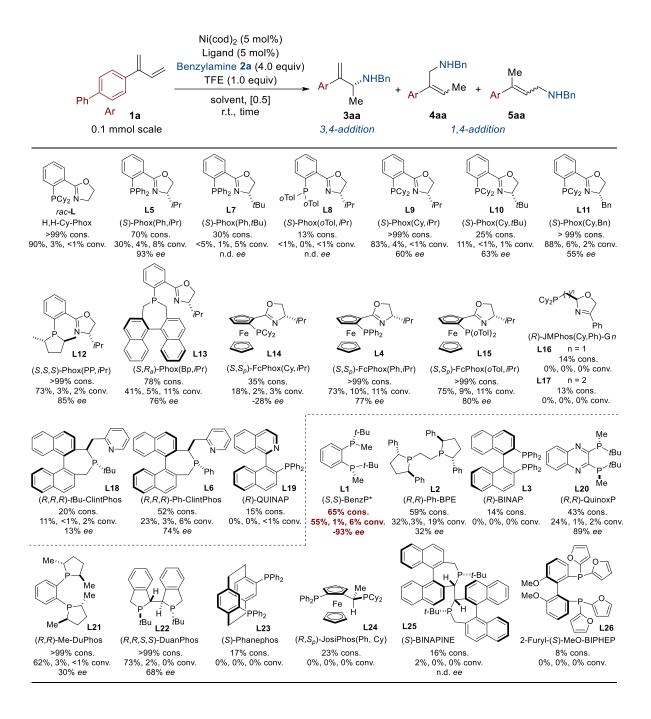
Ni-Catalyzed Enantioselective Intermolecular Hydroamination of Branched 1,3-Dienes Using Primary Aliphatic Amines

Gaël Tran, Wen Shao, Clément Mazet* Department of Organic Chemistry, University of Geneva Quai Ernest Ansermet, 30 - 1211 Geneva 4, Switzerland <u>clement.mazet@unige.ch</u>


Table of Contents

1. General information	S2
2. Reaction optimization	S3
3. General procedure for the amination reaction	S5
4. Substrate scope	S 6
4.1. Diene scope	S6
4.2. Amine scope	S25
5. Rh-catalyzed deallylation of 3ap	S54
6. Improved sets of reaction conditions	S56
7. Supporting organometallics	S57
7.1. NMR monitoring	S57
7.2. Synthesis of [(L1)2Ni] (7)	S72
7.3. Synthesis of [(L1)Ni(cod)] (8)	S72
7.4. Synthesis of [(L1)Ni(1a)] (9)	S74
7.5. Synthesis of [(L1)Ni(η³-Allyl)][OCH2CF3] (10)	S75
7.6. Synthesis of [(L1)Ni(3aa)] (11)	S76
7.7. Reaction of [(L ₁)Ni(η^3 -allyl)][OCH ₂ CF ₃] (10) with BnNH ₂	S77
8. Amine exchange experiment	S80
9. Deuterium labeling experiments	S81
9.1. Model catalytic hydroamination using TFE- <i>d</i> ₁ and BnND ₂	S81
9.2. Post-reaction deuterium incorporation experiment	S84
9.3. Synthesis of 10- <i>d_n</i> using TFE- <i>d</i> ₁ - ² H NMR monitoring	S85
9.4. Synthesis of 10- <i>d</i> ⁿ using TFE- <i>d</i> ¹ and BnND ₂ - ¹ H NMR monitoring	S86
10. Kinetic study	S87
11. BnNH ₂ NMR titration by TFE	S92
12. NMR Spectra of organic compounds	S94
13. NMR Spectra or organometallic compounds	S147
2D NMR Analysis of Complex 10	S163
14. X-Ray Analysis	S170
15. References	S172

1. General Information

Unless otherwise noted, all reactions were carried out under air. All liquid amines were distilled and degassed by three successive "freeze-pump-thaw" cycles, followed by drying over activated 4Å MS. THF, Et₂O CH₂Cl₂, toluene, and pentane were degassed by N₂ bubbling and dried over activated alumina columns. Mesitylene was dried and distilled over CaH₂ and degassed by three successive "freeze-pump-thaw" cycles. Ni(cod)₂ was dissolved in toluene (ca. 1g/20mL), filtered over Celite, and recrystallized at -78 °C. Unless otherwise specified, all the dienes were prepared according to reported literature procedures.¹ All other reagents were purchased from Aldrich, Fluka, Acros or Strem and used without purification. NMR spectra were recorded on AMX-400 and AMX-500 Bruker Avance spectrometers at 298 K. ¹H and ¹³C{¹H} NMR chemical shifts are given in ppm relative to SiMe₄, with the solvent resonance used as internal reference. ¹H NMR spectra were referenced to CHCl₃ (δ = 7.26 ppm), methanol (δ = 3.31 ppm) and toluene (δ = 6.98 ppm) and ¹³C{¹H} NMR spectra were referenced to CDCl₃ (δ = 77.16 ppm), methanol- d_4 (δ = 49.00 ppm) and toluene- d_8 (δ = 20.40 ppm). ³¹P{¹H} NMR chemical shifts are reported in ppm relative to H₃PO₄. ¹⁹F{¹H} NMR chemical shifts are reported in ppm relative to CFCl₃. Infrared spectra were obtained on a Perkin–Elmer 1650 FT-IR spectrometer using neat samples on a diamond ATR Golden Gate sampler. HRMS were obtained on a Xevo G2 Tof spectrometer (Ionization mode: ESI positive polarity; Mobile phase: MeOH 100 µl/min). Mass spectrum is calibrated by the use of the MS lockspray system (LeuEnk calibration solution). The enantiomeric excesses (ee's) were determined by HPLC, SFC and GC analyses. HPLC analyses were performed on a Shimadzu CTO-20AA with column DAICEL OD-H, OJ-H, AD-H and IC. SFC analyses were performed on a Waters Acquity UPC2 with columns OD-3, OJ-3, OZ-3, OB-H, AZ-3, AD, AS-3, AY-H. Retention times (t_R) are given in minutes. GC analyses were performed on HP-6890, column HYDRODEX γ -DiMOM, HYDRODEX β -3P and HYDRODEX TBDM, 50 m. Optical rotations were recorded using an OMNI Lab JASCO P-1030 polarimeter using 589 nm emission band of a sodium lamp. Thin layer chromatography (TLC) was performed on plates of silica precoated with 0.25 mm Kieselgel 60 F₂₅₄ from *Merck*. Flash chromatography was performed using silica gel SiliaFlash® P60 (230-400 mesh) from Silicycle.

2. Reaction optimization

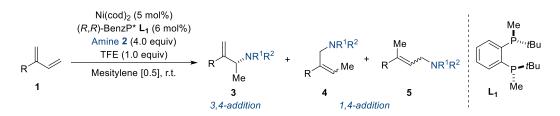
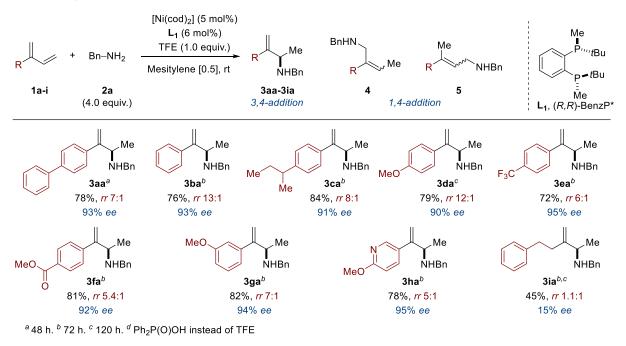


Table S1: Ligand screening. ^a Reaction conditions: all reactions were performed with diene **1a** (0.10 mmol, 1.0 equiv), benzylamine **2a** (0.40 mmol, 4.0 equiv), Ni(cod)₂ (0.005 mmol, 5 mol%), ligand (0.005 mmol, 5 mol%), 2,2,2-trifluoroethanol (0.10 mmol, 1.0 equiv) in mesitylene (0.20 mL, 0.5 M) at room temperature. Consumption of **1a**, conversions of **3aa**, **4aa** and **5aa** were assessed by ¹H NMR of the crude reaction mixture using an internal standard. n.d. = not determined.

Ph Ar 0.1 m	1a mmol scale	Ni(cod) ₂ (5 mol% (<i>R</i> , <i>R</i>)-BenzP L1 (5 m Benzylamine 2a (x e Additive (y equiv solvent, [0.5] r.t., time	nol%) quiv))Ar	Me 3aa 8,4-additio	HBn + , n	NHBn Ar Me + 4aa 1,4-addii	Me Ar 5aa tion	^{/~} NHBn		Me P [™] tBu P tBu Ξ Me BenzP*
Entry	Solvent	Additive	Time	х	у	1a Cons.	3aa	4aa	5aa	ee 3aa
Linuy	Convent	Additive	(h)	~	у	(%)	(%)	(%)	(%)	(%)
1 ^{<i>b</i>}	Mes.	TFE	24	4	1	65	55	1	6	-93
2 ^b	Mes.	TFE	48	4	1	>99	72	2	8	-93
3	PhMe	TFE	24	4	1	60	52	<1	8	91
4	Mes.	TFE	48	4	1	>99	79	3	11	93
5	THF	TFE	48	4	1	57	43	2	4	95
6	Et ₂ O	TFE	48	4	1	46	36	1	3	95
7	Et ₂ O	TFE	48	4	1	>99	74	2	8	93
8	CH_2CI_2	TFE	48	4	1	8	0	0	0	
9	Mes.	TFE	48	2	1	30	17	<1	2	86
10 ^c	Mes.	TFE	24	4	1	>99	70	3	11	87
11	Mes	EtOH	24	4	1	4	0	0	0	
12	Mes.	$Ph_2P(O)OH$	24	4	1	>99	88	3	4	90
13	Et ₂ O	Ph ₂ P(O)OH	24	4	1	80	72	2	2	83
14	Mes.	Ph ₂ P(O)OH	48	2	1	>99	84	3	3	88
15	Mes.	Ph ₂ P(O)OH	48	4	0.2	>99	92	3	4	91
16	Mes.	Ph ₂ P(O)OH	48	2	0.2	>99	90	3	2	91

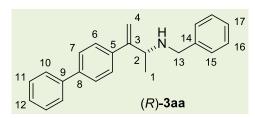
Table S2: **Other condition optimization.** ^a Reaction conditions: all reactions were performed with diene 1a (0.10 mmol, 1.0 equiv), benzylamine **2a** (0.40 mmol, 4.0 equiv or 0.20 mmol, 2.0 equiv), Ni(cod)₂ (0.005 mmol, 5 mol%), (*R*,*R*)-BenzP* **L1** (0.005 mmol, 5 mol%), 2,2,2-trifluoroethanol (0.10 mmol, 1.0 equiv) or diphenylphosphonic acid (0.10 mmol, 1.0 equiv or 0.020 mmol, 0.20 equiv) in solvent (0.20 mL, 0.5 M) at room temperature. Consumption of **1a** and conversions were assessed by ¹H NMR of the crude reaction mixture using an internal standard. ^b Using (*S*,*S*)-BenzP* as ligand. ^c At 40 °C. Mes. = mesitylene, THF = tetrahydrofuran, TFE = 2,2,2-trifluoroethanol.

3. General procedure for the amination reaction



In a N₂-filled glovebox, Ni(cod)₂ (0.0125 mmol, 3.4 mg, 5 mol%) and (*R*,*R*)-BenzP* L₁ (0.015 mmol, 4.2 mg, 6 mol%) were charged in a 5 mL Schlenk tube and dissolved in anhydrous mesitylene (0.50 mL, 0.50 M). After stirring at room temperature for 10 min, the appropriate diene **1** (0.25 mmol, 1.0 equiv), the appropriate amine **2** (1.00 mmol, 4.0 equiv) and TFE (0.25 mmol, 19 μ L, 1.0 equiv) were added sequentially. The tube was sealed, taken out of the glovebox and the reaction mixture was stirred at room temperature. After complete consumption of diene **1** (determined by TLC), the reaction mixture was filtered over a short pad of silica gel, washed with ethyl acetate (10 mL) and concentrated under vacuum to afford the crude mixture. The conversion and isomeric ratio were determined by ¹H NMR analysis of the crude reaction mixture using CH₂Br₂ as an internal standard. The residue was purified by silica gel column chromatography to afford the analytically pure hydroamination product **3**.

Note: All racemates were prepared according to a similar procedure using H,H-Cy-Phox rac-L as ligand (mesitylene [0.5], room temperature, 24 h).


4. Substrate scope

4.1 Scope in diene

Figure S1. Scope of the Ni-catalyzed hydroamination of 2-substituted 1,3-dienes -Variation of the diene component. 0.25-0.40 mmol scale. Yields of 3,4-addition product after purification. Regioselectivity expressed as the ratio between 3,4- and 1,4-addition products as determined by ¹H NMR using an internal standard (3:[4+5]). Enantiomeric excess determined by GC or HPLC equipped with chiral columns. ^a 48 h. ^b 72 h. ^c 120 h.

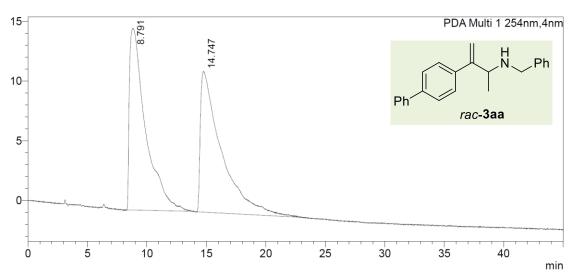
(*R*)-3-([1,1'-Biphenyl]-4-yl)-*N*-benzylbut-3-en-2-amine 3aa

Synthesized at room temperature for 48 h following the general procedure using 4-(buta-1,3-dien-2-yl)-1,1'-biphenyl **1a** (51.6 mg, 0.25 mmol, 1.0 equiv), benzylamine **2a** (109 μ L, 1.00 mmol, 4.0 equiv), Ni(cod)₂ (3.4 mg, 0.0125 mmol, 5 mol%), (*R*,*R*)-

BenzP* (4.2 mg, 0.015 mmol, 6 mol%), 2,2,2-trifluoroethanol (19 μ L, 0.25 mmol, 1.0 equiv) and mesitylene (0.50 mL, 0.5 M). Consumption of **1a**: >99%, conversion of **3aa**: 79%, *r.r.* = 7:1. Purification by flash chromatography over silica gel (pentane:EtOAc = 5:1) led to the desired product as a yellow solid (61.1 mg, 78% yield, 93% *ee*).

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) = 7.63 (d, ³J_{HH} = 7.4 Hz, 2H, *H*-10), 7.58 (d, ³J_{HH} = 8.2 Hz, 2H, *H*-7), 7.52 – 7.43 (m, 4H, *H*-6+*H*-11), 7.40 – 7.25 (m, 6H, *H*-12+*H*-15+*H*-16+*H*-17), 5.40 (s, 1H, *H*-4), 5.38 (s, 1H, *H*-4), 3.91 (d, ²J_{HH} = 13.1 Hz, 1H, *H*-13), 3.86 – 3.73 (m, 2H, *H*-13'+*H*-2), 1.65 (s, 1H, N*H*), 1.29 (d, ³J_{HH} = 6.6 Hz, 3H, *H*-1).

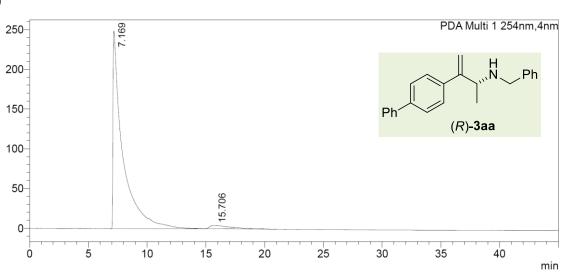
¹³C{¹H} NMR (100 MHz, CDCl₃) δ (ppm) = 151.5 (C-3), 140.9 (C-9), 140.7 (C-14), 140.3 (C-8), 140.2 (C-5), 128.9 (CH-11), 128.5 (CH-16), 128.4 (CH-15), 127.5 (CH-6), 127.4 (C-12), 127.14 (CH-10), 127.06 (CH-7+CH-17), 113.0 (CH₂-4), 56.7 (CH-2), 51.5 (CH₂-13), 21.8 (CH₃-1).


m.p. = 44.2 - 46.0 °C.

HRMS (ESI⁺): calculated [M+H]⁺ for C₂₃H₂₄N⁺: 314.1904; found: 314.1939.

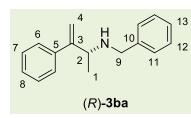
IR (neat) v (cm⁻¹): 3025, 2924, 2853, 1623, 1487, 1452, 1369, 1152, 1120, 1077, 1004, 916, 841, 771, 740, 694.

HPLC: 93% *ee*, chiral stationary column: OD-H, mobile phase: hexane/*i*PrOH = 97/3, 1.0 mL/min, 254 nm, 30 °C, t_R (major) = 7.2 min, t_R (minor) = 15.7 min. [α]²⁰_D = +7.0 (*c* 1.0, CHCl₃).



<Peak Table>

PDA Ch1 254nm					
Peak#	Ret. Time	Area%			
1	8.791	49.954			
2	14.747	50.046			
Total		100.000			


<Chromatogram>

mAU

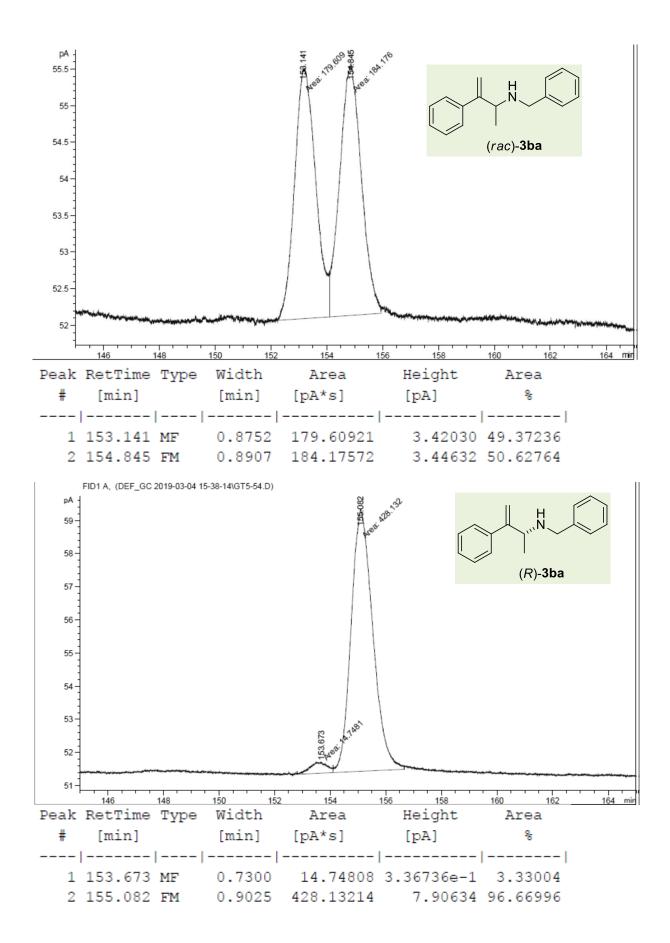
PDA Ch1 254nm					
Peak#	Ret. Time	Area%			
1	7.169	96.402			
2	15.706	3.598			
Total		100.000			

(R)-N-Benzyl-3-phenylbut-3-en-2-amine 3ba

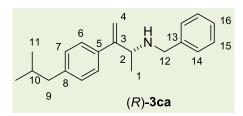
Synthesized at room temperature for 72 h following the general procedure using buta-1,3-dien-2-ylbenzene **1b** (33.0 mg, 0.25 mmol, 1.0 equiv), benzylamine **2a** (109 μ L, 1.00 mmol, 4.0 equiv), Ni(cod)₂ (3.4 mg, 0.0125 mmol, 5 mol%), (*R*,*R*)-BenzP* (4.2 mg, 0.015 mmol, 6 mol%), 2,2,2-trifluoroethanol (19 μ L,

0.25 mmol, 1.0 equiv) and mesitylene (0.50 mL, 0.5 M). Consumption of **1b**: >95%, conversion of **3ba**: 76%, *r.r.* = 13:1. Purification by flash chromatography over silica gel (pentane:EtOAc = 4:1) led to the desired product as a pale yellow oil (45.0 mg, 76% yield, 93% *ee*).

¹**H NMR** (500 MHz, CDCl₃) δ (ppm) = 7.41 – 7.36 (m, 2H, H-*Ar*), 7.35 – 7.22 (m, 8H, H-*Ar*), 5.35 – 5.29 (m, 2H, H-*4*), 3.87 (d, ²*J*_{HH} = 13.1 Hz, 1H, H-9), 3.81 – 3.72 (m, 2H, H-9 + H-2), 1.51 (s, 1H, N*H*), 1.23 (d, ³*J*_{HH} = 6.6 Hz, 3H, H-*1*).


¹³C{¹H} NMR (130 MHz, CDCl₃) δ (ppm) = 152.0 (*C*-3), 141.4 (*C*-5), 140.8 (*C*-10), 128.5 (*C*H-Ar), 128.3 (*2xC*H-Ar), 127.5 (*C*H-8), 127.2 (*C*H-12), 127.0 (*C*H-13), 112.9 (*C*H₂-4), 56.8 (*C*H-2), 51.5 (*C*H₂-9), 21.8 (*C*H₃-1).

HRMS (ESI⁺): calculated [M+H]⁺ for C₁₇H₂₀N⁺: 238.1591; found: 238.1590.


IR (neat) v (cm⁻¹): 3027, 2967, 2929, 1627, 1600, 1493, 1452, 1369, 1315, 1150, 1072, 1027, 906, 778, 734, 695.

Chiral GC: 93% *ee*, chiral stationary column: Hydrodex γ -DiMOM, mobile phase: H₂ (45 cm/s), temperature gradient: 145 °C isothermal, t_R (minor) = 153.5 min, t_R (major) = 155.1 min.

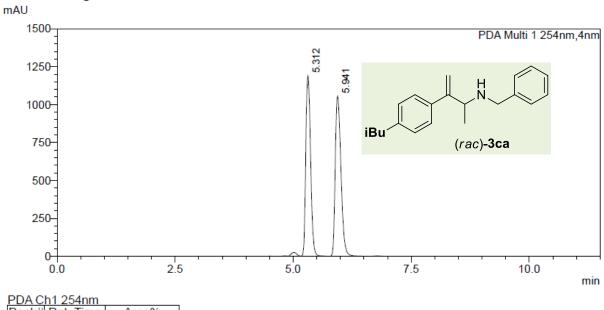
 $[\alpha]^{20}_{D} = +3.1 (c 0.47, CH_2CI_2).$

(R)-N-Benzyl-3-(4-isobutylphenyl)but-3-en-2-amine 3ca

Synthesized at room temperature for 48 h following the general procedure using 1-(buta-1,3-dien-2-yl)-4-isobutylbenzene **1c** (75.0 mg, 0.40 mmol, 1.0 equiv), benzylamine **2a** (175 μ L, 1.60 mmol, 4.0 equiv), Ni(cod)₂ (5.5 mg, 0.020 mmol, 5 mol%), (*R*,*R*)-BenzP* (6.8 mg,

0.024 mmol, 6 mol%), 2,2,2-trifluoroethanol (29 μ L, 0.40 mmol, 1.0 equiv) and mesitylene (0.80 mL, 0.5 M). Consumption of **1c**: >95%, conversion of **3ca**: 84%, *r.r.* = 8:1. Purification by flash chromatography over silica gel (pentane:EtOAc = 4:1) led to the desired product as a pale yellow oil (99.0 mg, 84% yield, 91% ee).

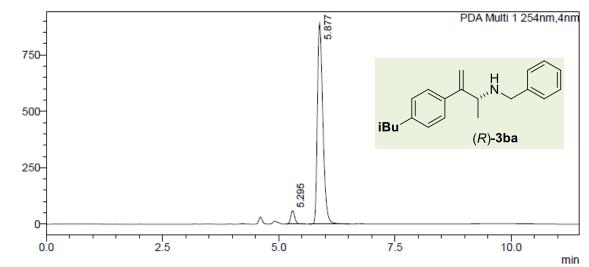
¹**H NMR** (500 MHz, CDCl₃) δ (ppm) = 7.34 – 7.27 (m, 6H, H-15 + H-14 + H-6), 7.26 – 7.22 (m, 1H, H-16), 7.10 (d, ³*J*_{HH} = 8.1 Hz, 2H, H-7), 5.33 – 5.28 (m, 2H, H-4), 3.85 (d, ²*J*_{HH} = 13.1 Hz, 1H, H-12), 3.79 – 3.71 (m, 2H, H-2 + H-12), 2.47 (d, ³*J*_{HH} = 7.2 Hz, 3H, H-9), 1.87 (hept_{app}, ³*J*_{HH} = 6.6 Hz, 1H, H-10), 1.52 (s, 1H, N-*H*), 1.24 (d, ³*J*_{HH} = 6.6 Hz, 3H, H-1), 0.92 (d, ³*J*_{HH} = 6.6 Hz, 6H, H-11)


¹³C{¹H} NMR (130 MHz, CDCl₃) δ (ppm) = 151.9 (*C*-3), 141.1 (*C*-8), 140.9 (*C*-13), 129.1 (*C*-5), 128.5 (*C*H-*Ar*), 128.4 (CH-*Ar*), 1267.0 (*C*H-16), 126.8 (*C*H-*Ar*), 112.2 (*C*H₂-4), 56.7 (*C*H-2), 51.5 (*C*H₂-12), 45.2 (*C*H₂-9), 30.4 (*C*H-10), 22.6 (*C*H₃-11), 21.8 (*C*H₃-1).

