1/n_2}}{1+b_2p^{1/n_2}} \quad (4)$$

Here, P is the pressure of the bulk gas at equilibrium with the adsorbed phase (kPa), q is the adsorbed amount per mass of adsorbent (mmol g^{-1}), $q_{m,1}$ and $q_{m,2}$ are the saturation capacities of sites 1 and 2 (mmol g^{-1}), b_1 and b_2 are the affinity coefficients of sites 1 and 2 (1/kPa), and n_1 and n_2 represent the deviations from an ideal homogeneous surface. The fitted parameters were then used to predict multi-component adsorption with IAST.

The selectivity $S_{A/B}$ in a binary mixture of components A and B is defined as $(x_A/y_A)/(x_B/y_B)$, where x_i and y_i are the mole fractions of component i (i = A, B) in the adsorbed and bulk phases, respectively.

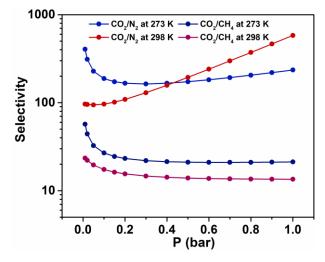



Figure S24. IAST predicted selectivity for CO_2/N_2 (15/85) and CO_2/CH_4 (50/50) mixture of NJU-Bai52 at 273 K and 298K.

Figure S25. a, b) Low pressure gas adsorption isotherms and the dual-site Langmuir-Freundlich (DSLF) fit lines of CO₂, N₂ and CH₄ in **NJU-Bai53** at 273 K and 298 K, respectively.

Table S4. Dual-site Langmuir-Freundlich parameters for pure CO₂, N₂ and CH₄ isotherms in NJU-Bai52 at 273 K

	NJU-Bai52				
	CO ₂	N ₂	CH ₄		
R ²	0.999997599886581	0.999999823704895	0.9999999971665649		
<i>q</i> _{m,1}	9997.49508421439	0.00186261162301977	8.04530101400979		
q _{m,2}	2.46730683537989	1.7974482967967	1.10288574912569		
b ₁	4.58247581374847E-5	0.195123029243127	0.00108855350825509		
b ₂	0.0073367327009631	0.00236329693083056	0.0107721079722001		
n 1	0.572921025849642	1.78182298262981	1.01994785573232		
n ₂	1.40813904036138	1.03044626134288	0.97650310882619		

Table S5. Dual-site Langmuir-Freundlich parameters for pure CO₂, N₂ and CH₄ isotherms in NJU-Bai52 at 298 K

	NJU-Bai52				
	CO ₂	N_2	CH4		
R ²	0.999998051500304	0.999998845936279	0.9999999325815		
<i>q</i> _{m,1}	14.8371366681511	0.275697273845328	9.49056622311807		
<i>q</i> _{m,2}	0.269170730053418	0.149327125566197	0.435412599945871		
b ₁	0.00620983018840104	0.00981161566531046	0.000863872074231023		
b ₂	0.654344891277494	0.000214449351712522	0.00575417582549132		
n_1	0.955381825581378	1.00811841319563	0.964557654288662		
n ₂	1.02763736346635	1.77164990185463	1.06930462915619		

S12. Molar selectivity calculations

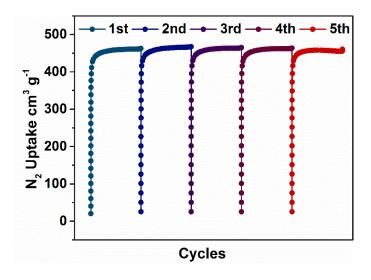
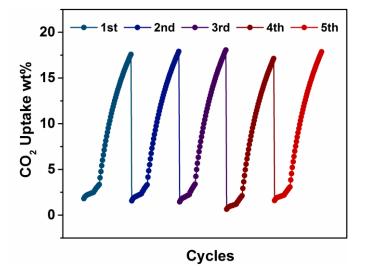

Since we were unable to mathematically model the CO₂ isotherms of NJU-Bai53 with a meaningful, single equation over the entire pressure range of interest, IAST selectivities could not be calculated. We applied the simple selectivity equation $S = (q_1/q_2)/(p_1/p_2)$, where the adsorption capacities of component n (q_n) are defined to be molar excess adsorption capacities determined experimentally without correction for absolute adsorption, and p_n is defined to be the pressure of component n as experimentally measured.