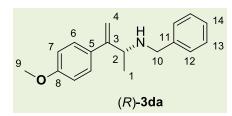
HRMS (ESI⁺): calculated [M+H]⁺ for C₂₁H₂₈N⁺: 294.2217; found: 294.2247.

IR (neat) v (cm⁻¹): 3026, 2955, 1625, 1510, 1495, 1454, 1367, 1151, 1120, 906, 847, 801, 731, 697.

HPLC: 91% *ee*, chiral stationary column: AD-H, mobile phase: hexane/*i*PrOH = 99/1, 1.0 mL/min, 254 nm, 30 °C, t_R (minor) = 5.3 min, t_R (major) = 5.9 min.


 $[\alpha]^{20}_{D} = +2.8 (c 0.74, CHCl_3).$

PDAC	<u>n 1 204nm</u>	
Peak#	Ret. Time	Area%
1	5.312	48.725
2	5.941	51.275
Total		100.000


<Chromatogram>

mAU

PDA Ch1 254nm					
Peak#	Ret. Time	Area%			
1	5.295	4.721			
2	5.877	95.279			
Total		100.000			

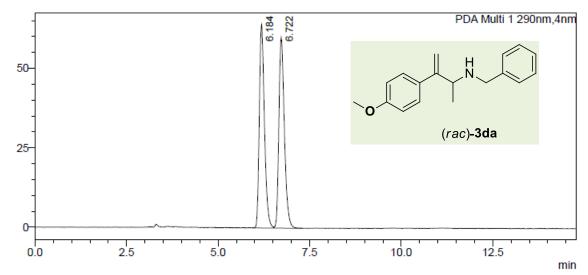
(R)-N-Benzyl-3-(4-methoxyphenyl)but-3-en-2-amine 3da

Synthesized at room temperature for 120 h following the general procedure using 1-(buta-1,3-dien-2-yl)-4-methoxybenzene 1d (40.0 mg, 0.25 mmol, 1.0 equiv), benzylamine 2a (110 μ L, 1.00 mmol, 4.0 equiv), Ni(cod)₂ (3.4 mg, 0.0125 mmol, 5 mol%), (*R*,*R*)-BenzP* (4.2 mg,

0.015 mmol, 6 mol%), 2,2,2-trifluoroethanol (19 μ L, 0.25 mmol, 1.0 equiv) and mesitylene (0.50 mL, 0.5 M). Consumption of **1d**: 91%, conversion of **3da**: 81%, *r.r.* = 12:1. Purification by flash chromatography over silica gel (pentane:EtOAc = 3:2) led to the desired product as a pale yellow oil (52.0 mg, 79% yield, 90% ee).

¹**H NMR** (500 MHz, CDCl₃) δ (ppm) = 7.37 – 7.29 (m, 6H, H-6 + H-12 + H-13), 7.26 – 7.22 (m, 1H, H-14), 6.88 – 6.83 (m, 2H, H-7), 5.26 – 5.24 (m, 2H, H-4), 3.85 (d, ²J_{HH} = 13.1 Hz, 1H, H-10), 3.82 (s, 3H, H-9), 3.76 (d, ²J_{HH} = 13.1 Hz, 1H, H-10), 3.72 (q, ³J_{HH} = 6.6 Hz, 1H, H-2), 1.53 (s, 1H, N-*H*), 1.23 (d, ³J_{HH} = 6.6 Hz, 3H, H-1).

¹³C{¹H} NMR (130 MHz, CDCl₃) δ (ppm) = 159.2 (*C*-8), 151.3 (*C*-3), 140.9 (*C*-11), 133.7 (*C*-5), 128.5 (*C*H-*Ar*), 128.3 (*C*H-*Ar*), 128.2 (*C*H-*Ar*), 127.0 (*C*H-14), 113.7 (*C*H₂-7), 111.7 (*C*H-4), 56.8 (*C*H-2), 55.4 (*C*H₃-9), 51.5 (*C*H₂-10), 21.7 (*C*H₃-1).

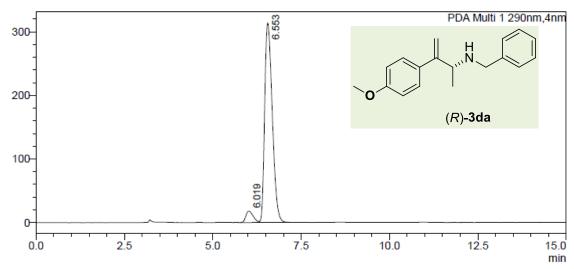

HRMS (ESI⁺): calculated [M+H]⁺ for C₁₈H₂₂NO⁺: 268.1696; found: 268.1731.

IR (neat) v (cm⁻¹): 3029, 2928, 1607, 1509, 1454, 1369, 1292, 1243, 1179, 1150, 1113, 1032, 903, 834, 733, 697.

HPLC: 90% *ee*, chiral stationary column: AD-H, mobile phase: hexane/*i*PrOH = 98/2, 1.0 mL/min, 290 nm, 30 °C, t_R (minor) = 6.0 min, t_R (major) = 6.6 min.

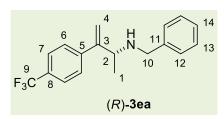
 $[\alpha]^{20}_{D} = +4.2 \ (c \ 1.0, \ CH_2Cl_2).$

mAU



<Peak Table>

PDA C	PDA Ch1 290nm					
Peak#	Ret. Time	Area%				
1	6.184	49.908				
2	6.722	50.092				
Total		100.000				


<Chromatogram>

mAU

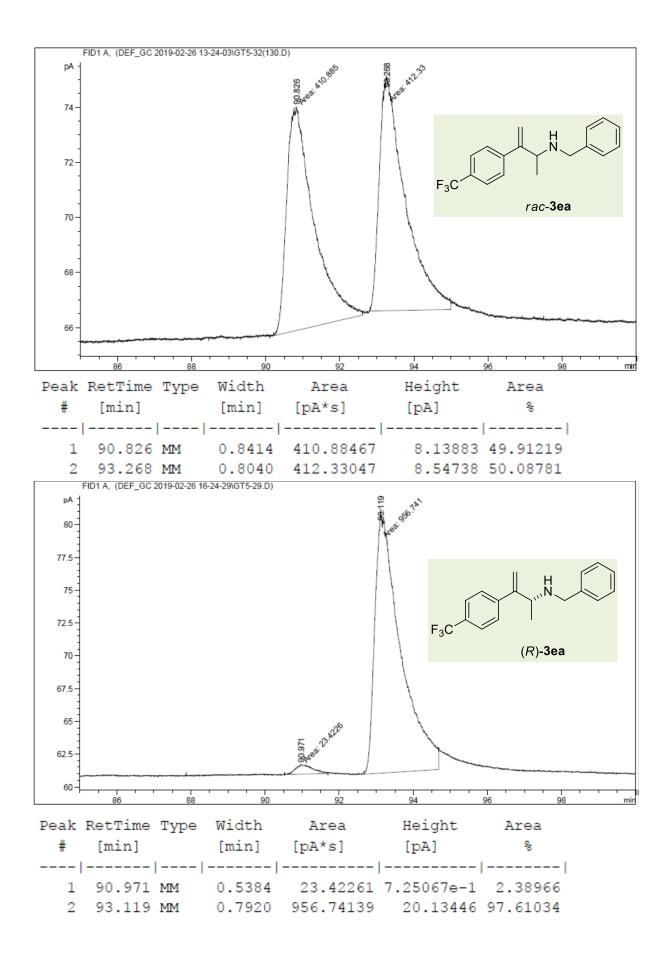
PDA Ch1 290nm					
Peak#	Ret. Time	Area%			
1	6.019	5.266			
2	6.553	94.734			
Total		100.000			

(R)-N-Benzyl-3-(4-(trifluoromethyl)phenyl)but-3-en-2-amine 3ea

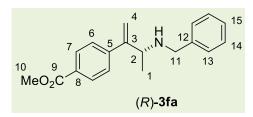
Synthesized at room temperature for 72 h following the general procedure using 1-(buta-1,3-dien-2-yl)-4-(trifluoromethyl)benzene **1e** (50.0 mg, 0.25 mmol, 1.0 equiv), benzylamine **2a** (110 μ L, 1.00 mmol, 4.0 equiv), Ni(cod)₂ (3.4 mg, 0.0125 mmol, 5 mol%), (*R*,*R*)-BenzP*

(4.2 mg, 0.015 mmol, 6 mol%), 2,2,2-trifluoroethanol (19 μ L, 0.25 mmol, 1.0 equiv) and mesitylene (0.50 mL, 0.5 M). Consumption of **1e**: >95%, conversion of **3ea**: 83%, *r.r.* = 6:1. Purification by flash chromatography over silica gel (pentane:EtOAc = 4:1) led to the desired product as a pale yellow oil (59.0 mg, 77% yield, 95% *ee*).

¹**H NMR** (500 MHz, CDCl₃) δ (ppm) = 7.57 (d, ³*J*_{HH} = 8.2 Hz, 2H, H-7), 7.51 (d, ³*J*_{HH} = 8.2 Hz, 2H, H-6), 7.35 – 7.28 (m, 4H, H-12 + H-13), 7.27 – 7.22 (m, 1H, H-14), 5.41 (t, ²*J*_{HH} = 1.1 Hz, 2H, H-4), 5.35 (d, ²*J*_{HH} = 1.1 Hz, 1H, H-4), 3.87 (d, ²*J*_{HH} = 13.2 Hz, 1H, H-10), 3.81 – 3.70 (m, 2H, H-10 + H-2), 1.44 (s, 1H, N-*H*), 1.22 (d, ³*J*_{HH} = 6.6 Hz, 3H, H-1).


¹³C{¹H} NMR (130 MHz, CDCl₃) δ (ppm) = 151.3 (*C*-3), 145.1 (*C*-5), 140.8 (*C*-11), 129.7 (²J_{CF}, q, J = 32 Hz, C-8), 128.6 (*C*H-*Ar*), 128.3 (*C*H-*Ar*), 127.7 (*C* H-6), 127.1 (*C*H-14), 125.2 (³J_{CF}, J = 4 Hz, CH-7), 124.5 (q, ¹J_{CF} = 272 Hz, C-9), 57.2 (*C*H-2), 51.6 (*C*H₂-10), 21.7 (*C*H₃-1).

¹⁹**F**{¹**H**} **NMR** (280 MHz, CDCl₃) δ (ppm) = -62.49.


HRMS (ESI⁺): calculated [M+H]⁺ for C₁₈H₁₉F₃N⁺: 306.1465; found: 306.1461.

IR (neat) v (cm⁻¹): 3030, 2970, 1616, 1495, 1453, 1404, 1372, 1322, 1163, 1118, 1065, 1015, 915, 846, 735, 698.

Chiral GC: 95% *ee*, chiral stationary column: Hydrodex β -3P, mobile phase: H₂ (45 cm/s), temperature gradient: 130 °C isothermal, t_R (minor) = 90.9 min, t_R (major) = 93.1 min. [α]²⁰_D = +6.6 (*c* 1.34, CH₂Cl₂).

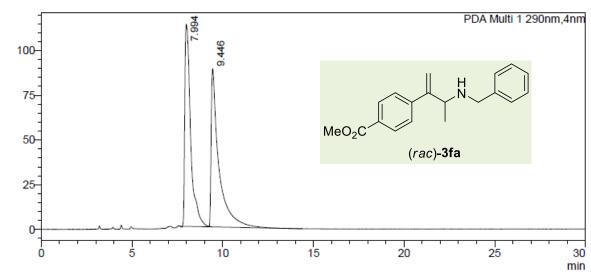
(R)-N-Benzyl-3-(3-methoxyphenyl)but-3-en-2-amine 3fa

Synthesized at room temperature for 72 h following the general procedure using methyl 4-(buta-1,3-dien-2-yl)benzoate **1f** (47.0 mg, 0.25 mmol, 1.0 equiv), benzylamine **2a** (110 μ L, 1.00 mmol, 4.0 equiv), Ni(cod)₂ (3.4 mg, 0.0125 mmol, 5 mol%), (*R*,*R*)-BenzP*

(4.2 mg, 0.015 mmol, 6 mol%), 2,2,2-trifluoroethanol (19 μ L, 0.25 mmol, 1.0 equiv) and mesitylene (0.50 mL, 0.5 M). Consumption of **1f**: >95%, conversion of **3fa**: 85%, *r.r.* = 5.4:1. Purification by flash chromatography over silica gel (pentane:EtOAc = 4:1) led to the desired product as a pale yellow oil (60.0 mg, 81% yield, 92% ee).

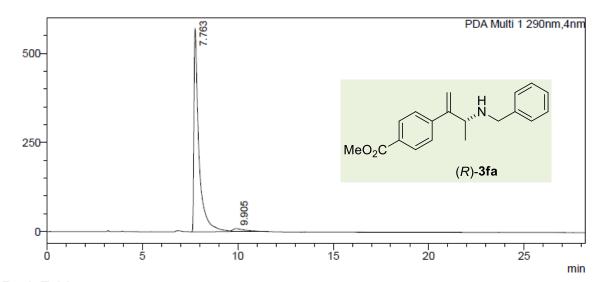
¹**H NMR** (500 MHz, CDCl₃) δ (ppm) = 8.01 – 7.95 (m, 2H, H-7), 7.46 (d, ³*J*_{HH} = 8.4 Hz, 2H, H-6), 7.36 – 7.29 (m, 4H, H-13 + H-14), 7.28 – 7.22 (m, 1H, H-15), 5.42 (s, 1H, H-4), 5.39 (s, 1H, H-4), 3.92 (s, 3H, H-10), 3.87 (d, ²*J*_{HH} = 13.1 Hz, 1H, H-11), 3.79 – 3.69 (m, 2H, H-2+H-11), 1.51 (s, 1H, N-*H*), 1.22 (d, ³*J*_{HH} = 6.6 Hz, 3H, H-1).

¹³C{¹H} NMR (130 MHz, CDCl₃) δ (ppm) = 167.1 (*C*-9), 151.2 (*C*-3), 146.0 (*C*-5), 140.6 (*C*-12), 129.7 (*C*H-7), 129.2 (*C*-8), 128.6 (*C*H-Ar), 128.3 (*C*H-Ar), 127.17 (*C*H-Ar), 127.15 (*C*H-Ar), 114.6 (*C*H₂-4), 56.7 (*C*H-2), 52.2 (*C*H₂-11), 51.4 (*C*H₃-10), 21.7 (*C*H₃-1).

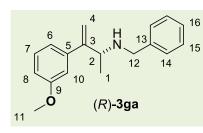

HRMS (ESI⁺): calculated [M+H]⁺ for C₁₉H₂₁NO₂⁺: 296.1645; found: 296.1646.

IR (neat) v (cm⁻¹): 3028, 2953, 1718, 1601, 1435, 1274, 1183, 1107, 1017, 967, 912, 862, 782, 697.

HPLC: 92% *ee*, chiral stationary column: OD-H, mobile phase: hexane/*i*PrOH = 95/5, 1.0 mL/min, 290 nm, 30 °C, t_R (major) = 7.8 min, t_R (minor) = 9.9 min.


 $[\alpha]^{20}_{D} = +3.5 (c \, 0.96, \, CH_2Cl_2).$

<Peak Table>


	PDA Ch1 290nm					
Peak#	Ret. Time	Area%				
1	7.994	49.271				
2	9.446	50.729				
Total		100.000				

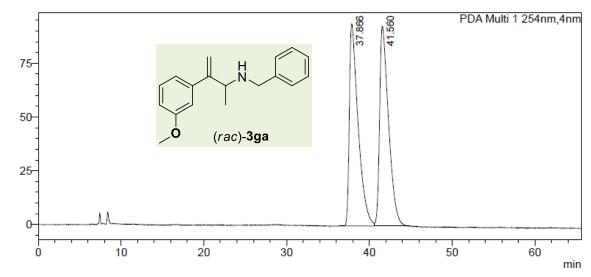
PD	А	C	h1	29	90nm	
_			1		-	

Peak#	Ret. Time	Area%
1	7.763	96.180
2	9.905	3.820
Total		100.000

(R)-N-Benzyl-3-(3-methoxyphenyl)but-3-en-2-amine 3ga

Synthesized at room temperature for 72 h following the general procedure using 1-(buta-1,3-dien-2-yl)-3-methoxybenzene **1g** (64.0 mg, 0.40 mmol, 1.0 equiv), benzylamine **2a** (175 μ L, 1.60 mmol, 4.0 equiv), Ni(cod)₂ (5.5 mg, 0.020 mmol, 5 mol%), (*R*,*R*)-BenzP* (6.8 mg, 0.024

mmol, 6 mol%), 2,2,2-trifluoroethanol (29 μ L, 0.40 mmol, 1.0 equiv) and mesitylene (0.80 mL, 0.5 M). Consumption of **1g** >95%, conversion of **3ga**: 88%, *r.r.* = 7:1. Purification by flash chromatography over silica gel (pentane:EtOAc = 3:2) led to the desired product as a pale yellow oil (88.0 mg, 82% yield, 94% *ee*).

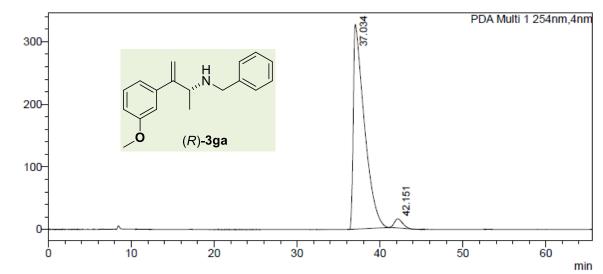

¹**H NMR** (500 MHz, CDCl₃) δ (ppm) = 7.34 – 7.30 (m, 4H, H-*14* + H-*15*), 7.26 – 7.21 (m, 2H, H-7 + H-*16*), 6.98 – 6.95 (m, 1H, H-*6*), 6.95 – 6.93 (m, 1H, H-*10*), 6.84 (ddd, ³*J*_{HH} = 8.1, ⁴*J*_{HH} = 2.5, 0.8 Hz, 1H, H-*8*), 5.32 (s, 2H, H-*4*), 3.87 (d, ²*J*_{HH} = 13.0 Hz, 1H, H-*12*), 3.80 (s, 3H, H-*11*), 3.76 (d, ²*J*_{HH} = 13.0 Hz, 1H, H-*12*), 3.72 (q, ³*J*_{HH} = 6.6 Hz, 1H, H-*2*), 1.54 (s, 1H, N-*H*), 1.23 (d, ³*J*_{HH} = 6.6 Hz, 3H, H-*1*).

¹³C{¹H} NMR (130 MHz, CDCl₃) δ (ppm) = 159.6 (*C*-9), 151.9 (*C*-3), 142.9 (*C*-5), 140.8 (*C*-13), 129.3 (*C*H-7), 128.5 (*C*H-*Ar*), 128.3 (*C*H-*Ar*), 127.0 (*C*H-16), 119.7 (*C*H₂-4), 113.04 (*C*H-*Ar*), 112.97 (*C*H-*Ar*), 112.8 (*C*H-*Ar*), 56.8 (*C*H-2), 55.4 (*C*H₃-11), 51.4 (*C*H₂-12), 21.7 (*C*H₃-1). HRMS (ESI⁺): calculated [M+H]⁺ for C₁₈H₂₂NO⁺: 268.1696; found: 268.1731.

IR (neat) v (cm⁻¹):3064, 2962, 2833, 1597, 1575, 1487, 1453, 1428, 1369, 1315, 1285, 1221, 1145, 1045, 907, 784, 730, 696.

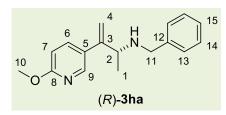
HPLC: 94% *ee*, chiral stationary column: OJ-H, mobile phase: hexane/*I*PrOH = 99.5/0.05, 0.50 mL/min, 254 nm, 30 °C, t_R (major) = 37.0 min, t_R (minor) = 42.1 min. [α]²⁰_D = +2.1 (*c* 0.84, CHCl₃).

mAU



PDA Ch1 254nm

Peak#	Ret. Time	Area%
1	37.866	49.795
2	41.560	50.205
Total		100.000


<Chromatogram>

mAU

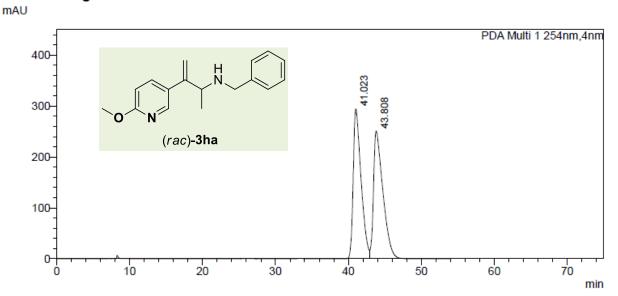
PDA C	h1 254nm	
Peak#	Ret. Time	Area%
1	37.034	96.797
2	42.151	3.203
Total		100.000

(R)-N-Benzyl-3-(6-methoxypyridin-3-yl)but-3-en-2-amine 3ha

Synthesized at room temperature for 72 h following the general procedure using 5-(buta-1,3-dien-2-yl)-2-methoxypyridine **1h** (65.0 mg, 0.40 mmol, 1.0 equiv), benzylamine **2a** (175 μ L, 1.60 mmol, 4.0 equiv), Ni(cod)₂ (5.5 mg, 0.020 mmol, 5 mol%), (*R*,*R*)-BenzP* (6.8 mg,

0.024 mmol, 6 mol%), 2,2,2-trifluoroethanol (29 μ L, 0.40 mmol, 1.0 equiv) and mesitylene (0.80 mL, 0.5 M). Consumption of **1h**: >95%, conversion of **3ha**: 80%, *r.r.* = 5:1. Purification by flash chromatography over silica gel (pentane:EtOAc = 3:2) led to the desired product as a clear colorless oil (84.0 mg, 78% yield, 95% ee).

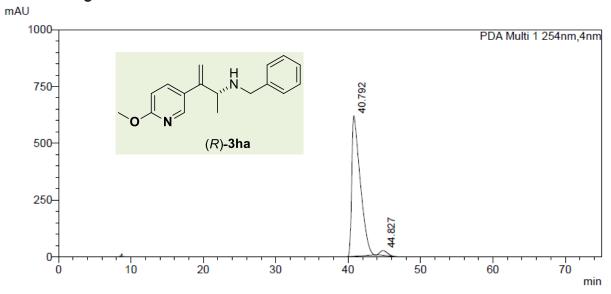
¹**H NMR** (500 MHz, CDCl₃) δ (ppm) = 8.22 (d, ⁴*J*_{HH} = 2.1 Hz, 1H, H-*9*), 7.65 (dd, ³*J*_{HH} = 8.7, ⁴*J*_{HH} = 2.5 Hz, 1H, H-6), 7.36 – 7.28 (m, 4H, H-*13* + H-*14*), 7.29 – 7.22 (m, 1H, H-*15*), 6.70 (dd, ³*J*_{HH} = 8.7, ⁵*J*_{HH} = 0.6 Hz, 1H, H-7), 5.30 (s, 1H, H-*4*), 5.26 (d, ²*J*_{HH} = 1.2 Hz, 1H, H-*4*), 3.94 (s, 3H, H-*10*), 3.86 (d, ²*J*_{HH} = 13.2 Hz, 1H, H-*11*), 3.74 (d, ²*J*_{HH} = 13.2 Hz, 1H, H-*11*), 3.67 (q, ³*J*_{HH} = 6.3 Hz, 1H, H-*2*), 1.48 (s, 1H, N-*H*), 1.21 (d, ³*J*_{HH} = 6.6 Hz, 3H, H-*1*).


¹³C{¹H} NMR (130 MHz, CDCl₃) δ (ppm) = 163.7 (*C*-8), 148.5 (*C*-3), 145.2 (*C*H-9), 140.7 (*C*-12), 137.7 (*C*H-6), 129.8 (*C*-5), 128.6 (*C*H-*Ar*), 128.3 (*C*H-*Ar*), 127.1 (*C*H-15), 113.4 (*C*H₂-4), 110.3 (*C*H-7), 57.2 (*C*H-2), 53.6 (*C*H₃-10), 51.5 (*C*H₂-11), 21.6 (*C*H₃-1).

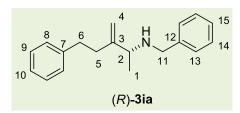
HRMS (ESI⁺): calculated [M+H]⁺ for C₁₇H₂₀N₂O⁺: 269.1649; found: 269.1689.

IR (neat) v (cm⁻¹): 3027, 2971, 624, 1599, 1490, 1455, 1366, 1282, 1248, 1126, 1024, 907, 832, 734, 697.

HPLC: 95% *ee*, chiral stationary column: OJ-H, mobile phase: hexane/*i*PrOH = 99.5/0.05, 0.50 mL/min, 254 nm, 30 °C, t_R (major) = 40.8 min, t_R (minor) = 44.8 min.


 $[\alpha]^{20}_{D} = +16.7 (c 1.01, CHCl_3).$

<Peak Table>


PDA C	h1 254nm	
Peak#	Ret. Time	Area%
1	41.023	49.349
2	43.808	50.651
Total		100.000

<Chromatogram>

		h1 254nm	
Pea	ık#	Ret. Time	Area%
	1	40.792	97.244
	2	44.827	2.756
To	otal		100.000

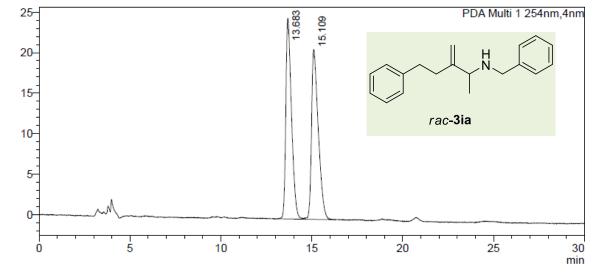
(R)-N-Benzyl-3-methylene-5-phenylpentan-2-amine 3ia

Synthesized at room temperature for 72 h following the general procedure using (3-methylenepent-4-en-1-yl)benzene **1i** (40.0 mg, 0.25 mmol, 1.0 equiv), benzylamine **2a** (110 μ L, 1.00 mmol, 4.0 equiv), Ni(cod)₂ (3.4 mg, 0.0125 mmol, 5 mol%), (*R*,*R*)-BenzP* (4.2 mg,

0.015 mmol, 6 mol%), $Ph_2P(O)OH$ (55.0 mg, 0.25 mmol, 1.0 equiv) and mesitylene (0.50 mL, 0.5 M). Consumption of **1i**: 93%, conversion of **3ia**: 48%, *r.r.* = 1.1:1. Purification by flash chromatography over silica gel (pentane:EtOAc = 4:1) led to the desired product as a pale yellow oil (30.0 mg, 45% yield, 15% *ee*).

¹**H NMR** (300 MHz, CDCl₃) δ (ppm) = 7.29 – 7.13 (m, 10H, H-*Ar*), 5.01 (s, 1H, H-*4*), 4.90 (q, ²*J*_{HH} = 1.4 Hz, 1H, H-*4*), 3.67 (d, ²*J*_{HH} = 13.1 Hz, 1H, H-*11*), 3.56 (d, ²*J*_{HH} = 13.1 Hz, 1H, H-*11*), 3.23 (q, ³*J*_{HH} = 6.6 Hz, 1H, H-*2*), 2.85 – 2.67 (m, 2H, H-*5*), 2.43 – 2.21 (m, 2H, H-*6*), 1.26 (s, 1H, N-*H*), 1.14 (d, ³*J*_{HH} = 6.6 Hz, 3H, H-*1*).

¹³C{¹H} NMR (75 MHz, CDCl₃) δ (ppm) = 151.7 (*C*-3), 142.5 (*C*-7), 141.0 (*C*-12), 128.52 (*C*H-*Ar*), 128.48 (*C*H-*Ar*), 128.46 (*C*H-*Ar*), 128.3 (*C*H-*Ar*), 126.9 (*C*H-10 or *C*H-15), 125.9 (*C*H-10 or *C*H-15), 110.0 (*C*H₂-4), 58.8 (*C*H-2), 51.6 (*C*H₂-11), 34.7 (*C*H₂-6), 33.0 (*C*H₂-5), 21.4 (*C*H₃-1).

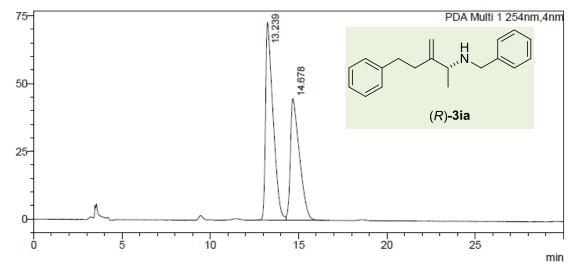

HRMS (ESI⁺): calculated [M+H]⁺ for C₁₉H₂₄N⁺: 266.1914; found: 266.1937.

IR (neat) v (cm⁻¹): 3027, 2925, 1643, 1604, 1495, 1453, 1369, 1317, 1202, 1120, 1029, 897, 738, 695.

HPLC: 15% *ee*, chiral stationary column: OJ-H, mobile phase: hexane/*i*PrOH = 99/1, 1.0 mL/min, 254 nm, 30 °C, t_R (major) = 13.2 min, t_R (minor) = 14.7 min.

 $[\alpha]^{20}_{D} = +1.8 (c \ 0.355, CH_2Cl_2).$

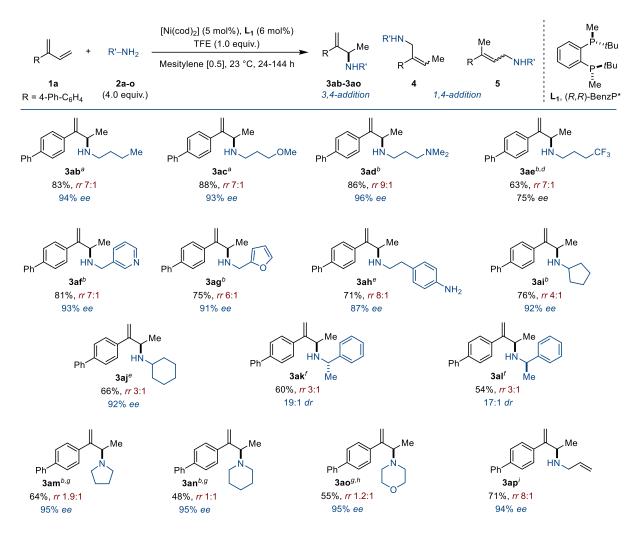
mAU



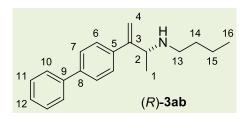
<Peak Table>

	h1 254nm	
Peak#	Ret. Time	Area%
1	13.683	49.778
2	15.109	50.222
Total		100.000

<Chromatogram>


mAU

PDA Ch1 254nm


Peak#	Ret. Time	Area%
1	13.239	57.325
2	14.678	42.675
Total		100.000

4.2 Scope in amines

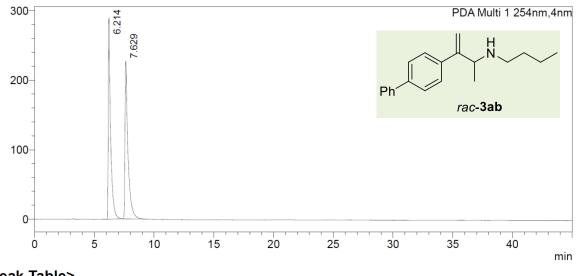
Figure S2. Scope of the Ni-catalyzed hydroamination of 2-substituted 1,3-dienes -Variation of the amine component. 0.25-0.40 mmol scale. Yields of 3,4-addition product after purification. Regioselectivity expressed as the ratio between 3,4- and 1,4-addition products as determined by ¹H NMR using an internal standard (**3**:[**4**+**5**]). Enantiomeric excess determined by GC or HPLC equipped with chiral columns. ^a 48 h. ^b 72 h. ^c 120 h. ^d 40 °C. ^e 96 h. ^f 144 h. ^g 0.2 equiv. Ph₂P(O)OH instead of TFE. ^h 24 h. ⁱ 20 h

(*R*)-3-([1,1'-Biphenyl]-4-yl)-*N*-butylbut-3-en-2-amine 3ab

Synthesized at room temperature for 48 h in 0.40 mmol scale following the general procedure using 4-(buta-1,3-dien-2-yl)-1,1'-biphenyl **1a** (82.5 mg, 0.40 mmol, 1.0 equiv), *n*-butylamine **2b** (158 μ L, 1.60 mmol, 4.0 equiv), Ni(cod)₂ (5.5 mg, 0.020 mmol, 5 mol%), (*R*,*R*)-BenzP*

(6.8 mg, 0.024 mmol, 6 mol%), 2,2,2-trifluoroethanol (30 μ L, 0.40 mmol, 1.0 equiv) and mesitylene (0.80 mL, 0.5 M). Consumption of **1a**: >99%, conversion of **3ab**: 87%, *r.r.* = 7:1. Purification by flash chromatography over silica gel (pentane:EtOAc = 3:1) led to the desired product as a colorless viscous oil (93.0 mg, 83% yield, 94% ee).

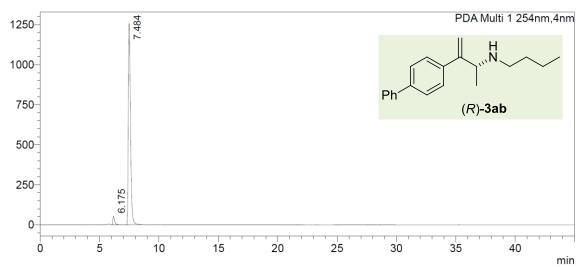
¹**H NMR** (400 MHz, CDCl₃) δ (ppm) = 7.64 – 7.54 (m, 4H, *H*-10+*H*-7), 7.51 – 7.40 (m, 4H, *H*-6+*H*-11), 7.39 – 7.30 (m, 1H, *H*-12), 5.33 (s, 1H, *H*-4), 5.29 (s, 1H, *H*-4), 3.74 (q, ³*J*_{HH} = 6.5 Hz, 1H, *H*-2), 2.77 – 2.53 (m, 2H, *H*-13), 1.54 – 1.46 (m, 2H, *H*-14), 1.41 – 1.22 (m, 3H, *H*-15+N*H*), 1.25 (d, ³*J*_{HH} = 6.5 Hz, 3H, *H*-1), 0.91 (t, ³*J*_{HH} = 7.3 Hz, 3H, *H*-16).


¹³C{¹H} NMR (100 MHz, CDCl₃) δ (ppm) = 151.9 (C-3), 140.9 (C-9), 140.4 (C-5), 140.3 (C-8), 128.9 (CH-11), 127.5 (CH-6), 127.4 (CH-12), 127.13 (CH-10), 127.05 (CH-7), 112.5 (CH₂-4), 57.5 (CH-2), 47.4 (CH₂-13), 32.6 (CH₂-14), 21.8 (CH₃-1), 20.7 (CH₂-15), 14.2 (CH₃-16). HRMS (ESI⁺): calculated [M+H]⁺ for C₂₀H₂₆N⁺: 280.2060; found: 280.2067.

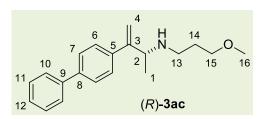
IR (neat) v (cm⁻¹): 3030, 2958, 2926, 2870, 1625, 1601, 1486, 1448, 1370, 1137, 1077, 1007, 907, 842, 769, 739, 695.

HPLC: 94% *ee*, chiral stationary column: OJ-H, mobile phase: hexane/*i*PrOH = 97/3, 1.0 mL/min, 254 nm, 30 °C, t_R (minor) = 6.2 min, t_R (major) = 7.5 min.

 $[\alpha]^{20}_{D} = -3.8 \ (c \ 0.1, \ CHCl_3).$



<Peak Table>


	h1 254nm	
Peak#	Ret. Time	Area%
1	6.214	50.099
2	7.629	49.901
Total		100.000

<Chromatogram> mAU

PDA C	PDA Ch1 254nm		
Peak#	Ret. Time	Area%	
1	6.175	3.231	
2	7.484	96.769	
Total		100.000	

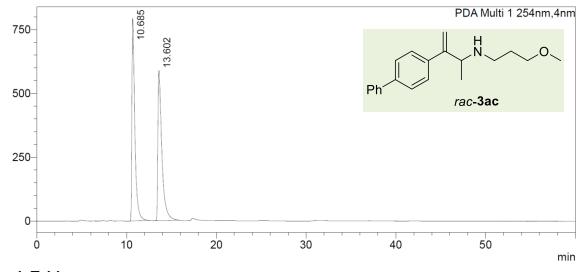
(R)-3-([1,1'-Biphenyl]-4-yl)-N-(3-methoxypropyl)but-3-en-2-amine 3ac

Synthesized at room temperature for 72 h following the general procedure using 4-(buta-1,3-dien-2-yl)-1,1'-biphenyl **1a** (51.6 mg, 0.25 mmol, 1.0 equiv), 3methoxypropylamine **2c** (102 μ L, 1.00 mmol, 4.0 equiv), Ni(cod)₂ (3.4 mg, 0.0125 mmol, 5 mol%),

(*R*,*R*)-BenzP* (4.2 mg, 0.015 mmol, 6 mol%), 2,2,2-trifluoroethanol (19 μ L, 0.25 mmol, 1.0 equiv) and mesitylene (0.50 mL, 0.5 M). Consumption of **1a**: >99%, conversion of **3ac**: 87%, *r.r.* = 7:1. Purification by flash chromatography over silica gel (CH₂Cl₂:MeOH = 20:1) led to the desired product as a yellow viscous oil (65.3 mg, 88% yield, 93% *ee*).

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) = 7.64 – 7.54 (m, 4H, *H*-7+*H*-10), 7.50 – 7.41 (m, 4H, *H*-6+*H*-11), 7.38 – 7.31 (m, 1H, *H*-12), 5.35 (d, ²*J*_{HH} = 1.0 Hz, 1H, *H*-4), 5.30 (s, 1H, *H*-4), 3.78 (q, ³*J*_{HH} = 6.5 Hz, 1H, *H*-2), 3.45 (t, ³*J*_{HH} = 6.2 Hz, 2H, *H*-15), 3.29 (s, 3H, *H*-16), 2.87 – 2.69 (m, 2H, *H*-13), 2.42 (br, 1H, N*H*), 1.81 (p, ³*J*_{HH} = 6.5 Hz, 2H, *H*-14), 1.28 (d, ³*J*_{HH} = 6.6 Hz, 3H, *H*-1).

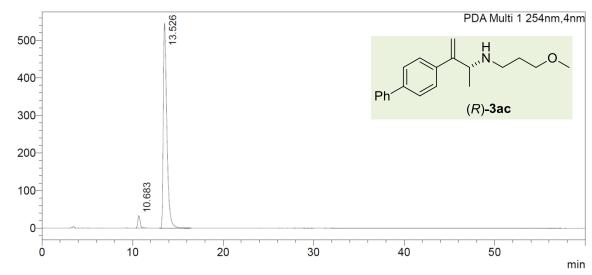
¹³C{¹H} NMR (100 MHz, CDCl₃) δ (ppm) = 151.3 (C-3), 140.9 (C-8), 140.4 (C-9), 140.2 (C-5), 128.9 (CH-11), 127.5 (CH-7), 127.4 (CH-12), 127.12 (CH-6), 127.10 (CH-10), 113.0 (CH₂-4), 71.6 (CH₂-15), 58.8 (CH₃-16), 57.5 (CH-2), 44.9 (CH₂-13), 30.1 (CH₂-14), 21.4 (CH₃-1).


HRMS (ESI⁺): calculated $[M+H]^+$ for C₂₀H₂₆NO⁺: 296.2009; found: 296.2069.

IR (neat) v (cm⁻¹): 3030, 2925, 2867, 1626, 1598, 1486, 1448, 1387, 1191, 1116, 1077, 1038, 1006, 907, 844, 771, 741, 697.

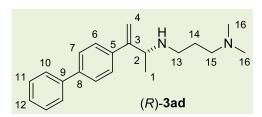
HPLC: 93% *ee*, chiral stationary column: OJ-H, mobile phase: hexane/*i*PrOH = 95/5, 1.0 mL/min, 254 nm, 30 °C, t_R (minor) = 10.7 min, t_R (major) = 13.5 min.

 $[\alpha]^{20}_{D} = +9.4 (c \ 1.0, \ CHCl_3).$



<Peak Table>

PDA C	h1 254nm	
Peak#	Ret. Time	Area%
1	10.685	49.996
2	13.602	50.004
Total		100.000


<Chromatogram>

mAU

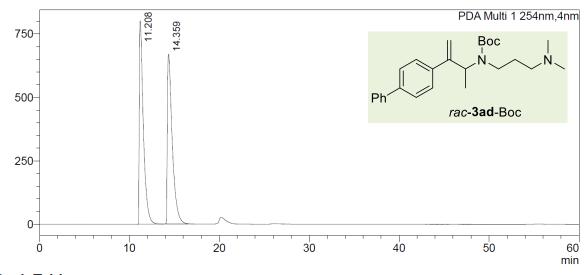
PDA C	PDA Ch1 254nm		
Peak#	Ret. Time	Area%	
1	10.683	3.654	
2	13.526	96.346	
Total		100.000	

(*R*)-*N*¹-(3-([1,1'-Biphenyl]-4-yl)but-3-en-2-yl)-*N*³,*N*³-dimethylpropane-1,3-diamine 3ad

Synthesized at room temperature for 72 h following the general procedure using 4-(buta-1,3-dien-2-yl)-1,1'-biphenyl **1a** (51.6 mg, 0.25 mmol, 1.0 equiv), 3-(dimethylamino)-1-propylamine **2d** (126 μ L, 1.00 mmol, 4.0 equiv), Ni(cod)₂ (3.4 mg, 0.0125 mmol, 5

mol%), (*R*,*R*)-BenzP* (4.2 mg, 0.015 mmol, 6 mol%), 2,2,2-trifluoroethanol (19 μ L, 0.25 mmol, 1.0 equiv) and mesitylene (0.50 mL, 0.5 M). Consumption of **1a**: >99%, conversion of **3ad**: 88%, *r.r.* = 9:1. Purification by flash chromatography over silica gel (CH₂Cl₂:MeOH = 3:1, with 1% Et₃N) led to the desired product as a yellow viscous oil (66.2 mg, 86% yield, 96% *ee*).

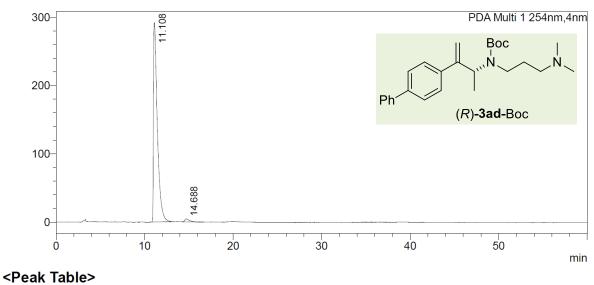
¹**H NMR** (400 MHz, CDCl₃) δ (ppm) = 7.63 – 7.54 (m, 4H, *H*-7+*H*-10), 7.50 – 7.41 (m, 4H, *H*-6+*H*-11), 7.37 – 7.31 (m, 1H, *H*-12), 5.32 (d, ²*J*_{HH} = 1.1 Hz, 1H, *H*-4), 5.27 (s, 1H, *H*-4) 3.73 (q, ³*J*_{HH} = 6.5 Hz, 1H, *H*-2), 2.78 – 2.61 (m, 2H, *H*-13), 2.38 – 2.26 (m, 2H, *H*-15), 2.21 (s, 6H, *H*-16), 1.68 (p, ³*J*_{HH} = 7.1 Hz, 2H, *H*-14), 1.26 (s, 1H, N*H*), 1.24 (d, ³*J*_{HH} = 6.6 Hz, 3H, H-1).


¹³C{¹H} NMR (100 MHz, CDCl₃) δ (ppm) = 151.7 (*C*-3), 140.9 (*C*-9), 140.34 (*C*-8), 140.30 (*C*-5), 128.9 (*C*H-11), 127.5 (*C*H-6), 127.4 (*C*H-12), 127.12 (*C*H-10), 127.05 (*C*H-7), 112.6 (*C*H₂-4), 58.3 (*C*H₂-15), 57.5 (*C*H-2), 46.1 (*C*H₂-13), 45.7 (*C*H₃-16), 28.4 (*C*H₂-14), 21.7 (*C*H₃-1). HRMS (ESI⁺): calculated [M+H]⁺ for C₂₁H₂₉N₂⁺: 309.2326; found: 296.2354.

IR (neat) v (cm⁻¹): 3345, 3029, 2941, 2764, 1629, 1589, 1486, 1462, 1379, 1265, 1150, 1081, 1040, 1006, 909, 842, 769, 740, 697.

HPLC: 96% *ee*, chiral stationary column: AD-H, mobile phase: hexane/*i*PrOH = 99/1, 1.0 mL/min, 254 nm, 30 °C, t_R (major) = 11.1 min, t_R (minor) = 14.7 min. (After protecting the secondary amine with Boc (*tert*-butyloxycarbonyl) group, the enantiomeric excess of protected product can be determined by chiral AD-H column)

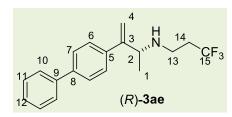
 $[\alpha]^{20}_{D} = -2.7 (c \ 0.2, \ CHCl_3).$



<Peak Table>

	h1 254nm	
Peak#	Ret. Time	Area%
1	11.208	49.900
2	14.359	50.100
Total		100.000

<Chromatogram>


mAU

PDA Ch1 254nm

PDAC	PDA Ch i 254nm		
Peak#	Ret. Time	Area%	
1	11.108	98.241	
2	14.688	1.759	
Total		100.000	

(R)-3-([1,1'-Biphenyl]-4-yl)-N-(3,3,3-trifluoropropyl)but-3-en-2-amine 3ae

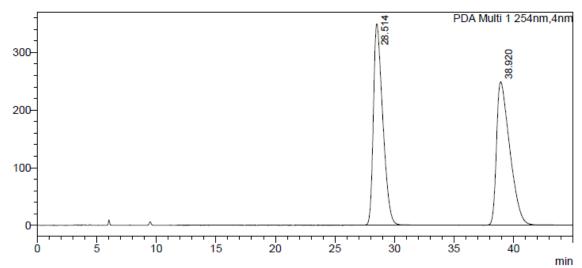
Synthesized at 40 °C for 72 h following the general procedure using 4-(buta-1,3-dien-2-yl)-1,1'-biphenyl **1a** (52.0 mg, 0.25 mmol, 1.0 equiv), 3,3,3-trifluoropropan-1-amine **2e** (113.0 mg, 1.00 mmol, 4.0 equiv), Ni(cod)₂ (3.4 mg, 0.0125 mmol, 5 mol%), (R,R)-BenzP* (4.2 mg, 0.015

mmol, 6 mol%),2,2,2-trifluoroethanol (18 μ L, 0.25 mmol, 1.0 equiv) and mesitylene (0.50 mL, 0.5 M). Consumption of **1a**: >95%, conversion of **3ae**: 65%, *r.r.* = 7:1. Purification by flash chromatography over silica gel (pentane:EtOAc = 6:1) led to the desired product as a pale yellow oil (50.0 mg, 63% yield, 75% *ee*).

¹**H NMR** (500 MHz, CDCl₃) δ (ppm) = 7.64 – 7.58 (m, 2H, H-10), 7.61 – 7.54 (m, 2H, H-7), 7.50 – 7.41 (m, 4H, H-6 + H-11), 7.35 (tt, ³J_{HH} = 6.9, ⁴J_{HH} = 1.4 Hz, 1H, H-12), 5.36 (s, 1H, H-4), 5.30 (s, 1H, H-4), 3.75 (q, ³J_{HH} = 6.5 Hz, 1H, H-2), 2.97 (dt, ²J_{HH} = 12.2, ³J_{HH} = 7.4 Hz, 1H, H-13), 2.88 (dt, ²J_{HH} = 12.2, ³J_{HH} = 6.9 Hz, 1H, H-13), 2.34 (dtd_{app}, J = 14.3, 10.7, 5.4 Hz, 2H, H-14), 1.56 (s, 1H, N-H), 1.27 (d, ³J_{HH} = 6.5 Hz, 3H, H-1).

¹³C{¹H} NMR (130 MHz, CDCl₃) δ (ppm) = 151.0 (*C*-3), 140.8 (*C*-9), 140.5 (*C*-8), 139.9 (*C*-5), 128.9 (*C*H-11), 127.48 (*C*H-12), 127.44 (*C*H-6),127.1 (*C*H-7 + *C*H-10), 126.8 (q, ¹J_{CF} = 277 Hz, *C*-15), 113.1 (*C*H₂-4), 57.5 (*C*H-2), 40.3 (q, ³J_{CF} = 2 Hz, *C*H₂-13), 34.7 (q, ²J_{CF} = 27 Hz, *C*H₂-14), 21.7 (*C*H₃-1).

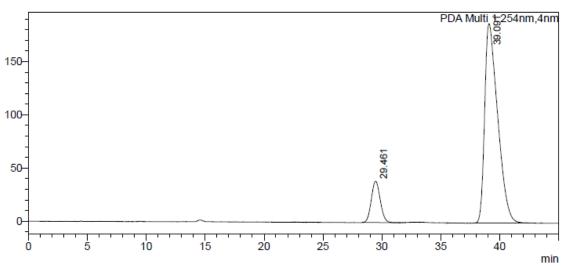
¹⁹**F**{¹**H**} **NMR** (280 MHz, Toluene- d_8) δ (ppm) = -65.00.


HRMS (ESI⁺): calculated [M+H]⁺ for C₁₉H₂₀NF₃⁺: 320.1621; found: 320.1646.

IR (neat) v (cm⁻¹): 3030, 2967, 1625, 1601, 1487, 1444, 1373, 1340, 1252, 1113, 1004, 911, 844, 770, 740, 696.