Table S6. BET surface areas, CO₂ uptakes, CO₂ enthalpies, and CO₂ selectivities of NJU-Bai52, NJU-Bai53, and some famous MOFs at 298 K


		CO ₂ uptake (wt %)			Selectivity ^b			
MOFs	$\begin{array}{c} Surface & area^a \\ (m^2 g^{-1}) \end{array}$	0.4 mbar	0.15 bar	1 bar	- Q _{st, CO2} (kJ mol ⁻¹)	CO ₂ /N ₂	CO ₂ /CH ₄	Ref.
NJU-Bai52	1908	0.057	5.75	18.9	44.2	581/147°/41d	13.5	
NJU-Bai53	1844	2.74	7.67	18.1	88.3	6397°/50 ^d		
NJU-Bai7	1155		7.42		40.5	70 ^d		8
SIFSIX-2-Cu-i	735	0.30	9.19	19.2	31.9	140	33	9
Mg-MOF-74	1495	0.39	21.16	26.0	47	182.1		10
MAF-X25ox	1286 ^e	4.01	15.00	23.9	90	250 ^d		11
MAF-X27ox	1167 ^e	4.73	15.28	22.7	110	262 ^d		11
NJU-Bai35	862.8		7.20	14.6	33.37	275.8	11.6	12
UTSA-16	628		9.44	15.9	34.6	314.7		10c
mmen-CuBTTri	870	0.22	9.48	15.4	96	327		13
NJU-Bai51	1280	0.56	3.81	12.3	33.3	545.7	10.7	14
SIFSIX-3-Zn	250 ^f	0.57	9.66	10.1	45	1818	231	9
SIFSIX-3-Cu	300 ^f	5.17	9.33		54	>25000		15
mmen-Mg ₂ (dobpdc)	70	8.09	12.10	14.5	71	49000°/200d		16
en-Mg ₂ (dobpdc)	1253	11.07	13.74	16.7	51	70000°/230d		17

^a BET surface areas calculated from N₂ isotherms at 77 K unless otherwise stated. ^b Selectivity obtained from IAST calculations unless specially noted. ^c Molar selectivity of CO_2/N_2 (0.4/800) in air. ^d Molar selectivity of CO_2/N_2 (15/75) in flue gas. ^e Langmuir surface area. ^f Calculated from 298 K CO₂ isotherm.

S13. Adsorption stability tests

Figure S26. Five cycles of N₂ uptake in **NJU-Bai53** at 77 K. Data was collected with a Micrometritics ASAP 2020 analyzer.

Figure S27. Five cycles of CO_2 uptake in **NJU-Bai53** at 298 K. The sample **NJU-Bai53** was regenerated at 80 °C under dynamic vacuum for 3 h after measurement of each isotherm. The gas uptake decreased very a little in the fourth cycle because the sample was not regenerated before this test. Once regenerated according to the above conditions, such as the fifth cycle, CO_2 uptake fully recovered. Data was collected with a Micrometritics ASAP 2020 analyzer.

S14. N₂ adsorption after water treatments

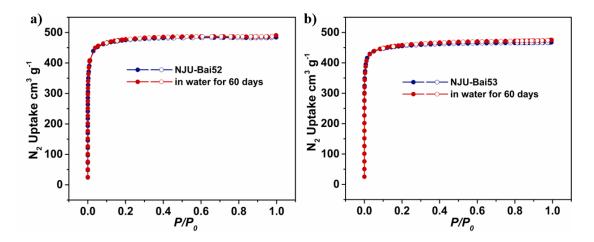


Figure S28. N₂ adsorption (closed) / desorption (open) isotherms of water-treated NJU-Bai52 (a) and NJU-Bai53 (b), respectively.

S15. Breakthrough experiments

Breakthrough system used in this study is hand-made according to the literatures¹⁸. The flow rates of all gases are regulated by mass flow controllers, and the effluent gas stream from the column is monitored by a gas chromatography (GC). All measurements were performed following a protocol established by the literatures^{18a-c}. Activated sample **NJU-Bai52** (450 mg) or **NJU-Bai53** (490 mg) was packed into a stainless-steel column (12 cm length \times 0.30 cm internal diameter) and the remaining volume in the column was filled by glass wool. The packed column was initially purged with helium gas for 30 mins until no other gases were detected in the effluent. Then, a CO₂ flow and N₂ flow (total is 10 mL min⁻¹: 15/85), a CO₂ flow and CH₄ flow (total is 10 mL min⁻¹: 50/50) were dosed into the column. A breakthrough of CO₂ was determined when the concentration of effluent CO₂ reached 1% of the feed concentration. Breakthrough times were calculated by subtracting the time to breakthrough using a sample bed packed only with stainless steel beads and cotton plugs from the observed breakthrough time. Then, the breakthrough time of the samples was normalized to 1g for easy comparison from 450 mg of **NJU-Bai52**

crystal, and 490 mg of NJU-Bai53 crystal.