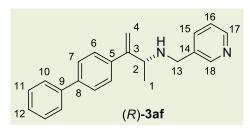
HPLC: 75% *ee*, chiral stationary column: OJ-H, mobile phase: hexane/*i*PrOH = 99/1, 1.0 mL/min, 254 nm, 30 °C, t_R (minor) = 29.5 min, t_R (major) = 39.1 min.

 $[\alpha]^{20}_{D} = -33.96 \ (c \ 0.25, \ CH_2Cl_2).$



<Peak Table>

PDA C	h1 254nm	
Peak#	Ret. Time	Area%
1	28.514	49.884
2	38.920	50.116
Total		100.000


<Chromatogram>

mAU

PDA Ch1 254nm			
Peak#	Ret. Time	Area%	
1	29.461	12.403	
2	39.091	87.597	
Total		100.000	

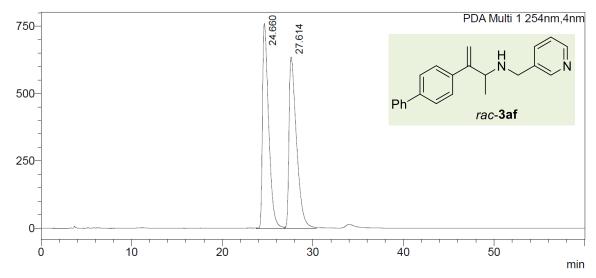
(R)-3-([1,1'-Biphenyl]-4-yl)-N-(pyridin-3-ylmethyl)but-3-en-2-amine 3af

Synthesized at room temperature for 72 h following the general procedure using 4-(buta-1,3-dien-2-yl)-1,1'-biphenyl **1a** (51.6 mg, 0.25 mmol, 1.0 equiv), 3-picolylamine **2f** (114 μ L, 1.00 mmol, 4.0 equiv), Ni(cod)₂ (3.4 mg, 0.0125 mmol, 5 mol%), (*R*,*R*)-BenzP*

(4.2 mg, 0.015 mmol, 6 mol%), 2,2,2-trifluoroethanol (19 μ L, 0.25 mmol, 1.0 equiv) and mesitylene (0.50 mL, 0.5 M). Consumption of **1a**: 94%, conversion of **3af**: 68%, *r.r.* = 7:1. Purification by flash chromatography over silica gel (CH₂Cl₂:MeOH = 20:1) led to the desired product as a white solid (64.0 mg, 81% yield, 93% ee).

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) = 8.58 (d, ⁴*J*_{HH} = 1.7 Hz, 1H, *H*-18), 8.51 (dd, ³*J*_{HH} = 4.8, ⁴*J*_{HH} = 1.6 Hz, 1H, *H*-17), 7.67 (dt, ³*J*_{HH} = 7.8, ⁴*J*_{HH} = 1.9 Hz, 1H, *H*-15), 7.64 – 7.53 (m, 4H, *H*-7+*H*-10), 7.51 – 7.41 (m, 4H, *H*-6+*H*-11), 7.39 – 7.31 (m, 1H, *H*-12), 7.25 (dd, 1H, ³*J*_{HH} = 7.6, 4.8 Hz, 1H, *H*-16), 5.39 (d, ²*J*_{HH} = 1.3 Hz, 1H, *H*-4), 5.35 (s, 1H, *H*-4), 3.90 (d, ²*J*_{HH} = 13.4 Hz, 1H, *H*-13), 3.83 – 3.73 (m, 2H, *H*-2+*H*-13), 1.50 (s, 1H, N*H*), 1.29 (d, ³*J*_{HH} = 6.6 Hz, 3H, *H*-1). ¹³C{¹H} **NMR** (100 MHz, CDCl₃) δ (ppm) = 151.3 (C-3), 149.9 (CH-18), 148.6 (CH-17), 140.8 (C-9), 140.5 (C-8), 140.0 (C-5), 136.1 (C-14), 136.0 (CH-15), 128.9 (CH-11), 127.49 (CH-6), 127.45 (*C*H-12), 127.13 (*C*H-10), 127.11 (*C*H-7), 123.5 (*C*H-16), 113.1 (*C*H₂-4), 57.0 (*C*H-2), 48.8 (*C*H₂-13), 21.8 (*C*H₃-1).

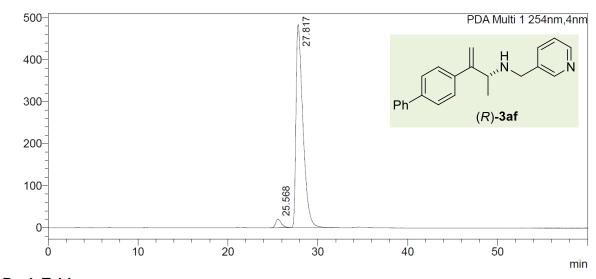
m.p. = 84.1 – 86.4 °C.


HRMS (ESI⁺): calculated [M+H]⁺ for C₂₂H₂₃N₂⁺: 315.1856; found: 315.1881.

IR (neat) v (cm⁻¹): 3291, 3034, 2964, 2927, 2825, 1621, 1579, 1486, 1446, 1423, 1374, 1158, 1128, 1085, 1005, 903, 842, 770, 740, 711, 690.

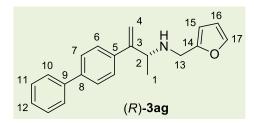
HPLC: 93% *ee*, chiral stationary column: OJ-H, mobile phase: hexane/*i*PrOH = 85/15, 1.0 mL/min, 254 nm, 30 °C, t_R (minor) = 25.6 min, t_R (major) = 27.8 min.

 $[\alpha]^{20}_{D} = +10.7 (c \ 1.0, \ CHCl_3).$



<Peak Table>

PDA Ch1 254nm			
Peak#	Ret. Time	Area%	
1	24.660	49.958	
2	27.614	50.042	
Total		100.000	


<Chromatogram>

mAU

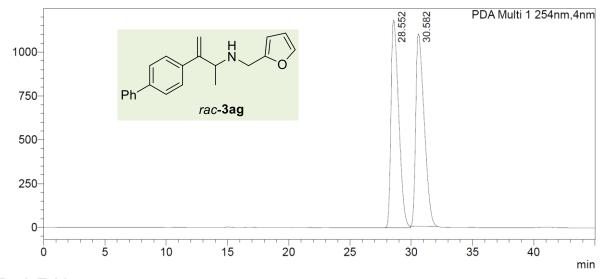
PDA Ch1 254nm				
Peak#	Ret. Time	Area%		
1	25.568	3.348		
2	27.817	96.652		
Total		100.000		

(R)-3-([1,1'-Biphenyl]-4-yl)-N-(furan-2-ylmethyl)but-3-en-2-amine 3ag

Synthesized at room temperature for 72 h following the general procedure using 4-(buta-1,3-dien-2-yl)-1,1'biphenyl **1a** (51.6 mg, 0.25 mmol, 1.0 equiv), furfurylamine **2g** (88 μ L, 1.00 mmol, 4.0 equiv), Ni(cod)₂ (3.4 mg, 0.0125 mmol, 5 mol%), (*R*,*R*)-BenzP*

(4.2 mg, 0.015 mmol, 6 mol%), 2,2,2-trifluoroethanol (19 μ L, 0.25 mmol, 1.0 equiv) and mesitylene (0.50 mL, 0.5 M). Consumption of **1a**: 97%, conversion of **3ag**: 80%, *r.r.* = 6:1. Purification by flash chromatography over silica gel (Pentane:EtOAc = 4:1) led to the desired product as a colorless viscous oil (56.7 mg, 75% yield, 91% ee).

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) = 7.65 – 7.54 (m, 4H, *H*-7+*H*-10), 7.50 – 7.41 (m, 4H, *H*-6+*H*-11), 7.41 – 7.38 (m, 1H, *H*-17), 7.38 – 7.31 (m, 1H *H*-12), 6.37 – 6.31 (m, 1H, *H*-16), 6.19 (d, ³*J*_{HH} = 3.1 Hz, 1H, *H*-15), 5.38 (s, 1H, *H*-4), 5.35 (s, 1H, *H*-4), 3.89 (d, ²*J*_{HH} = 14.4 Hz, 1H, *H*-13), 3.85 – 3.73 (m, 2H, *H*-2+*H*-13), 1.65 (s, 1H, N*H*), 1.25 (d, ³*J*_{HH} = 6.5 Hz, 3H, *H*-1). ¹³**C**{¹**H**} **NMR** (100 MHz, CDCl₃) δ (ppm) = 154.3 (C-14), 151.2 (C-3), 141.9 (CH-17), 140.9 (C-9), 140.4 (C-5), 140.2 (C-8), 128.9 (CH-11), 127.5 (CH-6), 127.4 (CH-12), 127.14 (CH-10), 127.07 (CH-7), 113.0 (CH₂-4), 110.3 (CH-16), 107.0 (CH-15), 56.2 (CH-2), 43.8 (CH₂-13), 21.7 (CH₃-1).

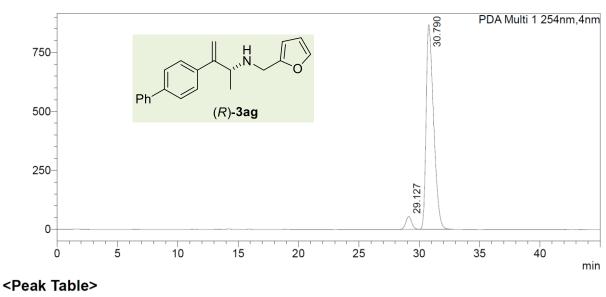

HRMS (ESI⁺): calculated [M+H]⁺ for C₂₁H₂₂NO⁺: 304.1696; found: 304.1701.

IR (neat) v (cm⁻¹): 3030, 2965, 2926, 2852, 1810, 1624, 1600, 1505, 1486, 1447, 1401, 1370, 1148, 1074, 1008, 912, 844, 770, 735, 695, 598.

HPLC: 91% *ee*, chiral stationary column: OJ-H, mobile phase: hexane/*i*PrOH = 90/10, 0.50 mL/min, 254 nm, 30 °C, t_R (minor) = 29.1 min, t_R (major) = 30.8 min.

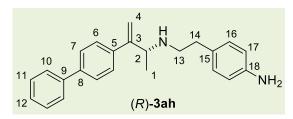
 $[\alpha]^{20}_{D} = +11.8 (c \ 1.0, \ CHCl_3).$

mAU



<Peak Table>

PDA Ch1 254nm				
Peak#	Ret. Time	Area%		
1	28.552	49.789		
2	30.582	50.211		
Total		100.000		


<Chromatogram>

mAU

PDA Ch1 254nm				
Peak#	Ret. Time	Area%		
1	29.127	4.692		
2	30.790	95.308		
Total		100.000		

(R)-4-(2-((3-([1,1'-Biphenyl]-4-yl)but-3-en-2-yl)amino)ethyl)aniline 3ah

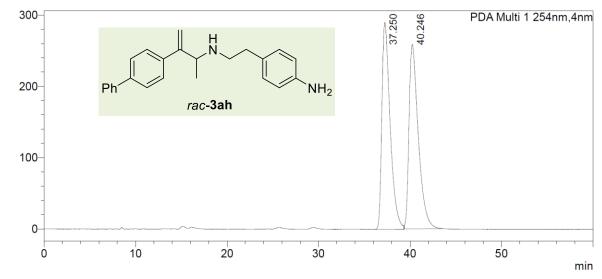
Synthesized at room temperature for 96 h following the general procedure using 4-(buta-1,3-dien-2-yl)-1,1'-biphenyl **1a** (51.6 mg, 0.25 mmol, 1.0 equiv), 4-(2-aminoethyl)aniline **2h** (136 mg, 1.00 mmol, 4.0 equiv), Ni(cod)₂ (3.4

mg, 0.0125 mmol, 5 mol%), (*R*,*R*)-BenzP* (4.2 mg, 0.015 mmol, 6 mol%), 2,2,2trifluoroethanol (19 μ L, 0.25 mmol, 1.0 equiv) and mesitylene (0.50 mL, 0.5 M). Consumption of **1a**: 99%, conversion of **3ah**: 74%, *r.r.* = 8:1. Purification by flash chromatography over silica gel (Pentane:EtOAc = 1:2, with 0.2% Et₃N) led to the desired product as a yellow solid (60.6 mg, 71% yield, 87% *ee*).

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) = 7.64 – 7.59 (m, 2H, *H*-10), 7.56 – 7.51 (m, 2H, *H*-7), 7.48 – 7.42 (m, 2H, *H*-11), 7.42 – 7.38 (m, 2H, *H*-6), 7.38 – 7.33 (m, 1H, *H*-12), 6.99 (d, ³*J*_{HH} = 8.3 Hz, 2H, *H*-16), 6.68 – 6.54 (m, 2H, *H*-17), 5.29 (d, ²*J*_{HH} = 1.3 Hz, 1H, *H*-4), 5.20 (s, 1H, *H*-4), 3.72 (q, ³*J*_{HH} = 6.5 Hz, 1H, *H*-2), 3.53 (s, 2H, N*H*₂), 2.94 – 2.81 (m, 2H, *H*-13), 2.79 – 2.64 (m, 2H, *H*-14), 1.37 (s, 1H, N*H*), 1.22 (d, ³*J*_{HH} = 6.6 Hz, 3H, *H*-1).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ (ppm) = 151.8 (C-3), 144.7 (C-18), 140.9 (C-9), 140.3 (C-5), 140.2 (C-8), 130.2 (C-15), 129.6 (CH-16), 128.9 (CH-11), 127.5 (CH-6), 127.4 (CH-12), 127.1 (CH-10), 127.0 (CH-7), 115.4 (CH-17), 112.6 (CH₂-4), 57.4 (CH-2), 49.0 (CH₂-13), 35.7 (CH₂-14), 21.6 (CH₃-1).

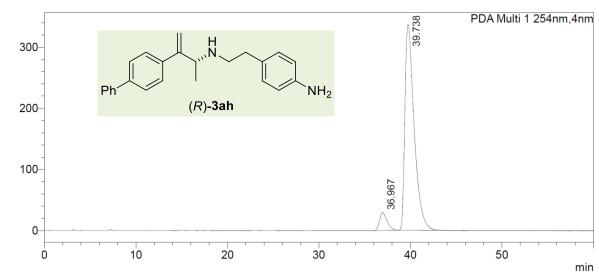
m.p. = 61.9 – 64.0 °C.


HRMS (ESI⁺): calculated [M+H]⁺ for C₂₄H₂₇N₂⁺: 343.2169; found: 343.2211.

IR (neat) v (cm⁻¹): 3452, 3358, 3204, 3028, 2966, 2924, 2845, 1620, 1515, 1486, 1445, 1369, 1272, 1179, 1149, 1122, 1086, 1007, 907, 843, 819, 770, 739, 695.

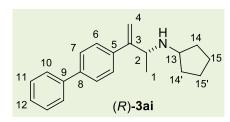
HPLC: 93% *ee*, chiral stationary column: AD-H, mobile phase: hexane/*i*PrOH = 97/3, 1.0 mL/min, 254 nm, 30 °C, t_R (minor) = 37.0 min, t_R (major) = 39.7 min.

 $[\alpha]^{20}_{D} = +0.2 \ (c \ 1.0, \ CHCl_3).$



<Peak Table>

PDA Ch1 254nm				
Peak#	Ret. Time	Area%		
1	37.250	49.936		
2	40.246	50.064		
Total		100.000		


<Chromatogram>

mAU

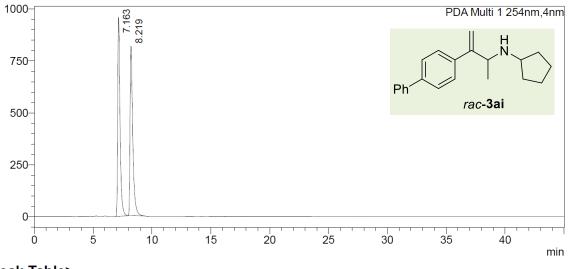
PDA Ch1 254nm				
Peak#	Ret. Time	Area%		
1	36.967	6.646		
2	39.738	93.354		
Total		100.000		

(R)-N-(3-([1,1'-Biphenyl]-4-yl)but-3-en-2-yl)cyclopentanamine 3ai

Synthesized at room temperature for 72 h following the general procedure using 4-(buta-1,3-dien-2-yl)-1,1'biphenyl **1a** (51.6 mg, 0.25 mmol, 1.0 equiv), cyclopentylamine **2i** (99 μ L, 1.00 mmol, 4.0 equiv), Ni(cod)₂ (3.4 mg, 0.0125 mmol, 5 mol%), (*R*,*R*)-BenzP*

(4.2 mg, 0.015 mmol, 6 mol%), 2,2,2-trifluoroethanol (19 μ L, 0.25 mmol, 1.0 equiv) and mesitylene (0.50 mL, 0.5 M). Consumption of **1a**: >99%, conversion of **3ai**: 75%, *r.r.* = 4:1. Purification by flash chromatography over silica gel (pentane:EtOAc = 1:1) led to the desired product as a yellow viscous oil (55.7 mg, 76% yield, 92% *ee*).

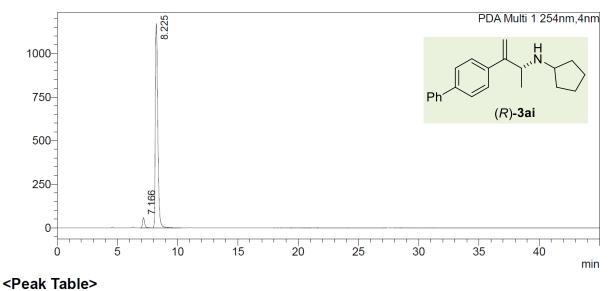
¹**H NMR** (400 MHz, CDCl₃) δ (ppm) = 7.64 – 7.54 (m, 4H, *H*-7+*H*-10), 7.50 – 7.41 (m, 4H, *H*-6+*H*-11), 7.38 – 7.31 (m, 1H, *H*-12), 5.32 (s, 1H, *H*-4), 5.30 (s, 1H, *H*-4), 3.80 (q, ³*J*_{HH} = 6.5 Hz, 1H, *H*-2), 3.23 (p, ³*J*_{HH} = 7.0 Hz, 1H, *H*-13), 1.95 – 1.83 (m, 2H, *H*-14), 1.76 – 1.64 (m, 2H, *H*-15), 1.58 – 1.47 (m, 2H, *H*-15), 1.41 – 1.25 (m, 3H, N*H*+*H*-14), 1.24 (d, ³*J*_{HH} = 6.6 Hz, 3H, *H*-1).


¹³C{¹H} NMR (100 MHz, CDCl₃) δ (ppm) = 152.1 (C-3), 140.9 (C-9), 140.4 (C-5), 140.3 (C-8), 128.9 (CH-11), 127.5 (CH-6), 127.4 (CH-12), 127.1 (CH-10), 127.0 (CH-7), 112.6 (CH₂-4), 57.2 (CH-13), 55.9 (CH-2), 33.7 (CH₂-14), 33.4 (CH₂-14), 24.2 (CH₂-15), 24.0 (CH₂-15), 22.3 (CH₃-1).

HRMS (ESI⁺): calculated [M+H]⁺ for C₂₁H₂₆N⁺: 292.2060; found: 296.2106.

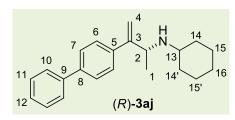
IR (neat) v (cm⁻¹): 3030, 2953, 2865, 1625, 1601, 1486, 1447, 1367, 1148, 1084, 1007, 906, 841, 769, 739, 695.

HPLC: 92% *ee*, chiral stationary column: OJ-H, mobile phase: hexane/*i*PrOH = 97/3, 1.0 mL/min, 254 nm, 30 °C, t_R (minor) = 7.2 min, t_R (major) = 8.2 min. $[\alpha]^{20}_D = +1.0$ (*c* 1.0, CHCl₃).



<Peak Table>

PDA Ch1 254nm				
Peak#	Ret. Time	Area%		
1	7.163	49.906		
2	8.219	50.094		
Total		100.000		


<Chromatogram> mAU

PDA Ch1 254nm

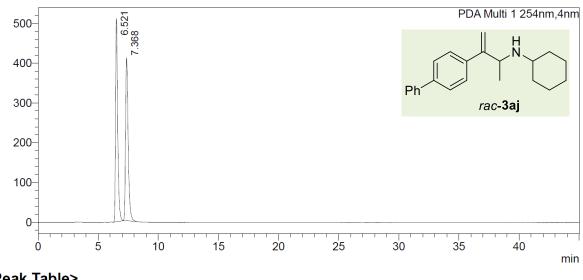
FDA GHT 234hm				
Peak#	Ret. Time	Area%		
1	7.166	3.866		
2	8.225	96.134		
Total		100.000		

(R)-N-(3-([1,1'-Biphenyl]-4-yl)but-3-en-2-yl)cyclohexanamine 3aj

Synthesized at room temperature for 96 h following the general procedure using 4-(buta-1,3-dien-2-yl)-1,1'-biphenyl **1a** (51.6 mg, 0.25 mmol, 1.0 equiv), cyclohexylamine **2j** (114 μ L, 1.00 mmol, 4.0 equiv), Ni(cod)₂ (3.4 mg, 0.0125 mmol, 5 mol%), (*R*,*R*)-BenzP*

(4.2 mg, 0.015 mmol, 6 mol%), 2,2,2-trifluoroethanol (19 μ L, 0.25 mmol, 1.0 equiv) and mesitylene (0.50 mL, 0.5 M). Consumption of **1a**: 94%, conversion of **3aj**: 68%, *r.r.* = 3:1. Purification by flash chromatography over silica gel (pentane:EtOAc = 2:1) led to the desired product as a colorless viscous oil (50.2 mg, 66% yield, 92% ee).

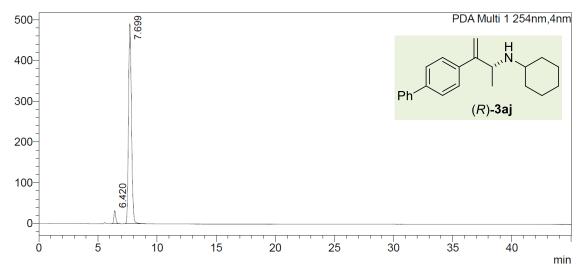
¹**H NMR** (400 MHz, CDCl₃) δ (ppm) = 7.66 – 7.54 (m, 4H, *H*-7+*H*-10), 7.50 – 7.40 (m, 4H, *H*-6+*H*-11), 7.39 – 7.30 (m, 1H, *H*-12), 5.31 (d, ²*J*_{HH} = 0.8 Hz, 1H, *H*-4), 5.26 (s, 1H, *H*-4), 3.92 (q, ³*J*_{HH} = 6.5 Hz, 1H, *H*-2), 2.65 – 2.51 (m, 1H, *H*-13), 2.05 – 1.93 (m, 1H, *H*-14), 1.89 – 1.79 (m, 1H, *H*-14), 1.78 – 1.67 (m, 2H, *H*-15+*H*-15), 1.66 – 1.56 (m, 1H, *H*-16), 1.32 – 1.04 (m, 6H, N*H*+*H*-14+*H*-14+*H*-15+*H*-15+*H*-16), 1.22 (d, ³*J*_{HH} = 6.6 Hz, 3H, *H*-1).


¹³C{¹H} NMR (100 MHz, CDCl₃) δ (ppm) = 152.2 (C-3), 140.9 (C-9), 140.4 (C-5), 140.2 (C-8), 128.9 (CH-11), 127.5 (CH-6), 127.4 (CH-12), 127.1 (CH-10), 127.0 (CH-7), 112.5 (CH₂-4), 53.81 (CH-2 or CH-13), 53.77 (CH-13 or CH-2), 34.4 (CH₂-14), 33.7 (CH₂-14), 26.3 (CH₂-16), 25.5 (CH₂-15), 25.2 (CH₂-15), 22.5 (CH₃-1).

HRMS (ESI⁺): calculated [M+H]⁺ for C₂₂H₂₈N⁺: 306.2217; found: 306.2249.

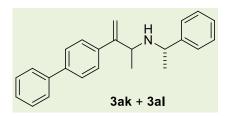
IR (neat) v (cm⁻¹): 2924, 2851, 1601, 1486, 1447, 1368, 1276, 1261, 1132, 1084, 1007, 906, 842, 765, 749, 695.

HPLC: 92% *ee*, chiral stationary column: OJ-H, mobile phase: hexane/*i*PrOH = 97/3, 1.0 mL/min, 254 nm, 30 °C, t_R (minor) = 6.4 min, t_R (major) = 7.7 min. $[\alpha]^{20}_D = -5.6$ (*c* 1.0, CHCl₃).



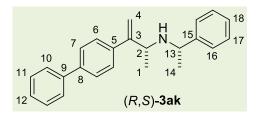
<Peak Table>

PDA Ch1 254nm				
Peak#	Ret. Time	Area%		
1	6.521	50.047		
2	7.368	49.953		
Total		100.000		


<Chromatogram> mAU

PD/	٩	Ch1	254nm
_	•		

Peak#	Ret. Time	Area%
1	6.420	3.964
2	7.699	96.036
Total		100.000


3-([1,1'-Biphenyl]-4-yl)-N-((S)-1-phenylethyl)but-3-en-2-amine 3ak+3al

Synthesized at room temperature for 24 h following the general racemic procedure using 4-(buta-1,3-dien-2-yl)-1,1'-biphenyl **1a** (20.6 mg, 0.10 mmol, 1.0 equiv), (*S*)-1-phenylethylamine **2k** (52 μ L, 1.00 mmol, 4.0 equiv), Ni(cod)₂ (1.4 mg, 0.005 mmol, 5 mol%), H,H-Cy-Phox (1.7

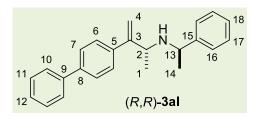
mg, 0.005 mmol, 5 mol%), 2,2,2-trifluoroethanol (7.5 µL, 0.10 mmol, 1.0 equiv) and mesitylene (0.2 mL, 0.5 M). Consumption of **1a**: >99%, conversion of **3ak+3al**: 86%, *r.r.* > 19:1, *d.r.* = 1.05:1. Purification by flash chromatography over silica gel (Pentane:EtOAc = 6:1) led to the desired product as a colorless viscous oil. *Diasteroisomeric ratio (d.r.) was calculated by integration of non isochronic signals of* ¹*H NMR of crude reaction mixture (* δ = 3.60 ppm and 3.40 ppm).

(*R*)-3-([1,1'-Biphenyl]-4-yl)-*N*-((*S*)-1-phenylethyl)but-3-en-2-amine 3ak

Synthesized at room temperature for 144 h following the general procedure using 4-(buta-1,3-dien-2-yl)-1,1'-biphenyl **1a** (51.6 mg, 0.25 mmol, 1.0 equiv), (*S*)-1-phenylethylamine **2k** (129 μ L, 1.00 mmol, 4.0 equiv), Ni(cod)₂ (3.4 mg, 0.0125 mmol, 5 mol%), (*R*,*R*)-

BenzP* (4.2 mg, 0.015 mmol, 6 mol%), 2,2,2-trifluoroethanol (19 μ L, 0.25 mmol, 1.0 equiv) and mesitylene (0.50 mL, 0.5 M). Consumption of **1a**: 94%, conversion of **3ak**: 61%, *r.r.* = 3:1, *d.r.* = 19:1. Purification by flash chromatography over silica gel (Pentane:EtOAc = 6:1) led to the desired product as a colorless viscous oil (49.4 mg, 60% yield, 19:1 *d.r.*).

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) = 7.56 – 7.49 (m, 2H, *H*-10), 7.47 – 7.41 (m, 2H, *H*-7), 7.40 – 7.33 (m, 2H, *H*-11), 7.30 – 7.16 (m, 8H, *H*-6+*H*-12+*H*-16+*H*-17+*H*-18), 5.24 (d, ²*J*_{HH} = 1.0 Hz, 1H, *H*-4), 5.21 (d, ²*J*_{HH} = 1.0 Hz, 1H, *H*-4), 3.88 (q, ³*J*_{HH} = 6.6 Hz, 1H, *H*-13), 3.60 (q, ³*J*_{HH} = 6.3 Hz, 1H, *H*-2), 1.41 (s, 1H, N*H*), 1.30 (d, ³*J*_{HH} = 6.6 Hz, 3H, *H*-14), 1.18 (d, ³*J*_{HH} = 6.5 Hz, 3H, *H*-1).


¹³C{¹H} NMR (100 MHz, CDCl₃) δ (ppm) = 152.4 (C-3), 145.8 (C-15), 140.9 (C-9), 140.29 (C-5), 140.26 (C-8), 128.9 (CH-11), 128.6 (CH-17), 127.5 (CH-6), 127.4 (CH-12), 127.1 (CH-10), 127.05 (CH-18), 126.99 (CH-7), 126.8 (CH-16), 112.5 (CH₂-4), 55.0 (CH-13), 53.5 (CH-2), 24.0 (CH₃-14), 20.7 (CH₃-1).

HRMS (ESI⁺): calculated [M+H]⁺ for C₂₄H₂₆N⁺: 328.2060; found: 328.2081.

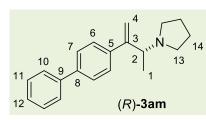
IR (neat) v (cm⁻¹): 3060, 3028, 2966, 2926, 2864, 1624, 1601, 1487, 1449, 1369, 1130, 1076, 1007, 907, 843, 766, 740, 697.

 $[\alpha]^{20}_{D} = +23.5 (c \ 1.0, \ CHCl_3).$

(R)-3-([1,1'-Biphenyl]-4-yl)-N-((R)-1-phenylethyl)but-3-en-2-amine 3al

Synthesized at room temperature for 144 h following the general procedure using 4-(buta-1,3-dien-2-yl)-1,1'-biphenyl **1a** (51.6 mg, 0.25 mmol, 1.0 equiv), (*R*)-1-phenylethylamine **2l** (129 μ L, 1.00 mmol, 4.0 equiv), Ni(cod)₂ (3.4 mg, 0.0125 mmol, 5 mol%), (*R*,*R*)-

BenzP* (4.2 mg, 0.015 mmol, 6 mol%), 2,2,2-trifluoroethanol (19 μ L, 0.25 mmol, 1.0 equiv) and mesitylene (0.50 mL, 0.5 M). Consumption of **1a**: 84%, conversion of **3a**I: 56%, *r.r.* = 3:1, *d.r.* = 17:1. Purification by flash chromatography over silica gel (Pentane:EtOAc = 8:1) led to the desired product as a colorless viscous oil (44.2 mg, 54% yield, 17:1 *d.r.*).


¹**H NMR** (400 MHz, CDCl₃) δ (ppm) = 7.57 – 7.49 (m, 2H, *H*-10), 7.48 – 7.41 (m, 2H, *H*-7), 7.40 – 7.33 (m, 2H, *H*-11), 7.31 – 7.15 (m, 8H, *H*-6+*H*-12+*H*-16+*H*-17+*H*-18), 5.24 (d, ²J_{HH} = 0.8 Hz, 1H, *H*-4), 5.13 (s, 1H, *H*-4), 3.86 (q, ³J_{HH} = 6.6 Hz, 1H, *H*-13), 3.40 (q, ³J_{HH} = 6.6 Hz, 1H, *H*-2), 1.44 (s, 1H, N*H*), 1.28 (d, ³J_{HH} = 6.7 Hz, 3H, *H*-14), 1.04 (d, ³J_{HH} = 6.6 Hz, 3H, *H*-1). ¹³C{¹H} **NMR** (100 MHz, CDCl₃) δ (ppm) = 151.8 (C-3), 146.2 (C-15), 140.9 (C-9), 140.5 (C-5), 140.2 (C-8), 128.9 (CH-11), 128.6 (CH-17), 127.6 (CH-6), 127.4 (CH-12), 127.1 (CH-10), 127.05 (CH-18), 126.98 (CH-7), 126.9 (CH-16), 112.5 (CH₂-4), 55.2 (CH-13), 55.0 (CH-2), 25.1 (CH₃-14), 22.9 (CH₃-1).

HRMS (ESI⁺): calculated [M+H]⁺ for C₂₄H₂₆N⁺: 328.2060; found: 328.2081.

IR (neat) v (cm⁻¹): 3060, 3028, 2962, 2924, 2864, 1625, 1601, 1487, 1448, 1369, 1133, 1079, 1007, 908, 842, 764, 740, 697.

 $[\alpha]^{20}_{D} = +28.8 (c \ 1.0, \ CHCl_3).$

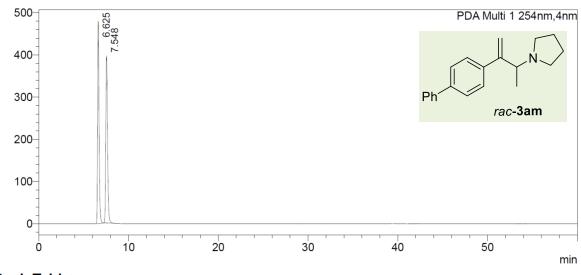
(R)-1-(3-([1,1'-Biphenyl]-4-yl)but-3-en-2-yl)pyrrolidine 3am

Synthesized at room temperature for 72 h using diphenylphosphinic acid as additive following the general procedure using 4-(buta-1,3-dien-2-yl)-1,1'-biphenyl **1a** (51.6 mg, 0.25 mmol, 1.0 equiv), pyrrolidine **2m** (84 μ L, 1.00 mmol, 4.0 equiv), Ni(cod)₂ (3.4 mg, 0.0125 mmol, 5 mol%),

(*R*,*R*)-BenzP* (4.2 mg, 0.015 mmol, 6 mol%), diphenylphosphinic acid (10.9 mg, 0.05 mmol, 0.20 equiv) and mesitylene (0.50 mL, 0.5 M). Consumption of **1a**: >99%, conversion of **3am**: 67%, *r.r.* = 1.9:1. Purification by flash chromatography over silica gel (Pentane:EtOAc = 2:1) led to the desired product as a colorless oil (44.5 mg, 64% yield, 95% ee).

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) = 7.67 – 7.59 (m, 4H, *H*-6+*H*-10), 7.58 – 7.53 (m, 2H, *H*-7), 7.48 – 7.39 (m, 2H, *H*-11), 7.34 (t, ³J_{HH} = 7.3 Hz, 1H, *H*-12), 5.34 (s, 2H, *H*-4), 3.19 (q, ³J_{HH} = 6.5 Hz, 1H, *H*-2), 2.70 – 2.54 (m, 4H, *H*-13), 1.86 – 1.75 (m, 4H, *H*-14), 1.27 (d, ³J_{HH} = 6.5 Hz, 3H, *H*-1).

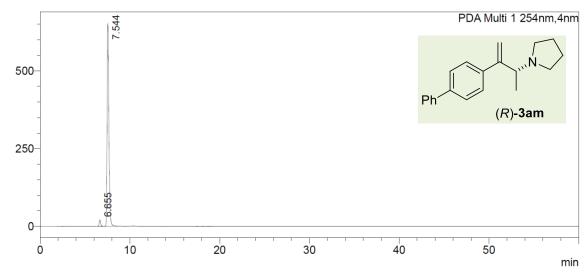
¹³C{¹H} NMR (100 MHz, CDCl₃) δ (ppm) = 151.8 (C-3), 141.1 (C-9), 140.4 (C-5), 140.2 (C-8), 128.9 (CH-11), 127.7 (CH-6), 127.3 (CH-12), 127.1 (CH-10), 126.9 (CH-7), 114.2 (CH₂-4), 65.9 (CH-2), 52.8 (CH₂-13), 23.7 (CH₂-14), 21.0 (CH₃-1).


HRMS (ESI⁺): calculated [M+H]⁺ for C₂₀H₂₄N⁺: 278.1904; found: 278.2004.

IR (neat) v (cm⁻¹): 3029, 2967, 2927, 2873, 2782, 1678, 1624, 1601, 1486, 1449, 1370, 1314, 1196, 1142, 1076, 1007, 906, 843, 770, 741, 695.

HPLC: 95% *ee*, chiral stationary column: OJ-H, mobile phase: hexane/*i*PrOH = 98/2, 1.0 mL/min, 254 nm, 30 °C, t_R (minor) = 6.7 min, t_R (major) = 7.5 min.

 $[\alpha]^{20}_{D} = +49.7 (c \ 1.0, \ CHCl_3).$



<Peak Table>

PDA C	PDA Ch1 254nm				
Peak#	Ret. Time	Area%			
1	6.625	49.956			
2	7.548	50.044			
Total		100.000			

<Chromatogram> mAU

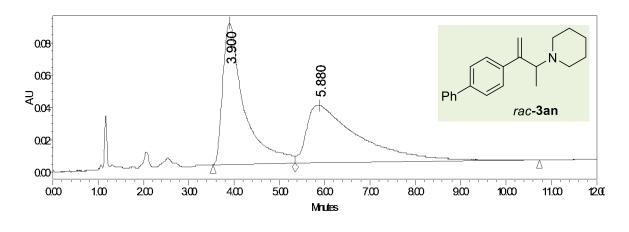
PDA Ch1 254nm				
Peak#	Ret. Time	Area%		
1	6.655	2.543		
2	7.544	97.457		
Total		100.000		

(R)-1-(3-([1,1'-Biphenyl]-4-yl)but-3-en-2-yl)piperidine 3an

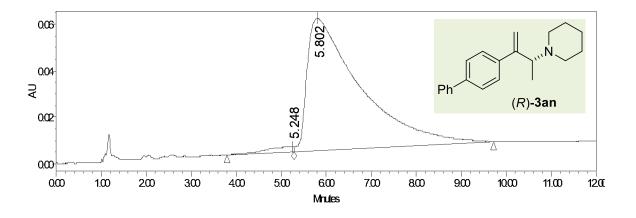
Synthesized at room temperature for 72 h using diphenylphosphinic acid as additive following the general procedure using 4-(buta-1,3-dien-2-yl)-1,1'-biphenyl **1a** (51.6 mg, 0.25 mmol, 1.0 equiv), piperidine **2n** (99 μ L, 1.00 mmol, 4.0 equiv), Ni(cod)₂ (3.4 mg, 0.0125 mmol, 5 mol%),

(*R*,*R*)-BenzP* (4.2 mg, 0.015 mmol, 6 mol%), diphenylphosphinic acid (10.9 mg, 0.05 mmol, 0.2 equiv) and mesitylene (0.50 mL, 0.5 M). Consumption of **1a**: >99%, conversion of **3an**: 50%, *r.r.* = 1.0:1. Purification by flash chromatography over silica gel (Pentane:EtOAc = 6:1) led to the desired product as a colorless viscous oil (34.9 mg, 48% yield, >95% ee).

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) = 7.68 – 7.58 (m, 4H, *H*-6+*H*-10), 7.58 – 7.51 (m, 2H, *H*-7), 7.48 – 7.40 (m, 2H, *H*-11), 7.34 (t, ³*J*_{HH} = 7.3 Hz, 1H, *H*-12), 5.39 (s, 1H, *H*-4), 5.25 (s, 1H, *H*-4), 3.39 (q, ³*J*_{HH} = 6.6 Hz, 1H, *H*-2), 2.66 – 2.35 (m, 4H, *H*-13), 1.62 – 1.49 (m, 4H, *H*-14), 1.48 – 1.39 (m, 2H, *H*-15), 1.21 (d, ³*J*_{HH} = 6.6 Hz, 3H, *H*-1).

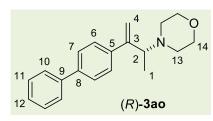

¹³C{¹H} NMR (100 MHz, CDCl₃) δ (ppm) = 150.8 (C-3), 141.1 (C-5+C-9), 140.0 (C-8), 128.9 (CH-11), 127.7 (CH-6), 127.3 (CH-12), 127.1 (CH-10), 126.8 (CH-7), 114.0 (CH₂-4), 64.6 (CH-2), 51.3 (CH₂-13), 26.6 (CH₂-14), 25.0 (CH₂-15), 16.4 (CH₃-1).

HRMS (ESI⁺): calculated [M+H]⁺ for C₂₁H₂₆N⁺: 292.2060; found: 292.2176.


IR (neat) v (cm⁻¹): 3032, 2929, 2852, 2795, 2751, 1622, 1601, 1486, 1445, 1373, 1321, 1153, 1116, 1036, 1007, 947, 905, 842, 768, 739, 695.

SFC: >95% *ee*, chiral stationary phase: AD column, gradient elution from 30% to 40% MeOH (12 min), 3 ml/min, 210 nm, t_R (minor) = 5.2 min, t_R (major) = 5.8 min.

 $[\alpha]^{20}_{D} = +38.6 \ (c \ 1.0, \ CHCl_3).$



	Retention Time	Area	% Area
1	3.900	2873903	49.78
2	5.880	2899812	50.22

	Retention Time	Area	% Area
1	5.248	84592	1.79
2	5.802	4644243	98.21

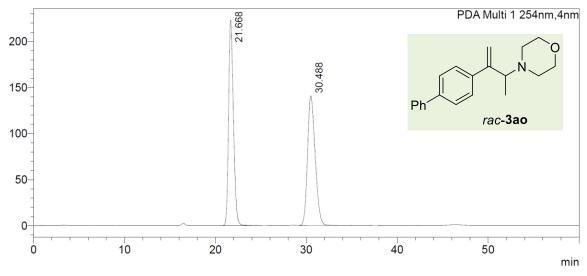
(R)-4-(3-([1,1'-Biphenyl]-4-yl)but-3-en-2-yl)morpholine 3ao

Synthesized at room temperature for 24 h using diphenylphosphinic acid as additive following the general procedure using 4-(buta-1,3-dien-2-yl)-1,1'-biphenyl **1a** (51.6 mg, 0.25 mmol, 1.0 equiv), morpholine **2o** (88 μ L, 1.00 mmol, 4.0 equiv), Ni(cod)₂ (3.4 mg, 0.0125 mmol, 5

mol%), (*R*,*R*)-BenzP* (4.2 mg, 0.015 mmol, 6 mol%), diphenylphosphinic acid (10.9 mg, 0.05 mmol, 0.2 equiv) and mesitylene (0.50 mL, 0.5 M). Consumption of **1a**: >99%, conversion of **3ao**: 56%, *r.r.* = 1.2:1. Purification by flash chromatography over silica gel (Pentane:EtOAc = 6:1) led to the desired product as a colorless viscous oil (40.2 mg, 55% yield, 95% *ee*).

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) = 7.70 – 7.62 (m, 4H, *H*-6+*H*-10), 7.62 – 7.56 (m, 2H, *H*-7), 7.51 – 7.43 (m, 2H, *H*-11), 7.41 – 7.34 (m, 1H, *H*-12), 5.45 (d, ²*J*_{HH} = 1.2 Hz, 1H, *H*-4), 5.31 (s, 1H, *H*-4), 3.82 – 3.68 (m, 4H, *H*-14), 3.36 (q, ³*J*_{HH} = 6.5 Hz, 1H, *H*-2), 2.68 – 2.51 (m, 4H, *H*-13), 1.25 (d, ³*J*_{HH} = 6.6 Hz, 3H, *H*-1).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ (ppm) = 149.9 (*C*-3), 141.0 (*C*-9), 140.3 (*C*-5+*C*-8), 128.9 (*C*H-11), 127.6 (*C*H-6), 127.4 (*C*H-12), 127.1 (*C*H-10), 126.9 (*C*H-7), 114.9 (*C*H₂-4), 67.5 (*C*H₂-14), 65.1 (*C*H-2), 51.0 (*C*H₂-13), 16.8 (*C*H₃-1).

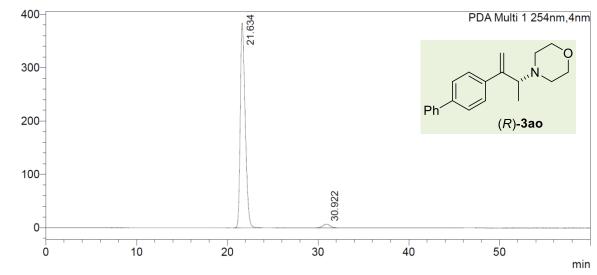

HRMS (ESI⁺): calculated [M+H]⁺ for C₂₀H₂₄NO⁺: 294.1853; found: 294.1896.

IR (neat) v (cm⁻¹): 3030, 2958, 2851, 2805, 1623, 1600, 1487, 1449, 1373, 1320, 1142, 1117, 1071, 1008, 955, 911, 845, 771, 741, 697.

HPLC: 95% *ee*, chiral stationary column: OJ-H, mobile phase: hexane/*i*PrOH = 95/5, 1.0 mL/min, 254 nm, 30 °C, t_R (minor) = 21.6 min, t_R (major) = 30.9 min.

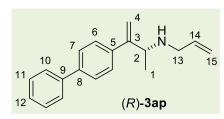
 $[\alpha]^{20}_{D} = +52.4 \ (c \ 1.0, \ CHCl_3).$

mAU



<Peak Table>

PDA Ch1 254nm				
Peak#	Ret. Time	Area%		
1	21.668	49.916		
2	30.488	50.084		
Total		100.000		


<Chromatogram>

mAU

PDA Ch1 254nm				
Peak#	Ret. Time	Area%		
1	21.634	97.329		
2	30.922	2.671		
Total		100.000		

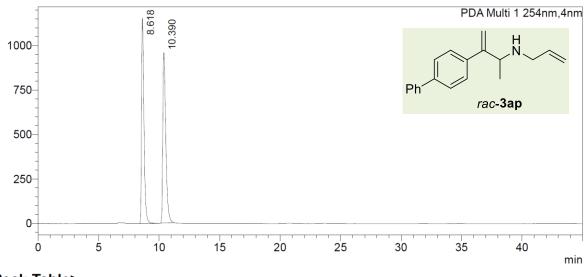
(R)-3-([1,1'-Biphenyl]-4-yl)-N-allylbut-3-en-2-amine 3ap

Synthesized at room temperature for 24 h following the general procedure using 4-(buta-1,3-dien-2-yl)-1,1'biphenyl **1a** (51.6 mg, 0.25 mmol, 1.0 equiv), allylamine **2p** (75 μ L, 1.00 mmol, 4.0 equiv), Ni(cod)₂ (3.4 mg, 0.0125 mmol, 5 mol%), (*R*,*R*)-BenzP* (4.2 mg, 0.015 mmol, 6

mol%), 2,2,2-trifluoroethanol (19 μ L, 0.25 mmol, 1.0 equiv) and mesitylene (0.50 mL, 0.5 M). Consumption of **1a**: 99%, conversion of **3ap**: 71%, *r.r.* = 8:1. Purification by flash chromatography over silica gel (Pentane:EtOAc = 1:1) led to the desired product as a colorless viscous oil (46.1 mg, 70% yield, 94% *ee*).

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) = 7.65 – 7.55 (m, 4H, *H*-7+*H*-10), 7.51 – 7.41 (m, 4H, *H*-6+*H*-11), 7.39 – 7.31 (m, 1H, *H*-12), 6.03 – 5.88 (m, 1H, *H*-14), 5.34 (d, ²*J*_{HH} = 1.1 Hz, 1H, *H*-4), 5.29 (s, 1H, *H*-4), 5.21 (dd, ³*J*_{HH} = 17.2, ²*J*_{HH} = 1.6 Hz, 1H, *H*-15), 5.11 (dd, ³*J*_{HH} = 10.4, ²*J*_{HH} = 1.2 Hz, 1H, *H*-15), 3.78 (q, ³*J*_{HH} = 6.5 Hz, 1H, *H*-2), 3.36 (dd, ²*J*_{HH} = 14.0, ³*J*_{HH} = 5.8 Hz, 1H, *H*-13), 3.28 (dd, ²*J*_{HH} = 14.0, ³*J*_{HH} = 6.2 Hz, 1H, *H*-13), 1.36 (s, 1H, N*H*), 1.25 (d, ³*J*_{HH} = 6.6 Hz, 3H, *H*-1).

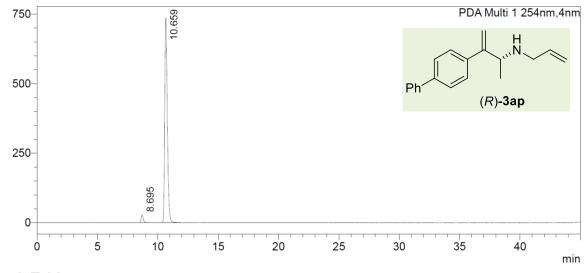
¹³C{¹H} NMR (100 MHz, CDCl₃) δ (ppm) = 151.7 (*C*-3), 140.9 (*C*-9), 140.3 (*C*-5+*C*-8), 137.3 (*C*H-14), 128.9 (*C*H-11), 127.5 (*C*H-6), 127.4 (*C*H-12), 127.13 (*C*H-10), 127.07 (*C*H-7), 115.9 (*C*H₂-15), 112.7 (*C*H₂-4), 56.7 (*C*H-2), 50.1 (*C*H₂-13), 21.8 (*C*H₃-1).


HRMS (ESI⁺): calculated [M+H]⁺ for C₁₉H₂₂N⁺: 264.1747; found: 264.1752.

IR (neat) v (cm⁻¹): 3077, 3030, 2970, 2925, 2868, 1642, 1601, 1486, 1447, 1370, 1120, 1078, 1006, 995, 910, 843, 769, 739, 695.

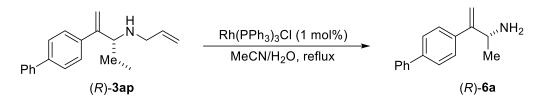
HPLC: 94% *ee*, chiral stationary column: OJ-H, mobile phase: hexane/*i*PrOH = 97/3, 1.0 mL/min, 254 nm, 30 °C, t_R (minor) = 8.7 min, t_R (major) = 10.7 min.