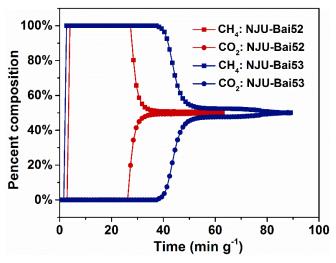


Figure S29. Breakthrough curves for a mixture of CH₄/CO₂ at 298 K.

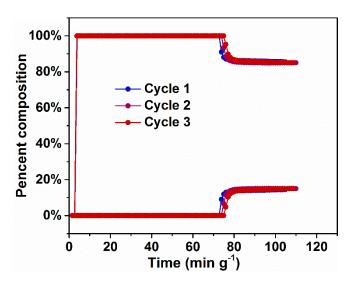


Figure S30. Recyclability of breakthrough tests of N₂/CO₂ on NJU-Bai52 at 298K.

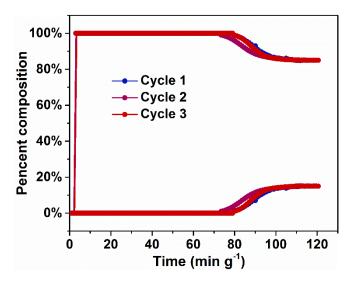


Figure S31. Recyclability of breakthrough tests of N₂/CO₂ on NJU-Bai53 at 298K.

S16. The computational simulation studies of gases adsorption

To better understand the interaction between the CO₂ molecules and framework and predict the possible binding sites of CO₂ molecules, grand canonical Monte Carlo (GCMC) simulations were carried out through the sorption module of the *Materials Studio 7.0* package according to the literature.¹⁹ The unit-cell framework of **NJU-Bai52** and **NJU-Bai53** were constructed from experimental crystal X-ray diffraction data. The Locate and Metropolis methods²⁰ were used. The maximum loading and production steps were set as 1×10^5 and 1×10^7 , respectively. The simulations were done by utilizing one unit cell, and on the basis of the experimental data (0.15 bar). During the simulation, the CO₂ molecules and framework were considered to be rigid. All atom charges were assigned by the COMPASS force field.²¹ The Ewald summation method was used for electrostatic terms. Atom based on van der Waals was included with a 18.5 Å cutoff radius.

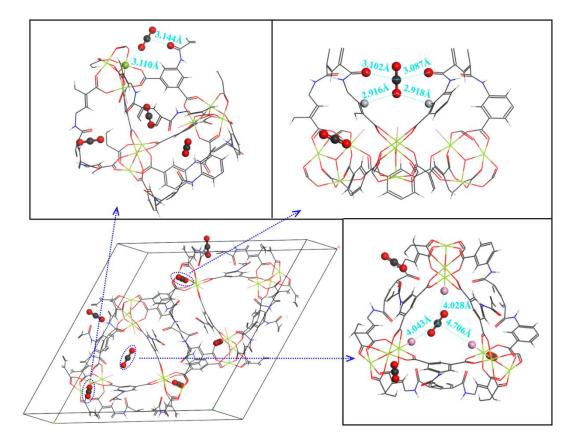


Figure S32. Simulated locations of CO₂ molecules in NJU-Bai52 at 0.15 bar.

For NJU-Bai52, more stable site shows CO₂ at a bridging position between two amide groups (C=O···C = 3.087-3.102 Å) and two aromatic —CH groups (C-H···O = 2.916-2.918 Å). The second CO₂ site is located near one open metal site (Fe···O = 3.110 Å) and one amide group (C=O···C = 3.144 Å). In addition, the CO₂ molecule is also stabilized by weak electrostatic interactions with three chlorine atoms (C1···C = 4.028-4.706 Å).

Figure S33. Simulated locations of CO₂ molecules in NJU-Bai53 at 0.15 bar.

In NJU-Bai53, the first, the CO₂ molecule is stuck between two hydroxyl groups $(O-H\cdots O = 1.621-1.631 \text{ Å})$, indicative of strong binding interactions between them. the second CO₂ site stabilizes around one open metal site (Fe $\cdots O = 3.076 \text{ Å}$) and two amide groups (C=O \cdots C = 3.290-3.423 Å). In addition, some CO₂ molecules also distribute around separate open metal sites (Fe $\cdots O = 2.983 \text{ Å}$). Thus, the high CO₂ adsorption of NJU-Bai53 should be attributed to the simultaneous presence of open metal sites, amide groups, and monodentate hydroxide that provide multiple CO₂ binding sites.

S17. References

(1) Zheng, B.; Bai, J.; Duan, J.; Wojtas, L.; Zaworotko, M. J. Enhanced CO₂ binding affinity of a high-uptake rht-type metal-organic framework decorated with acylamide groups. *J. Am. Chem. Soc.* **2011**, 133, 748-751.

(2) Sheldrick, G. M. A short history of SHELX. Acta Cryst. Sect. A 2008, 64, 112-122.

(3) Spek, A. L. Single-crystal structure validation with the program PLATON. J. Appl. Cryst. 2003, 36, 7-13.

(4) Ibarra, I. A.; Lin, X.; Yang, S.; Blake, A. J.; Walker, G. S.; Barnett, S. A.; Allan, D. R.; Champness, N. R.; Hubberstey, P.; Schroder, M. Structures and H₂ adsorption properties of porous scandium metal-organic frameworks. *Chem. Eur. J.* **2010**, 16, 13671-13679.

(5) (a) Walton, K. S.; Snurr, R. Q. Applicability of the BET Method for Determining Surface Areas of Microporous Metal-Organic Frameworks. *J. Am. Chem. Soc.* **2007**, 129, 8552-8556. (b) Rouquerol, J.; Llewellyn, P.; Rouquerol, F. Is the bet equation applicable to microporous adsorbents? *Stud. Surf. Sci. Catal.* **2007**, 160, 49-56.

(6) Rowsell, J. L. C.; Yaghi, O. M. Effects of Functionalization, Catenation, and Variation of the Metal Oxide and Organic Linking Units on the Low-Pressure Hydrogen Adsorption Properties of Metal-Organic Frameworks. *J. Am. Chem. Soc.* **2006**, 128, 1304-1315.

(7) (a) MYERS, A. L.; PRAUSNITZ, J. M. Thermodynamics of Mixed-Gas Adsorption. *AIChE J.* **1965**, 11, 121-126. (b) Bae, Y.-S.; Mulfort, K. L.; Frost, H.; Ryan, P.; Punnathanam, S.; Broadbelt, L. J.; Hupp, J. T.; Snurr, R. Q. Separation of CO₂ from CH₄ Using Mixed-Ligand Metal-Organic Frameworks. *Langmuir* **2008**, 24, 8592-8598. (c) Mu, B.; Li, F.; Walton, K. S. A novel metal-organic coordination polymer for selective adsorption of CO₂ over CH₄. *Chem. Commun.* **2009**, 2493-2495.

(8) Du, L.; Lu, Z.; Zheng, K.; Wang, J.; Zheng, X.; Pan, Y.; You, X.; Bai, J. Fine-tuning pore size by shifting coordination sites of ligands and surface polarization of metal-organic frameworks to sharply enhance the selectivity for CO₂. *J. Am. Chem. Soc.* **2013**, 135, 562-565.

(9) Nugent, P.; Belmabkhout, Y.; Burd, S. D.; Cairns, A. J.; Luebke, R.; Forrest, K.; Pham, T.; Ma, S.; Space, B.; Wojtas, L.; Eddaoudi, M.; Zaworotko, M. J. Porous materials with optimal adsorption thermodynamics and kinetics for CO₂ separation. *Nature* **2013**, 495, 80-84.

(10) (a) Caskey, S. R.; Wong-Foy, A. G.; Matzger, A. J. Dramatic Tuning of Carbon Dioxide Uptake via Metal Substitution in a Coordination Polymer with Cylindrical Pores. *J. Am. Chem. Soc.* **2008**, 130, 10870-10871. (b) Mason, J. A.; Sumida, K.; Herm, Z. R.; Krishna, R.; Long, J. R. Evaluating metal–organic frameworks for post-combustion carbon dioxide capture via temperature swing adsorption. *Energy Environ. Sci.* **2011**, 4, 3030-3040. (c) Xiang, S.; He, Y.; Zhang, Z.; Wu, H.; Zhou, W.; Krishna, R.; Chen, B. Microporous metal-organic framework with potential for carbon dioxide capture at ambient conditions. *Nat. Commun.* **2012**, 3, 954.

(11) Liao, P.-Q.; Chen, H.; Zhou, D.-D.; Liu, S.-Y.; He, C.-T.; Rui, Z.; Ji, H.; Zhang, J.-P.; Chen, X.-M. Monodentate hydroxide as a super strong yet reversible active site for CO_2 capture from high-humidity flue gas. *Energy Environ. Sci.* **2015**, 8, 1011-1016.