 $[\alpha]^{20}_{D} = -12.6 \ (c \ 1.0, \ CHCl_3).$

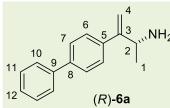


<Peak Table>

PDA Ch1 254nm				
Peak#	Ret. Time	Area%		
1	8.618	49.708		
2	10.390	50.292		
Total		100.000		


<Chromatogram>

mAU



PDA Ch1 254nm				
Peak#	Ret. Time	Area%		
1	8.695	3.033		
2	10.659	96.967		
Total		100.000		

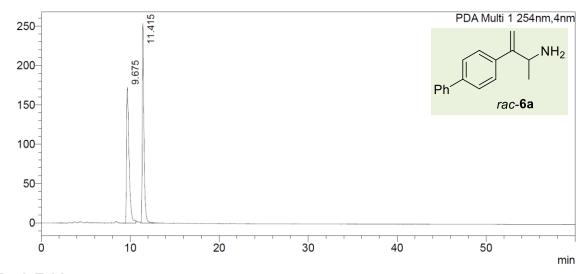
5. Rh-catalyzed deallylation of 3ap

Modification of a reported method,² Rh(PPh₃)₃Cl (1.8 mg, 0.002 mmol, 1% mol) was added to a solution of (*R*)-**3ap** (52.7 mg, 0.20 mmol, 94% ee, 1.0 equiv) in MeCN/H₂O (degassed solvent, 2.0 mL, V/V = 85/15) under nitrogen atmosphere, and the mixture was heated at reflux (90 °C) for 7 h. The reaction mixture was cooled to room temperature, filtered over a short pad of silica gel (EtOAc and CH₂Cl₂ washing, with 5% MeOH) and concentrated *in vacuo* to afford the crude mixture. Consumption of **3ap**: 97%, conversion of **6a**: 81%. Then the residue was purified by silica gel column chromatography (CH₂Cl₂:MeOH = 10:1) afforded **6a** (36.3 mg, 81% yield, 94% ee) as a light yellow solid.

¹**H NMR** (400 MHz, Methanol- d_4) δ (ppm) = 7.64 - 7.58 (m, 4H, H-7+H-10), 7.48 - 7.40 (m, 4H, H-6+H-11), 7.35 - 7.30 (m, 1H, H-12), 5.34 (s, 1H, H-4), 5.31 (s, 1H, H-4), 4.13 (q, J = 6.7 Hz, 1H, H-2), 1.27 (d, J = 6.6 Hz, 3H, H-1).

¹³C{¹H} NMR (100 MHz, Methanol- d_4) δ (ppm) = 151.8 (C-3), 141.9 (C-8), 141.8 (C-9), 140.8 (C-5), 129.9 (CH-11), 128.5 (CH-12), 128.2 (CH-6), 128.1 (CH-7), 127.9 (CH-10), 111.6 (CH₂-4), 50.6 (CH-2), 22.3 (CH₃-1).

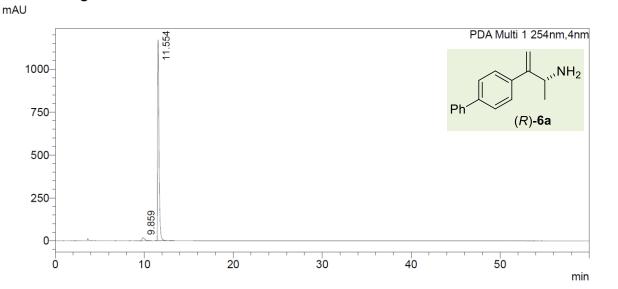
m.p. = 206.0 – 208.5 °C.


HRMS (ESI⁺): calculated [M+H]⁺ for C₁₆H₁₈NO⁺: 224.1434; found: 224.1442.

IR (neat) v (cm⁻¹): 3034, 2975, 2867, 2806, 2709, 2644, 2497, 1620, 1540, 1513, 1487, 1449, 1377, 1261, 1207, 1145, 1116, 1077, 1004, 909, 840, 769, 737, 694.

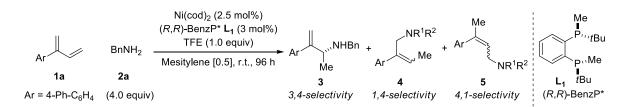
HPLC: 94% *ee*, chiral stationary column: AD-H, mobile phase: hexane/*i*PrOH = 95/5, 1.0 mL/min, 254 nm, 30 °C, t_R (minor) = 9.9 min, t_R (major) = 11.6 min.

 $[\alpha]^{20}_{D} = -60.6 \ (c \ 0.05, \ MeOH).$

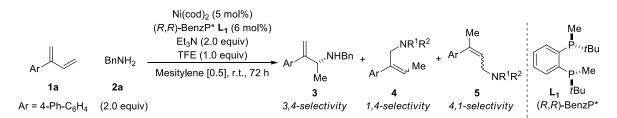


<Peak Table>

PDA Ch1 254nm				
Peak#	Ret. Time	Area%		
1	9.675	50.048		
2	11.415	49.952		
Total		100.000		


<Chromatogram>

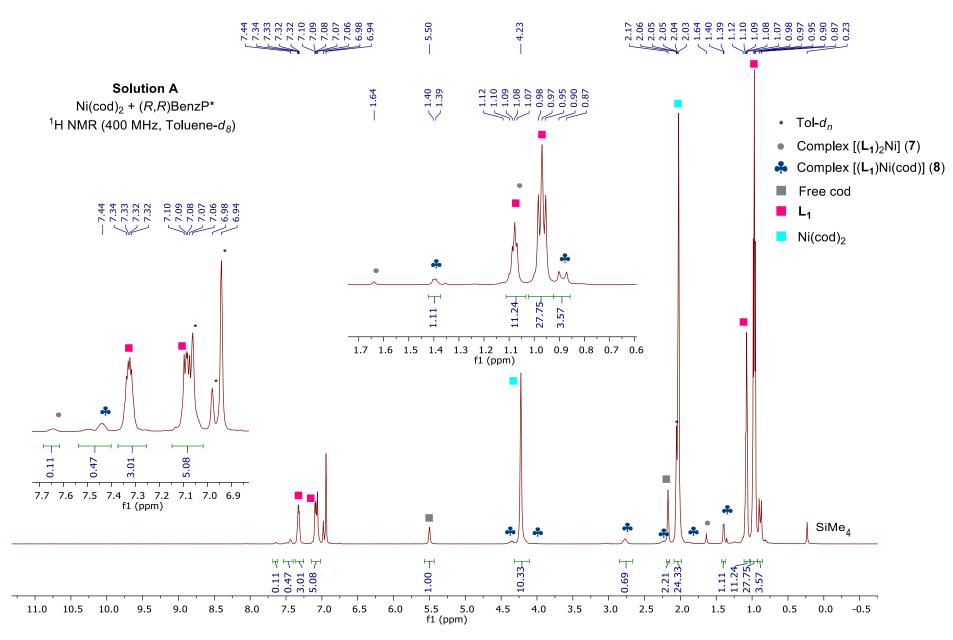
PDA Ch1 254nm				
Peak#	Ret. Time	Area%		
1	9.859	3.052		
2	11.554	96.948		
Total		100.000		

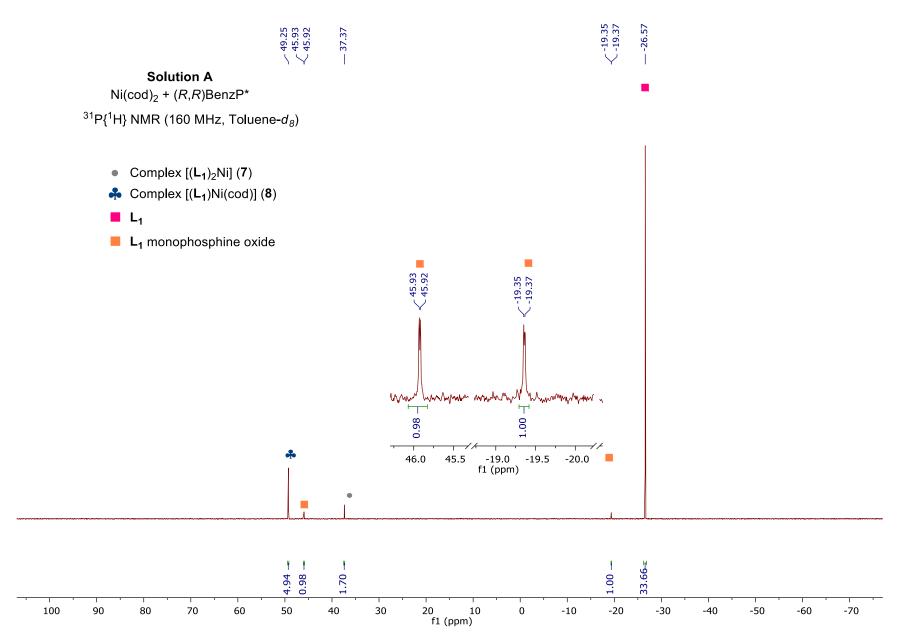

6. Improved sets of reaction conditions

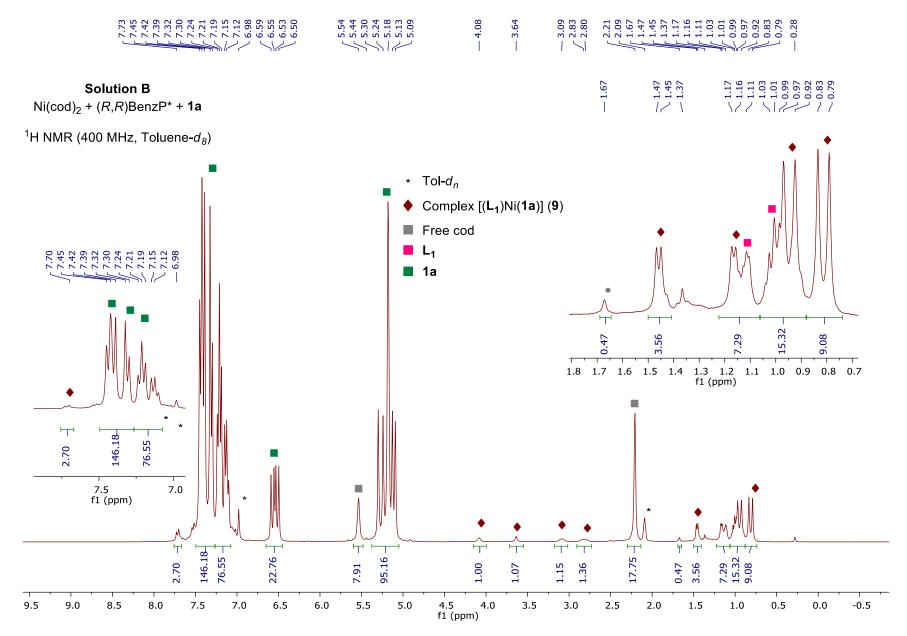
6.1. Reduced Catalyst Loading

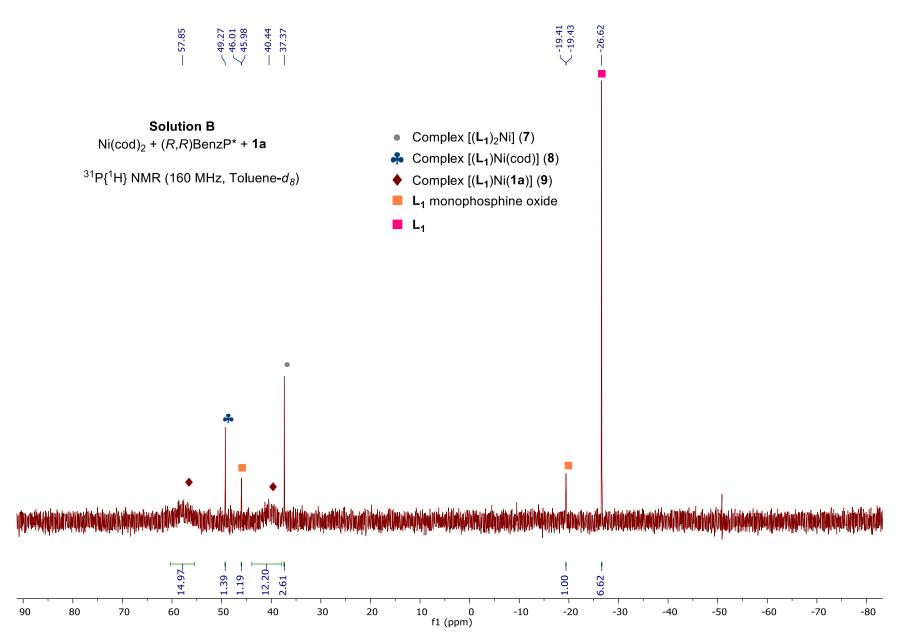
Performed at room temperature for 96 h following the general procedure using 4-(buta-1,3-dien-2-yl)-1,1'-biphenyl **1a** (103 mg, 0.50 mmol, 1.0 equiv), benzylamine **2a** (219 µL, 2.0 mmol, 4.0 equiv), Ni(cod)₂ (3.4 mg, 0.0125 mmol, 2.5 mol%), (*R*,*R*)-BenzP* (4.2 mg, 0.015 mmol, 3.0 mol%), 2,2,2-trifluoroethanol (38 µL, 0.50 mmol, 1.0 equiv) and mesitylene (1.0 mL, 0.50 M). Consumption of **1a**: >99%, conversion of **3aa**: 84%, *r.r.* = 6:1. Purification by flash chromatography over silica gel (pentane:EtOAc = 5:1) led to the desired product as a yellow solid (120.8 mg, 77% yield, 92% *ee*).

6.2. Reduced Amine Loading

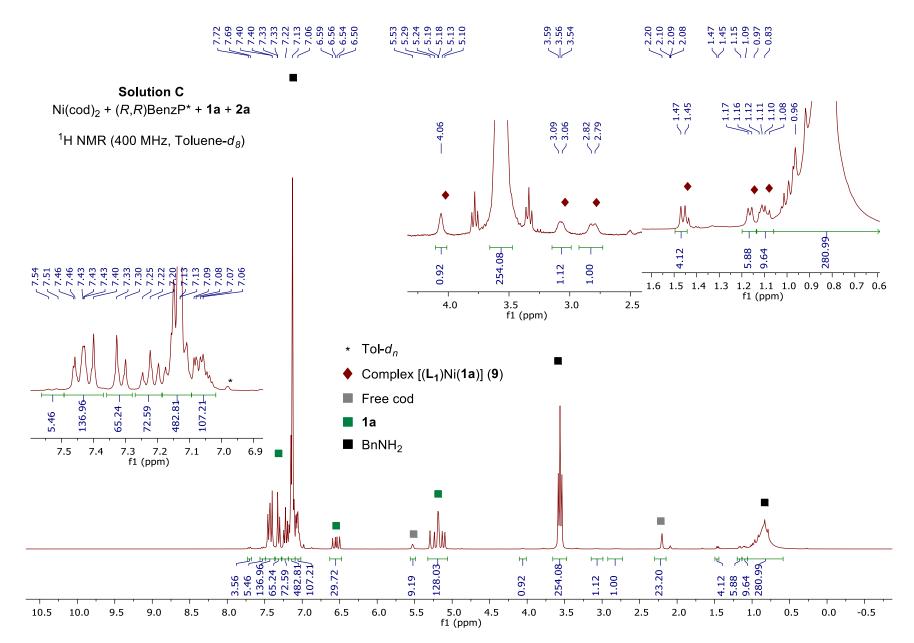

In a N₂-filled glovebox, Ni(cod)₂ (3.4 mg, 0.0125 mmol, 5 mol%) and (*R*,*R*)-BenzP* L₁ (4.2 mg, 0.015 mmol, 6 mol%) were charged in a 5 mL Schlenk tube and dissolved in anhydrous mesitylene (0.50 mL, 0.50 M). After stirring at room temperature for 10 min, the diene **1a** (51.6 mg, 0.25 mmol, 1.0 equiv), BnNH₂ **2a** (55 μ L, 0.50 mmol, 4.0 equiv), Et₃N (28 μ L, 0.50 mmol, 4.0 equiv) and TFE (19 μ L, 0.25 mmol, 1.0 equiv) were added sequentially. The tube was sealed, taken out of the glovebox and the reaction mixture was stirred at room temperature for 72 h. The reaction mixture was filtered over a short pad of silica gel, washed with ethyl acetate (10 mL) and concentrated under vacuum to afford the crude mixture. The conversion and isomeric ratio were determined by ¹H NMR analysis of the crude reaction mixture using CH₂Br₂ as an internal standard. Consumption of **1a**: 85%, conversion of **3ap**: 75%, *r.r.* = 8:1. Purification by flash chromatography over silica gel (Pentane:EtOAc = 5:1) led to the desired product as a colorless oil (56.0 mg, 72% yield, 92% ee).

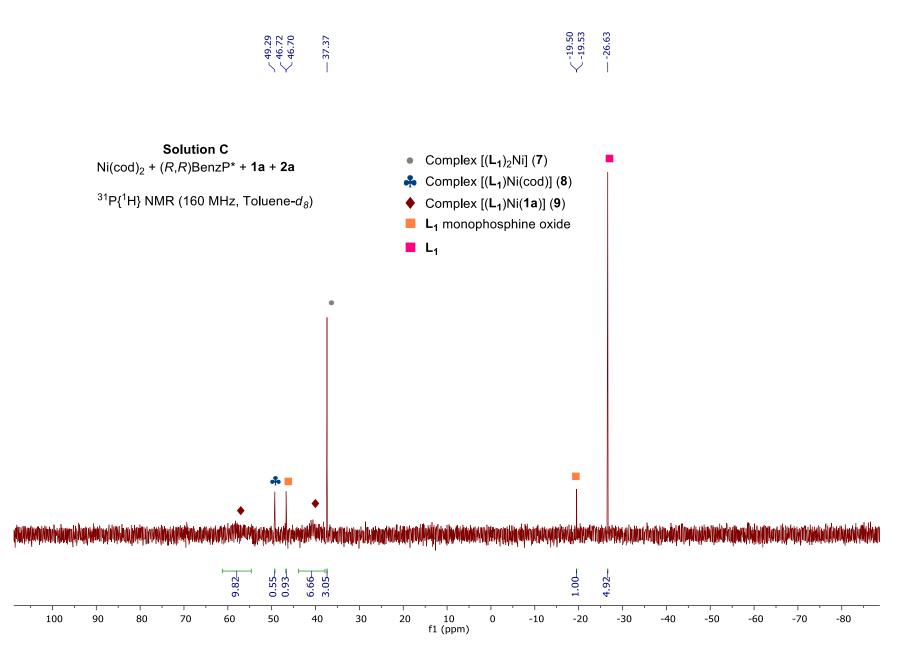

7. Supporting Organometallics

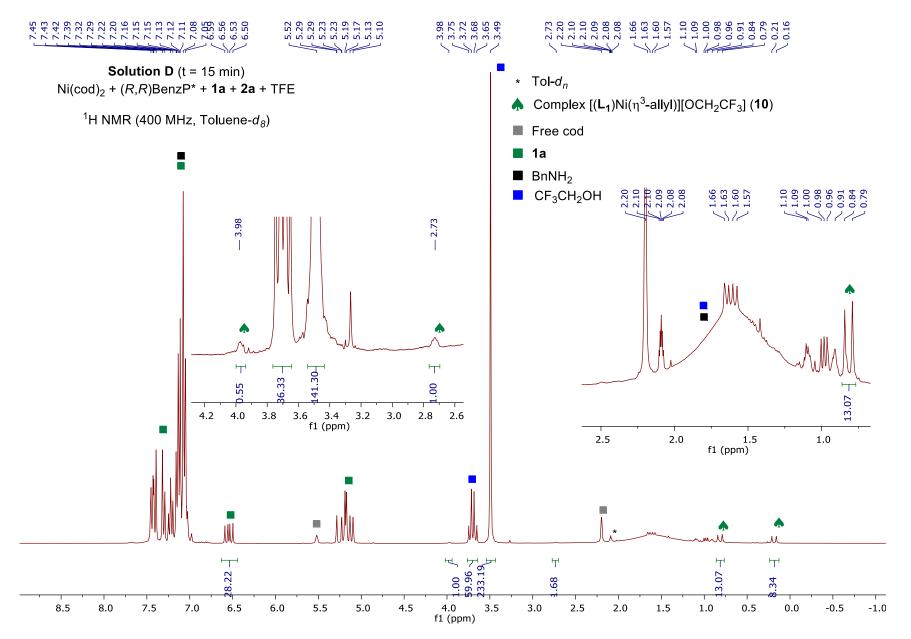

7.1. NMR Monitoring

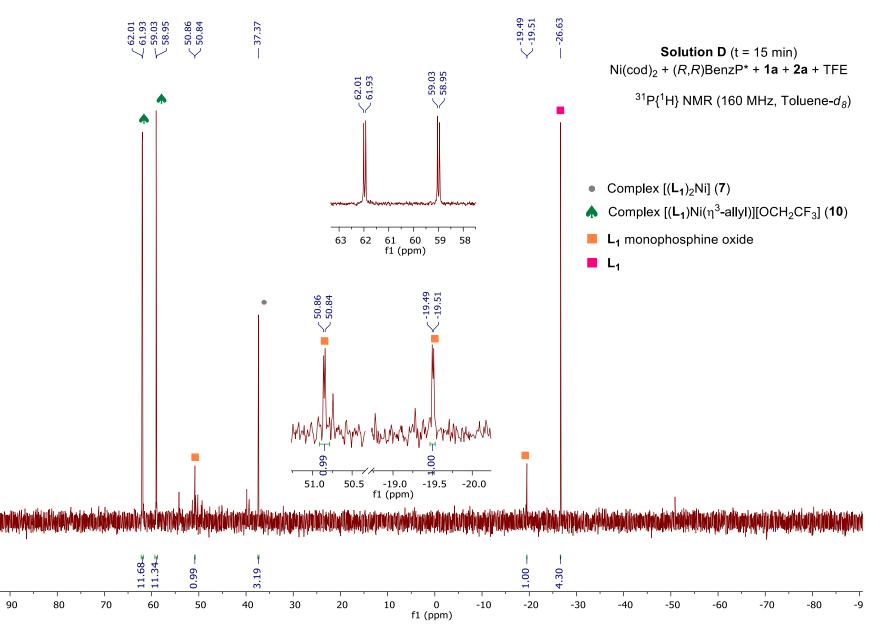

			1a	2a	TFE	
		(1.0	equiv)	(4.0 equiv)	(1.0 equiv)	
Ni(cod) ₂ + (R,R)	-BenzP*>	Solution A	🕂 🔶 Solutio	on B — – – – –	Solution C	Solution D
(5 mol%) (6 r	nol%) Tol-d ₈					

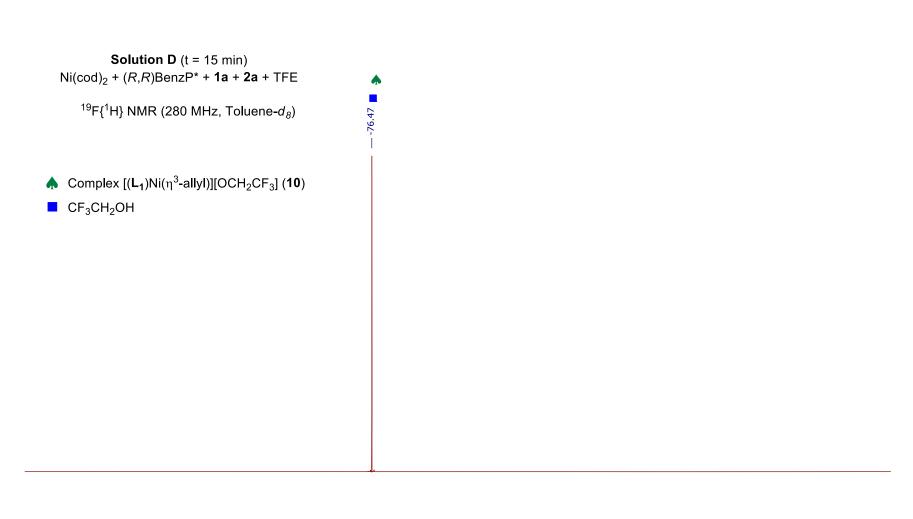
In a N₂-filled glovebox, a stock solution of Ni(cod)₂ (6.9 mg, 0.025 mmol) and (R,R)BenzP* (8.5 mg, 0.030 mmol) in toluene- d_8 (1.0 mL) was stirred for 5 min, and 0.40 mL of the resulting pale orange solution was introduced in a J-Young NMR tube (solution A). ¹H and ³¹P{¹H} NMR of this solution were immediately recorded. In another J-Young tube was weighted 4-(buta-1,3-dien-2-yl)-1,1'-biphenyl **1a** (41.3 mg, 0.20 mmol, 1.0 equiv), to which was added 0.40 mL of the Ni(cod)₂/(R,R)BenzP* stock solution A, which resulted in an immediate change of color from pale orange to dark orange (solution B). ¹H and ³¹P{¹H} NMR of this solution were immediately recorded. The J-Young tube containing solution B was brought back into the glovebox, and neat BnNH₂ **2a** (86.0 mg, 0.80 mmol, 4.0 equiv) was added to the tube (solution C). ¹H and ³¹P{¹H} NMR of this solution were immediately recorded. The J-Young tube containing solution were immediately recorded. The J-Young tube containing solution C was brought back into the glove-box, and neat 2,2,2-trifluoroethanol (20.0 mg, 0.20 mmol, 1.0 equiv) was added to the tube, which resulted in a slight change of color from dark orange to pale orange (solution D). ¹H, ¹⁹F{¹H} and ³¹P{¹H} NMR of this solution D). ¹H, ¹⁹F{¹H}

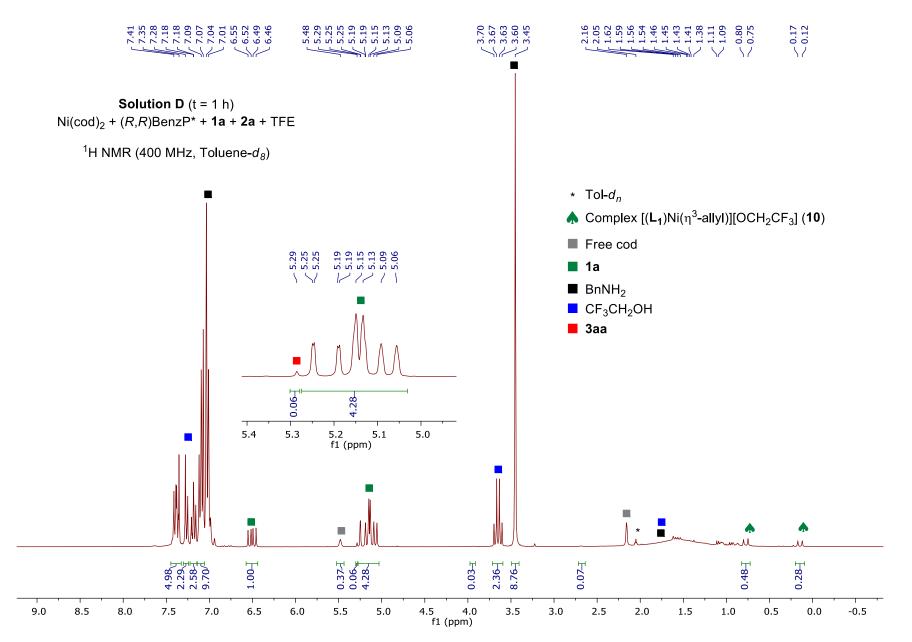


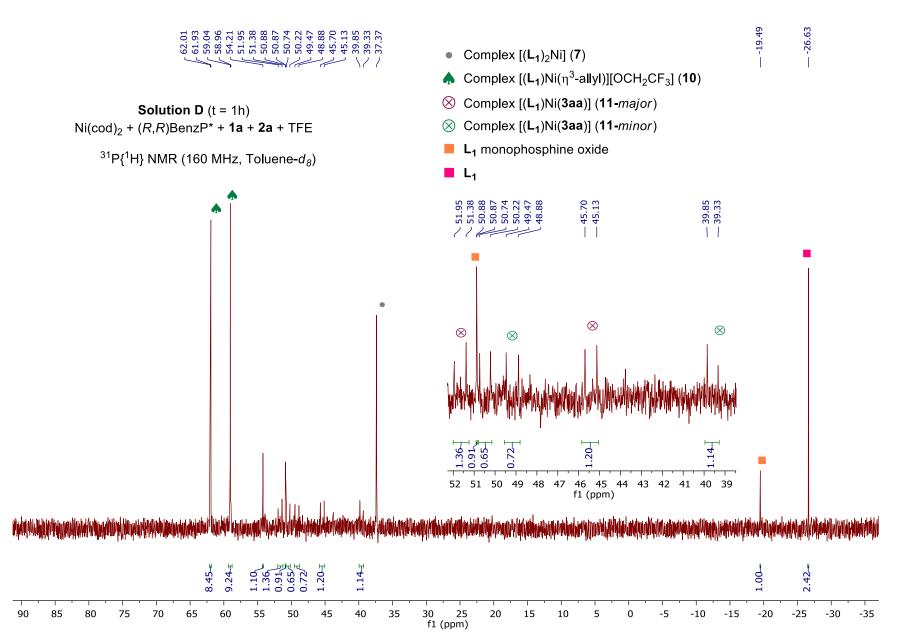


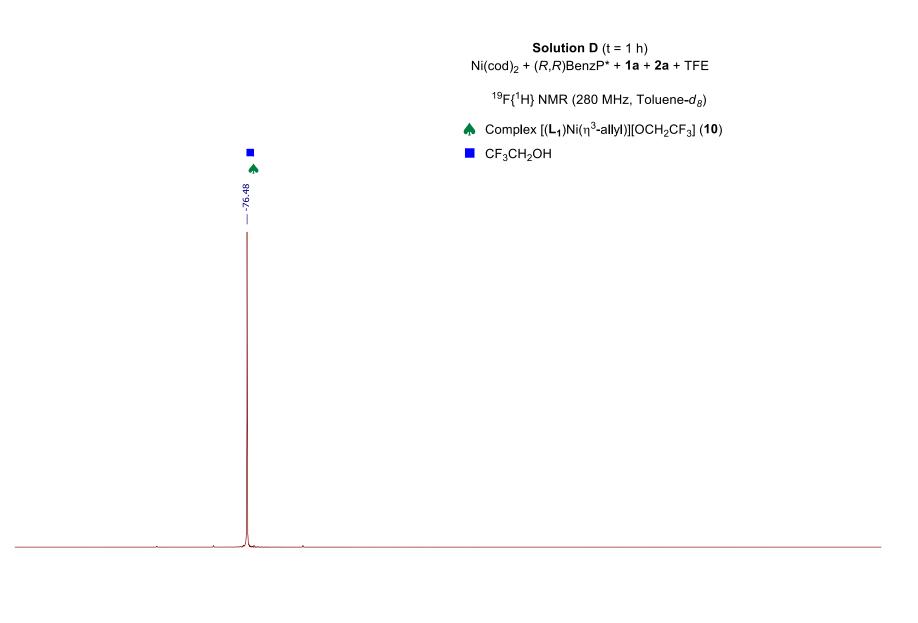


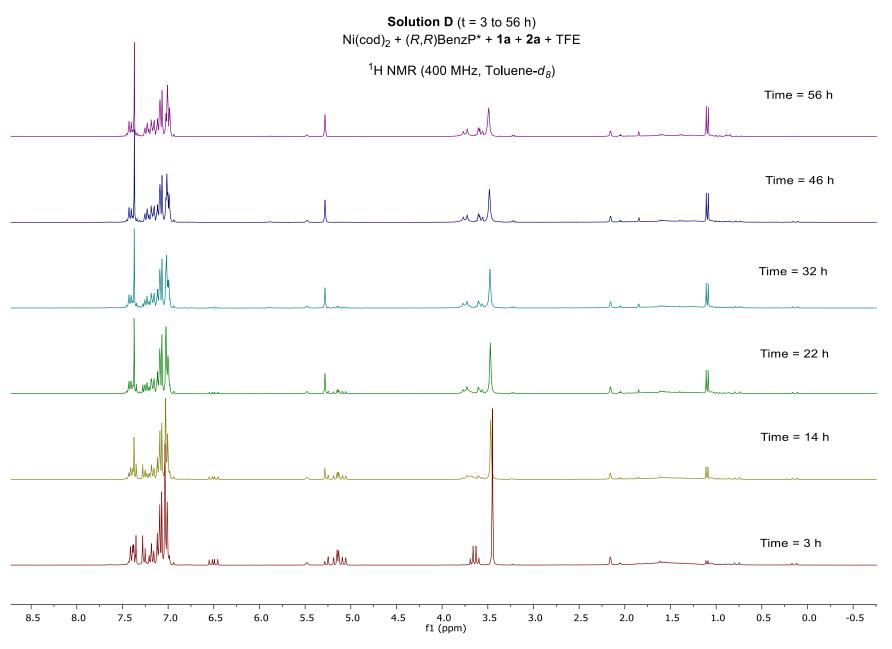


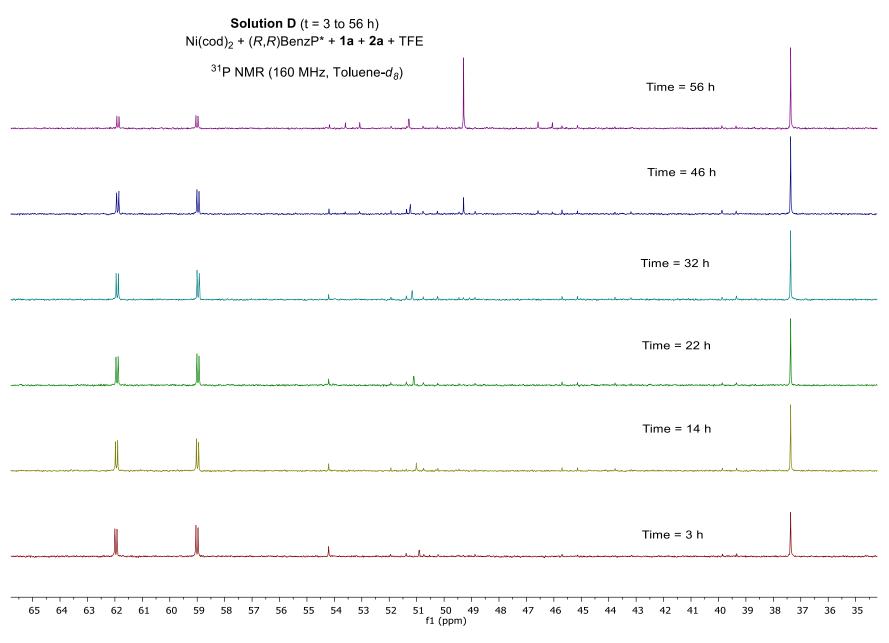

S61

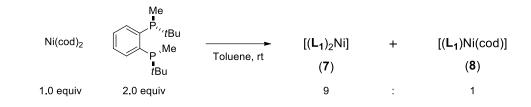


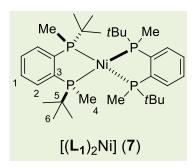





10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

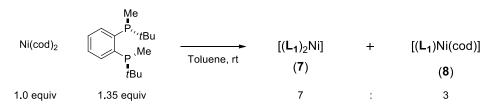


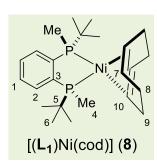



-78.5 -79.0 f1 (ppm) -74.0 -74.5 -75.0 -75.5 -76.0 -76.5 -77.0 -77.5 -78.0 -79.5 -80.0 -80.5 -81.0 -81.5 -82.0 -82.5 -83.0 -83

7.2. Synthesis of [(L₁)₂Ni] (7)

In a N₂-filled glovebox, a solution of Ni(cod)₂ (13.8 mg, 0.05 mmol, 1.0 equiv) and (R,R)BenzP* L1 (28.2 mg, 0.10 mmol, 2.0 equiv) in toluene (1.0 mL) was stirred for 2 h, then subjected to vacuum for 1 h. The resulting red-orange oil was dissolved in toluene (1.0 mL), and subjected to three supplementary cycles of stirring (1 h)/vacuum (1 h)/dissolution (toluene, 1.0 mL), leading to a mixture of homoleptic complex $[(L_1)_2Ni]$ (7) and


 $[(L_1)Ni(cod)]$ (8) (red-orange oil, 33 mg, 9:1 ratio in favor of 7).


¹**H NMR** (500 MHz, Toluene- d_8) δ (ppm) = 7.71 – 7.64 (m, 2H, H-1), 7.12 – 7.07 (m, 2H, H-2), 1.68 (s, 6H, H-4), 1.14 – 1.09 (m, 9H, H-6).

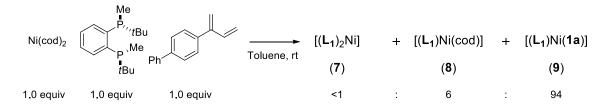
¹³C{¹H} NMR (130 MHz, Toluene- d_8) δ (ppm) = 149.9 – 148.9 (m, C-3), 129.3 (p_{app}, $J_{PC} = 3$ Hz, CH-2), 127.1 (CH-1), 32.2 (papp, JPC = 7 Hz, C-5), 28.9 (papp, JPC = 3 Hz, CH₃-6), 15.8 $(p_{app}, J_{PC} = 8 \text{ Hz}, CH_3-4).$

³¹**P**{¹**H**} **NMR** (160 MHz, Toluene- d_8) δ (ppm) = 37.37.

7.3. Synthesis of [(L₁)Ni(cod)] (8)

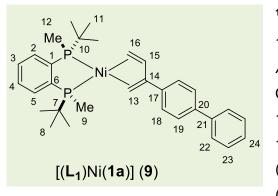
In a N₂-filled glovebox, a solution of Ni(cod)₂ (6.9 mg, 0.025 mmol, 1.0 equiv) and (R,R)BenzP* L1 (7.8 mg, 0.0275 mmol, 1.1 equiv) in toluene (1.0 mL) was stirred for 2 h, then subjected to vacuum for 1 h. The resulting red-orange oil was dissolved in toluene (1.0 mL), and subjected to three supplementary cycles of stirring (1 h)/vacuum (1 h)/dissolution (toluene, 1.0 mL). Additional amounts of (R,R)BenzP* (1.5 mg, 0.0053 mmol, 0.25 equiv) were then added, followed by toluene (1.0

mL) and the reaction mixture was subjected to three cycles of stirring (1 h)/vacuum


(1 h)/dissolution (toluene, 1.0 mL), leading to a mixture of $[(L_1)_2Ni]$ (7) and $[(L_1)Ni(cod)]$ (8) (red-orange oil, 13 mg, 7:3 ratio in favor of 8).

¹**H NMR** (500 MHz, Toluene-*d*₈) δ (ppm) = 7.50 – 7.46 (m, 2H, H-2), 7.11 – 7.06 (m, 2H, H-1), 4.48 – 4.33 (m, 2H, H-10), 4.28 – 4.16 (m, 2H, H-7), 2.85 – 2.77 (m, 4H, H-8 + H-9), 2.34 – 2.24 (m, 2H, H-8 + H-9), 2.08 – 2.00 (m, 2H, H-8 + H-9), 1.43 (d, ²*J*_{PH} = 5.2 Hz, 6H, H-4), 0.92 (d, ³*J*_{PH} = 12.7 Hz, 18H, H-6).

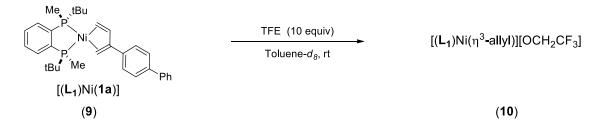
¹³C{¹H} NMR (130 MHz, Toluene- d_8) δ (ppm) = 147.6 - 146.7 (m, C-3), 130.2 (t_{app}, $J_{PC} = 7$ Hz, CH-2), 127.8 (CH-1), 82.8 (CH-7), 81.9 (t_{app}, $J_{PC} = 4$ Hz, CH-10), 37.5 (t_{app}, $J_{PC} = 6$ Hz, CH₂-8), 32.31 - 31.95 (m, C-5), 28.1 (CH₂-9), 27.0 (t_{app}, $J_{PC} = 4$ Hz, CH₃-6), 8.28 (t_{app}, $J_{PC} = 8.1$ Hz, CH₃-4)

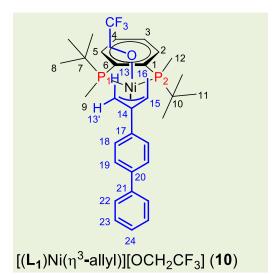

³¹**P**{¹**H**} **NMR** (160 MHz, Toluene- d_8) δ (ppm) = 49.26.

7.4. Synthesis of [(L₁)Ni(1a)] (9)

In a N₂-filled glovebox, a solution of Ni(cod)₂ (27.5 mg, 0.10 mmol, 1.0 equiv) and (*R*,*R*)BenzP* L₁ (28.2 mg, 0.10 mmol, 1.0 equiv) and 4-(buta-1,3-dien-2-yl)-1,1'-biphenyl **1a** (21.1 mg, 0.10 mmol, 1.0 equiv) in toluene (1.0 mL) was stirred for 0.5 h, then subjected to high vacuum for 1 h. The resulting red-orange oil was dissolved in toluene (1.0 mL), and subjected to ten supplementary cycles of stirring (1 h)/vacuum (1 h)/dissolution (toluene, 1.0 mL), leading to a mixture of [(L₁)Ni(cod)] (8) and [(L₁)Ni(**1a**)] (9) (red-orange oil, 56.0 mg, 94:6 ratio in favor of **9**). Residual peaks from diene **1a** and [(L₁)₂Ni] (**7**) were also present. *Due to the fluxional nature of the complex at rt, all 1D and 2D NMR spectra presented numerous weak and/or broad signals. Some carbons, such as olefinic carbons 13-16, were not even observed. Moreover, the presence of residual [(L₁)Ni(cod)] (8) further complicates the interpretation of the NMR spectra. Nevertheless, we propose a tentative assignment for some of the most well defined peaks, but urge the reader to take them with caution.*

¹**H NMR** (500 MHz, Toluene-*d*₈) δ (ppm) = 7.71 (d, ³*J*_{HH} = 8.1 Hz, 2H, H-*18*), 7.48 (m, H-*Ar*), 7.22 (t, ³*J*_{HH} = 7.5 Hz, 2H, H-*Ar*), 5.22 (s, 1H, C=C-*H*), 4.09 (s, 1H, C=C-*H*), 3.66 (s, 1H, C=C-*H*), 3.09 (s, 1H, C=C-*H*), 2.83 (s, 1H, C=C-*H*), 1.46 (d, ²*J*_{PH} = 5.4 Hz, 3H, H-9 or H-*12*), 1.17 (d, ²*J*_{PH} = 3.9 Hz, 3H, H-9 or H-*12*), 0.95 (d, ³*J*_{PH} = 13.4 Hz, 9H, H-8 or H-*11*), 0.82 (d, ³*J*_{PH} = 13.4 Hz, 9H, H-8 or H-*11*).




¹³C{¹H} NMR (130 MHz, Toluene- d_8) δ (ppm) = 147.6 – 145.8 (*C*-1 or *C*-6), 144.4 (*C*-*Ar*), 141.8 (*C*-*Ar*), 138.3 (*C*-*Ar*), 130.6 (d, ¹J_{PC} = 11 Hz, *C*H-2 or CH-5), 130.1 (d, ¹J_{PC} = 11 Hz, *C*H-2 or *C*H-5), 129.2 (*C*H-*Ar*), 128.9 (*C*H-*Ar*), 128.4 (*C*H-*Ar*), 127.6 – 127.1 (m, *C*H-*Ar*), 127.1 (*C*H-*Ar*), 127.0 (*C*H-*Ar*), 126.9 (*C*H-*Ar*), 126.5 (*C*H-*Ar*), 32.7 – 32.2 (m, *C*-7 or *C*-10), 31.9 (dd, ¹J_{PC} = 16, ⁴J_{PC} = 4 Hz,

C-7 or C-10), 27.4 (t_{app} , $J_{PC} = 7$ Hz, CH₃-8 and CH₃-11), 9.9 (CH₃-9 or CH₃-12), 7.1 (CH₃-9 or CH₃-12).

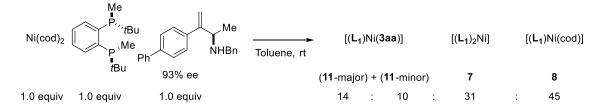
³¹**P**{¹**H**} **NMR** (160 MHz, Toluene- d_8) δ (ppm) = 57.91(broad), 40.44 (broad).

7.5. Synthesis of $[(L_1)Ni(\eta^3-allyl)][OCH_2CF_3]$ (10)

In a N₂-filled glovebox, a 2 mL vial was charged with complex $[(L_1)Ni(1a)]$ (9) (5.5 mg, 0.010 mmol, 1.0 equiv), followed by toluene- d_8 (0.60 mL). To the resulting orange solution was added a 1.0 M solution of CF₃CH₂OH in toluene- d_8 (0.10 mL, 0.10 mmol, 10.0 equiv). The solution immediately changed color to pale orange/yellow. 0.40 mL of this solution was introduced in a J-Young tube and analyzed by NMR.

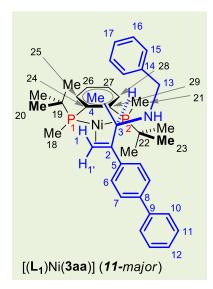
Due to the reversible nature of the reaction, the complex $[(L_1)Ni(\eta^3-allyl)][OCH_2CF_3]$ (10) could only be observed in solution. Indeed, in vaccum concentration of this solution resulted in quantitative regeneration of the starting complex $[(L_1)Ni(1a)]$ (9).

¹**H NMR** (500 MHz, Toluene-*d*₈) δ (ppm) = 7.49 – 7.31 (m, 8H, H-*Ar*), 7.23 (t, ³*J*_{HH} = 7.7 Hz, 2H, H-*Ar*), 7.16 – 7.12 (m, 1H, H-24), 7.11 – 7.09 (m, 2H, H-18), 5.43 – 5.20 (m, 1H, H-15), 3.90 – 3.86 (m, 1H, H-13'), 2.72 – 2.67 (m, 1H, H-13), 1.54 (d, ²*J*_{PH} = 8.5 Hz, 3H, H-9), 1.50


(d, ${}^{2}J_{PH} = 8.5$ Hz, 3H, H-12), 0.90 – 0.86 (m, 3H, H-16), 0.80 (d, ${}^{3}J_{PH} = 15.6$ Hz, 9H, H-8), 0.16 (d, ${}^{3}J_{PH} = 15.6$ Hz, 9H, H-11).

¹³C{¹H} NMR (130 MHz, Toluene-*d*₈) δ (ppm) = 143.3 (*C*-20), 139.8 (*C*-21), 139.5 – 138-5 (m, *C*-1 and *C*-6), 137.1 (*C*-17), 132.3 – 131.9 (*C*H-2 or *C*H-5), 131.8 (d, ²J_{PP} = 14 Hz, *C*H-2 or *C*H-5), 129.3 (*C*H-22), 128.4 (*C*H-24), 127.6 (*C*H-3 or *C*H-4), 127.2 (*C*H-3 or *C*H-4), 123.1 (*C*-14), 76.7 (d, ²J_{PP} = 15 Hz, *C*H-15), 55.2 (dd, ²J_{PP} = 19, 3 Hz, *C*H₂-13), 32.9 (d, ²J_{PP} = 14 Hz, *C*-7 or *C*-10), 32.7 (d, ¹J_{PP} = 13 Hz, *C*-7 or *C*-10), 26.9 (d, ²J_{PP} = 5 Hz, *C*H₃-8), 25.9 (d, ²J_{PP} = 5 Hz, *C*H₃-11), 14.8 (*C*H₃-16), 7.7 (d, ¹J_{PP} = 25 Hz, *C*H₃-9), 5.3 (d, ¹J_{PP} = 24 Hz, *C*H₃-12).

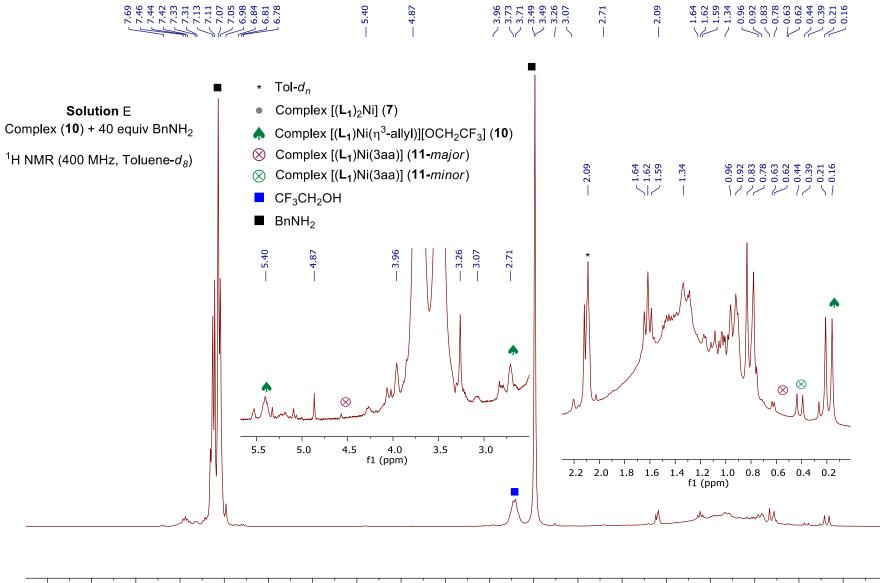
³¹**P**{¹**H**} **NMR** (160 MHz, Toluene-*d*₈) δ (ppm) = 61.51 (d, ³*J*_{PP} = 9.7 Hz, P-1), 58.58 (d, ³*J*_{PP} = 9.7 Hz, P-2).

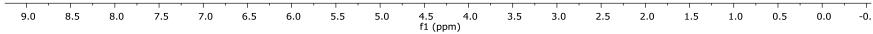

¹⁹**F**{¹**H**} **NMR** (280 MHz, Toluene- d_8) δ (ppm) = -76.87.