(12) Jiang, J.; Lu, Z.; Zhang, M.; Duan, J.; Zhang, W.; Pan, Y.; Bai, J. Higher Symmetry Multinuclear Clusters of Metal-Organic Frameworks for Highly Selective CO₂ Capture. *J. Am. Chem. Soc.* **2018**, 140, 17825-17829.

(13) McDonald, T. M.; D'Alessandro, D. M.; Krishna, R.; Long, J. R. Enhanced carbon dioxide capture

upon incorporation of N,N'-dimethylethylenediamine in the metal-organic framework CuBTTri. *Chem. Sci.* **2011**, 2, 2022-2028.

(14) Song, X.; Zhang, M.; Duan, J.; Bai, J. Constructing and finely tuning the CO₂ traps of stable and various-pore-containing MOFs towards highly selective CO₂ capture. *Chem. Commun.* **2019**, 55, 3477-3480.

(15) Shekhah, O.; Belmabkhout, Y.; Chen, Z.; Guillerm, V.; Cairns, A.; Adil, K.; Eddaoudi, M. Made-to-order metal-organic frameworks for trace carbon dioxide removal and air capture. *Nat. Commun.* **2014**, 5, 4228.

(16) McDonald, T. M.; Lee, W. R.; Mason, J. A.; Wiers, B. M.; Hong, C. S.; Long, J. R. Capture of carbon dioxide from air and flue gas in the alkylamine-appended metal-organic framework mmen-Mg₂(dobpdc). *J. Am. Chem. Soc.* **2012**, 134, 7056-7065.

(17) Lee, W. R.; Hwang, S. Y.; Ryu, D. W.; Lim, K. S.; Han, S. S.; Moon, D.; Choi, J.; Hong, C. S. Diamine-functionalized metal–organic framework: exceptionally high CO₂ capacities from ambient air and flue gas, ultrafast CO₂ uptake rate, and adsorption mechanism. *Energy Environ. Sci.* **2014**, 7, 744-751.

(18) (a) Jee, J.-G.; Kim, M.-B.; Lee, C.-H. Adsorption Characteristics of Hydrogen Mixtures in a Layered Bed: Binary, Ternary, and Five-Component Mixtures. *Ind. Eng. Chem. Res.* 2001, 40, 868-878. (b) Britt, D.; Furukawa, H.; Wang, B.; Glover, T. G.; Yaghi, O. M. Highly efficient separation of carbon dioxide by a metal-organic framework replete with open metal sites. *Proc. Natl. Acad. Sci.* 2009, 106, 20637-20640.
(c) Bae, Y.-S.; Lee, C. Y.; Kim, K. C.; Farha, O. K.; Nickias, P.; Hupp, J. T.; Nguyen, S. T.; Snurr, R. Q. High propene/propane selectivity in isostructural metal-organic frameworks with high densities of open metal sites. *Angew. Chem. Int. Ed.* 2012, 51, 1857-1860. (d) Grant Glover, T.; Peterson, G. W.; Schindler, B. J.; Britt, D.; Yaghi, O. MOF-74 building unit has a direct impact on toxic gas adsorption. *Chem. Eng. Sci.* 2011, 66, 163-170. (e) Bereciartua, P. J.; Cantín, Á.; Corma, A.; Jordá, J. L.; Palomino, M.; Rey, F.; Valencia, S.; Jr., E. W. C.; Kortunov, P.; Ravikovitch, P. I.; Burton, A.; Yoon, C.; Wang, Y.; Paur, C.; Guzman, J.; Bishop, A. R.; Casty, G. L. Control of zeolite framework flexibility and pore topology for separation of ethane and ethylene. *Science* 2017, 358, 1068-1071.

(19) Li, Y. W.; Yan, H.; Hu, T. L.; Ma, H. Y.; Li, D. C.; Wang, S. N.; Yao, Q. X.; Dou, J. M.; Xu, J.; Bu, X. H. Two microporous Fe-based MOFs with multiple active sites for selective gas adsorption. *Chem. Commun.* **2017**, 53, 2394-2397.

(20) Metropolis, N.; Ulam, S. The Monte Carlo Method. J. Am. Stat. Assoc. 1949, 44, 335-341.

(21) Sun, H. COMPASS: An ab Initio Force-Field Optimized for Condensed-Phase Applications Overview with Details on Alkane and Benzene Compounds. *J. Phys. Chem. B* **1998**, 102, 7338-7364.