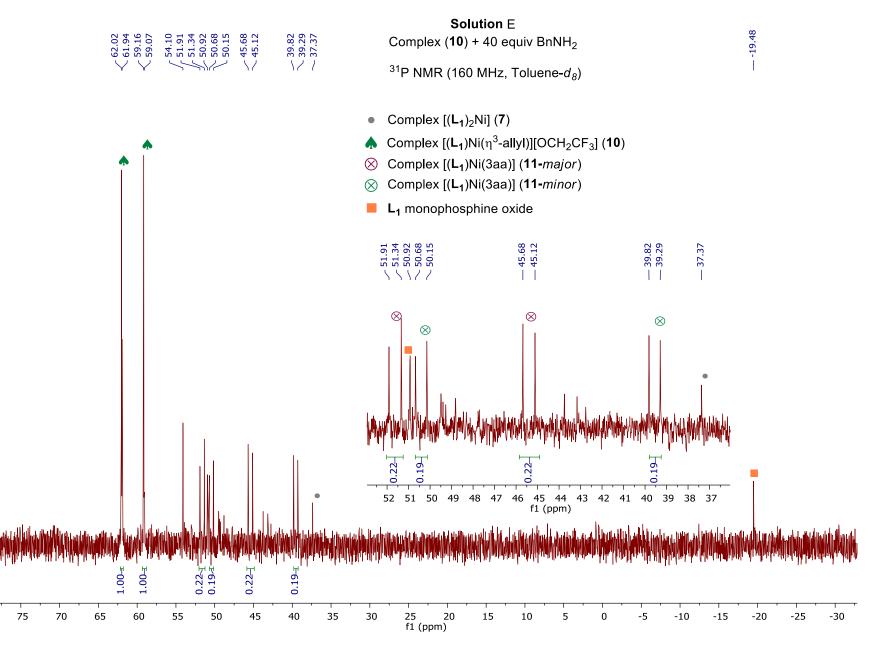
7.6. Synthesis of [(L₁)Ni(3aa)] (11)

In a N₂-filled glovebox, to a solution of Ni(cod)₂ (8.8 mg, 0.032 mmol, 1.0 equiv) and (R,R)BenzP* L₁ (9.0 mg, 0.032 mmol, 1.0 equiv) in toluene (0.50 mL) was added **3aa** (10.0 mg, 0.032 mmol, 1.0 equiv, 93% *ee*). The resulting solution was stirred for 1.0 h, then subjected to high vacuum for 1 h. The resulting red-orange oil was dissolved in toluene (1.0 mL), and subjected to ten supplementary cycles of stirring (1 h)/vacuum (1 h)/dissolution (toluene, 1.0 mL), leading to a mixture of two product-bound complexes [(L₁)Ni(**3aa**)] (**11**-*major*) and [(L₁)Ni(**3aa**)] (**11**-*minor*), along with [(L₁)₂Ni] (**7**) and [(L₁)Ni(cod)] (**8**) (red-orange oil, 18.0 mg, ratio **11**-*major*/**11**-*minor*/**7/8**=14:10:31:45).

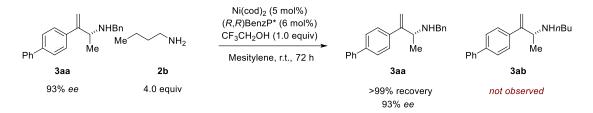
Due to the complexity of mixture, it was not possible to fully attribute the ¹H and ¹³C NMR peaks present in the spectrum. Nevertheless, we are confident that the observed peaks and correlations for **11**-major are consistent with a $[(L_1)Ni(3aa)]$ complex bound through the olefin π -system of **3aa**. Whether the nitrogen is bound or not is unclear. Only the peaks that could be attributed with confidence to this complex are reported. Due to numerous overlaps, we were not able to perform such an analysis for **11**-minor, and the corresponding peaks are not reported.

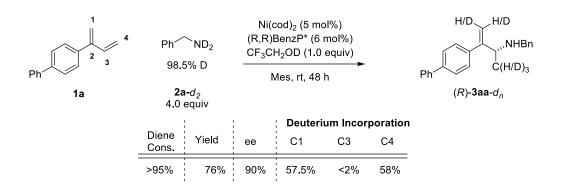

¹**H NMR** (500 MHz, Toluene-*d*₈) δ (ppm) = 4.31 – 4.25 (m, 1H, H-3), 4.07 – 4.02 (m, 1H, H-13), 3.89 – 3.84 (m, 1H, H-13), 3.25 (q_{app}, *J* = 4.5 Hz, 1H, H-1), 2.53 (dt_{app}, *J* = 7.7, 4.1 Hz, 1H, H-1), 1.65 (d, ³*J*_{HH} = 5.8 Hz, 3H, H-4), 1.29 (d, ²*J*_{PH} = 4.5 Hz, 3H, H-18), 1.01 (d, ³*J*_{PH} = 13.2 Hz, 9H, H-20), 0.78 (d, ³*J*_{PH} = 13.5 Hz, 9H, H-23), 0.63 (d, ²*J*_{PH} = 5.2 Hz, 3H, H-21).


 $\begin{array}{c} {}^{3}\mathbf{C}^{1}\mathbf{H} \mathbf{NMR} \ (130 \ \text{MHz}, \ \text{Toluene-}d_{8}) \ \delta \ (\text{ppm}) = 70.8 - 70.5 \\ (\text{m}, \ C-2), \ 57.7 - 57.6 \ (\text{m}, \ CH-3), \ 49.1 \ (CH_{2}\text{-}13), \ 34.8 \ (\text{dd}, \\ {}^{2}J_{\text{PP}} = 22, \ 2 \ \text{Hz}, \ CH_{2}\text{-}1), \ 27.5 \ (\text{dd}, \, {}^{2}J_{\text{PP}} = 8, \, {}^{4}J_{\text{PP}} = 3 \ \text{Hz}, \ CH_{3}\text{-} \\ 20), \ 27.3 \ (\text{d}, \, {}^{2}J_{\text{PP}} = 9 \ \text{Hz}, \ CH_{3}\text{-}23), \ 21.6 \ (CH_{3}\text{-}4), \ 7.9 \ (\text{dd}, \, {}^{1}J_{\text{PP}} \\ = 11, \, {}^{4}J_{\text{PP}} = 8 \ \text{Hz}, \ CH_{3}\text{-}18), \ 4.7 \ (\text{dd}, \, {}^{1}J_{\text{PP}} = 12, \, {}^{4}J_{\text{PP}} = 5 \ \text{Hz}, \ CH_{3}\text{-}21). \end{array}$

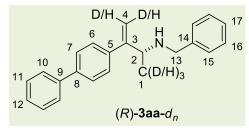

³¹**P{¹H} NMR** (160 MHz, Toluene- d_8) δ (ppm) = 51.58 (d, ${}^{3}J_{PP}$ = 69.4 Hz, P-1), 45.33 (d, ${}^{3}J_{PP}$ = 69.4 Hz, P-2).

7.7. Reaction of [(L₁)Ni(η^3 -allyl)][OCH₂CF₃] (10) with BnNH₂


In a N₂-filled glovebox, a 2 mL vial was charged with complex [(L₁)Ni(1a)] (9) (5.5 mg, 0.010 mmol, 1.0 equiv), followed by toluene- d_8 (0.60 mL). To the resulting orange solution was added a 1.0 M solution of CF₃CH₂OH in toluene- d_8 (0.10 mL, 0.10 mmol, 10.0 equiv). The solution immediately changed color to pale orange/yellow. BnNH₂ (43.0 mg, 0.40 mmol, 40.0 equiv) was then added, and the reaction mixture was stirred for 15 min (solution **E**). 0.40 mL of this solution was introduced in a J-Young tube and analyzed by ¹H and ³¹P{¹H} NMR.



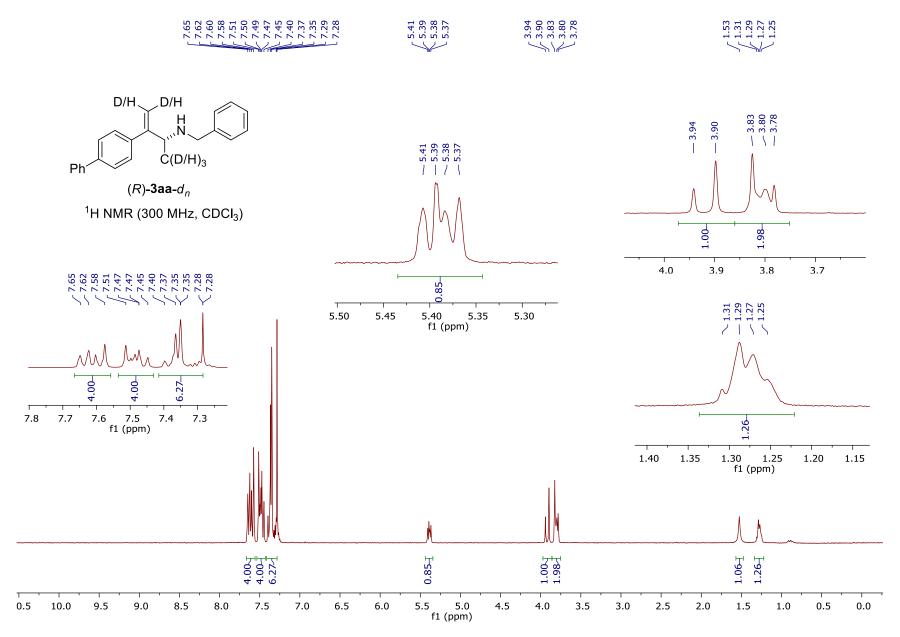
8. Amine exchange experiment

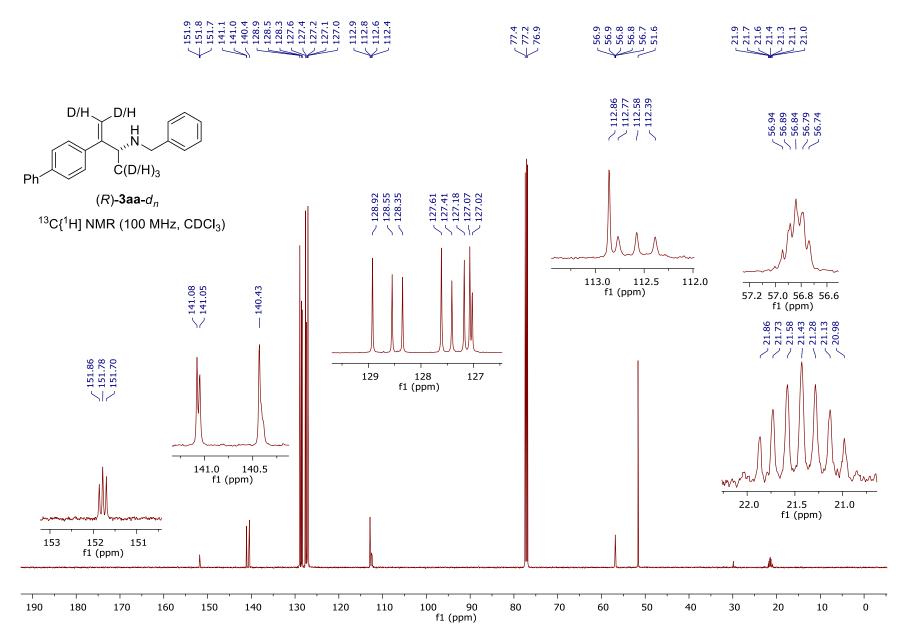

In a N₂-filled glovebox, Ni(cod)₂ (1.4 mg, 0.005 mmol, , 5 mol%) and (*R*,*R*)-BenzP* L₁ (1.7 mg, 0.006 mmol, 6 mol%) were weighted in a 5 mL Schlenk tube, and anhydrous mesitylene (0.20 mL, 0.5 M) was added. After stirring at room temperature for 10 min, allylic amine **3aa** (31.0 mg, 0.10 mmol, 1.0 equiv, 93% *ee*), *n*BuNH₂ **2b** (40 μ L, 0.40 mmol, 4.0 equiv) and TFE (7 μ L, 0.10 mmol, 1.0 equiv) were added sequentially. The tube was sealed, taken out of the glovebox and stirred at room temperature for 72 h. The reaction mixture was filtered over a short pad of silica gel, washed with ethyl acetate (10 mL) and concentrated under vacuum to afford the crude mixture. Analysis by ¹H NMR showed >99% recovery of **3aa** and no traces of product **3ab**.

9. Deuterium labeling experiments

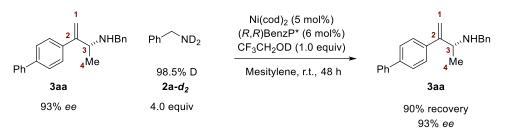
9.1. Model catalytic hydroamination using TFE-d₁ and BnND₂

In a N₂-filled glovebox, Ni(cod)₂ (3.4 mg, 0.0125 mmol, 5 mol%) and (*R*,*R*)-BenzP* L₁ (4.2 mg, 0.015 mmol, 6 mol%) were weighted in a 5 mL Schlenk tube, and anhydrous mesitylene (0.50 mL, 0.5 M) was added. After stirring at room temperature for 10 min, diene **1a** (42.0 mg, 0.25 mmol, 1.0 equiv), TFE- d_1 (26.0 mg, 0.25 mmol, 1.0 equiv, 99.5% D) and Bn-ND₂ (110.0 mg, 1.00 mmol, 4.0 equiv, 98.5% D) were added sequentially. The tube was sealed, taken out of the glovebox and stirred at room temperature for 48 h. The reaction mixture was filtered over a short pad of silica gel, washed with ethyl acetate (10 mL) and concentrated under vacuum to afford the crude mixture. Consumption of **1a**: >95%. Purification by flash chromatography over silica gel (pentane:EtOAc = 4:1) led to the desired product **3aa**- d_n as a pale yellow oil (60.0 mg, 76% yield, 90% ee). ¹H NMR analysis showed 58% deuterium integration at C-1 and 58% at C-4. No significant deuterium incorporation at any other position was observed.

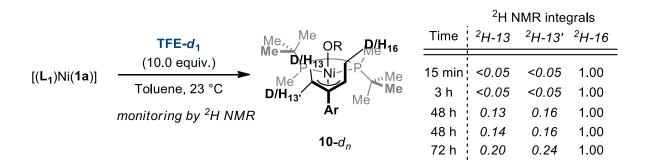



¹**H NMR** (300 MHz, CDCl₃) δ (ppm) = 7.67 - 7.56 (m, 4H, H-*Ar*), 7.53 - 7.43 (m, 4H, H-*Ar*), 7.42 - 7.29 (m, 6H, H-*Ar*), 5.42 - 5.34 (m, 0.85H, H-*4*), 3.92 (d, ²*J*_{HH} = 13.1 Hz, 1H, H-13), 3.87 - 3.76 (m, 2H, H-2 + H-13), 1.53 (s, 1H, N-H), 1.32 - 1.24 (m, 1.26H, H-1).

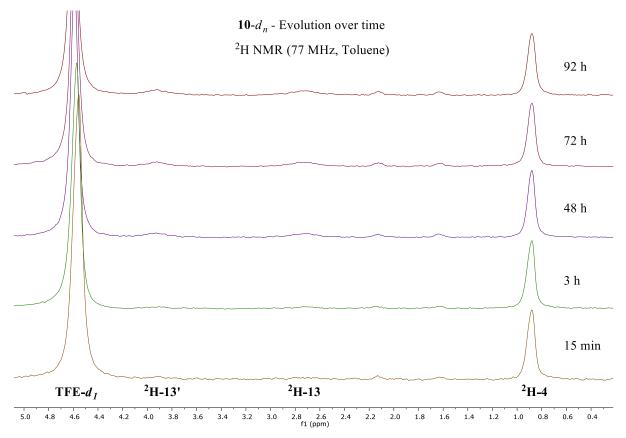
¹³C{¹H} NMR (100 MHz, CDCl₃) δ (ppm) = 152.3 – 150.9 (m, *C*-3), 141.08 (*C*-*Ar*), 141.05 (*C*-*Ar*), 140.4 (broad, *C*-*Ar*), 128.9 (*C*H-*Ar*), 128.6 (*C*H-*Ar*), 128.4 (*C*H-*Ar*), 127.6 (*C*H-*Ar*), 127.4 (*C*H-*Ar*), 127.2(*C*H-*Ar*), 127.1 (*C*H-*Ar*), 127.0 (*C*H-*Ar*), 113.20 – 112.02 (*C*(H/D)₂-*4*), 57.19 – 55.93 (*C*(H/D)₁-2), 51.6 (*C*H₂-13), 22.0 – 20.9 (m, *C*(H/D)₃-1).

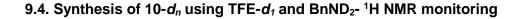

HRMS (ESI⁺): calculated [M+H]⁺ for C₁₇H₁₉DN₂O⁺: 315.1942; found: 315.1969; 316.2030; 317.2091; 318.211 (major); 319.2205; 320.2244.

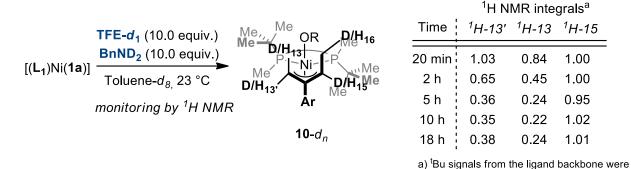
HPLC: 90% *ee*, chiral stationary column: OD-H, mobile phase: hexane/*i*PrOH = 99/1, 1mL/min, 254 nm, 30 °C, t_R (major) = 6.83 min, t_R (minor) = 15.14 min.



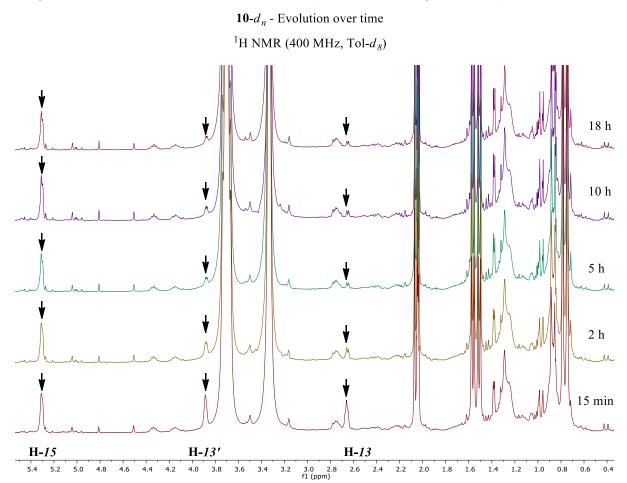
9.2. Post-reaction deuterium incorporation experiment




In a N₂-filled glovebox, Ni(cod)₂ (1.4 mg, 0.005 mmol, , 5 mol%) and (*R*,*R*)-BenzP* L₁ (1.7 mg, 0.006 mmol, 6 mol%) were weighted in a 5 mL Schlenk tube, and anhydrous mesitylene (0.20 mL, 0.5 M) was added. After stirring at room temperature for 10 min, allylic amine **3aa** (31 mg, 0.10 mmol, 1.0 equiv, 93% ee), TFE-*d*₁ (10.0 mg, 0.10 mmol, 1.0 equiv, 99.5% D) and Bn-ND₂ (44.0 mg, 0.40 mmol, 4.0 equiv, 98.5% D) were added sequentially. The tube was sealed, taken out of the glovebox and stirred at room temperature for 48 h. The reaction mixture was filtered over a short pad of silica gel, washed with ethyl acetate (10 mL) and concentrated under vacuum to afford the crude mixture. Purification by flash chromatography over silica gel (pentane:EtOAc = 4:1) led to the desired product **3aa** as a pale yellow oil (28.0 mg, 90% recovery, 93% ee). ¹H NMR analysis did not show any trace of deuterium incorporation at any position.


9.3. Synthesis of 10-d_n using TFE-d1 - ²H NMR monitoring

In a N₂-filled glovebox, a 2 mL vial was charged with complex $[(L_1)Ni(1a)]$ (9) (5.5 mg, 0.010 mmol, 1.0 equiv), followed by toluene (0.60 mL). To the resulting orange solution was added a 1.0 M solution of CF₃CH₂OD in toluene (0.10 mL, 0.10 mmol, 10.0 equiv). The color of the solution changed immediately to pale orange/yellow. 0.40 mL of this solution was introduced in a J-Young tube. ²H NMR monitoring showed very rapid and selective deuterium incorporation at C-4 (D/H-16), and very slow deuterium incorporation at C-1 (D/H-13 and D/H-13').

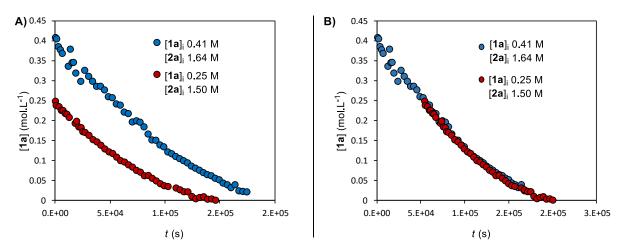


In a N₂-filled glovebox, a 2 mL vial was charged with complex [(L_1)Ni(1a)] (9) (16.6 mg, 0.030 mmol, 1.0 equiv), followed by toluene- d_8 (1.0 mL). To the resulting orange solution was added neat CF₃CH₂OD (31.0 mg, 0.303 mmol, 10.0 equiv). The color of the solution changed immediately to pale orange/yellow. 0.40 mL of this solution was introduced in a J-Young tube, followed by BnND₂ (13.0 mg, 0.120 mmol, 10.0 equiv). Deuterium integration at C-1 (D/H-13 and D/H-13) and C-3 (D/H-15) was then monitored by ¹H NMR. Deuterium integration at C-4 (D/H-16) could not be accomplished due to signals overlap.

used as internal reference.

10. Kinetic studies

General:


In situ ¹H NMR monitoring was carried out in J-Young NMR tube using a AMX–500 Bruker Avance spectrometer. The reaction was monitored by following the consumption of substrate **1a** using the allylic proton at C-3. Spectra were collected at 298 K every 1 or 2 hours for the entirety of the experiment (5 scans, 10 seconds T1 relaxation delay). The data were treated using the methods for variable time normalization analysis.³ Given the absence of by-products containing BnNH₂, the concentration of BnNH₂ [**2a**]_t for each time *t* was calculated using the following formula: [**2a**]_t = [**2a**]_{t=0} - ([**1a**]_{t=0} - [**1a**]_t).

Standard reaction procedure:

In an N₂-filled glove-box, a solution of Ni(cod)₂ (4.1 mg, 0.0150 mmol) and (R,R)BenzP* L₁ (5.1 mg, 0.0181 mmol) in toluene- d_8 (0.60 mL) was prepared in a 2 mL vial. After stirring for 5 min, substrate **1a** (61.9 mg, 0.300 mmol) was added, stirring for continued for 30 min, and BnNH₂ **2a** (128.6 mg, 131 µL, 1.200 mmol) was added. In a J-Young tube equipped with a sealed glass capillary containing an internal standard solution (*p*-methylanisole ~ 0.10 M; PPh₃ ~0.01 M; solvent: toluene- d_8) was introduced 0.49 mL of the resulting stock solution ([Ni(cod)₂] = 0.0205 M; [L₁] = 0.0248 M; [**1a**] = 0.410 M; [**2a**] = 1.641 M). ¹H NMR of this solution was acquired, allowing for calibration of the ¹H internal standard peaks (time = 0 s). The J-Young tube was then brought back into an N₂-filled glovebox, catalysis was initiated by addition of trifluoroethanol (20.0 mg, 0.200 mmol, 1.0 equiv, [TFE] = 0.410 M), and the reaction mixture was monitored over time by ¹H NMR.

Same excess

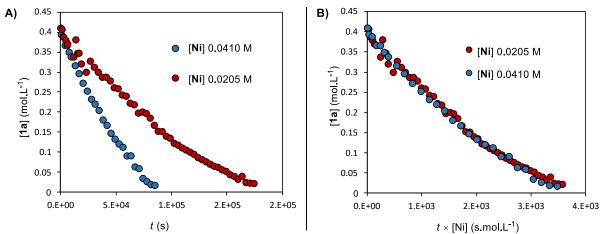

This reaction was carried out according to the standard reaction procedure, with the following concentrations: $[Ni(cod)_2] = 0.0205 \text{ M}; [L_1] = 0.0248 \text{ M}; [1a] = 0.250 \text{ M}; [2a] = 1.500 \text{ M}; [TFE] = 0.410 \text{ M}).$

Figure S3. A) Reaction time course for "standard conditions" (blue points) and "same excess" experiment (red points). B) Reaction time course for standard and same excess experiments after time adjustment of the "same excess" experiment (red points; $\Delta t = +53550$ s).

Order in catalyst

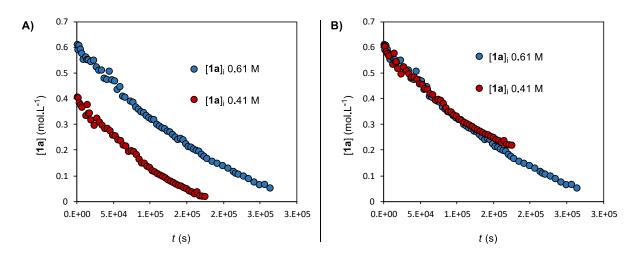
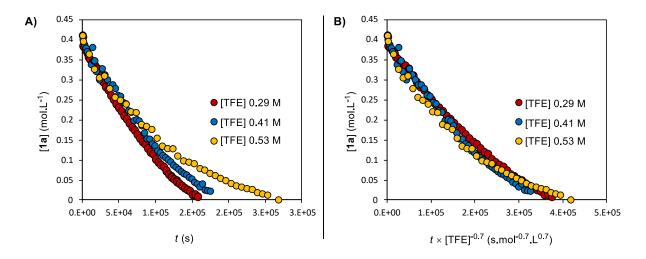

This reaction was carried out according to the standard reaction procedure, with the following concentrations: $[Ni(cod)_2] = 0.0410 \text{ M}; [L_1] = 0.0496 \text{ M}; [1a] = 0.410 \text{ M}; [2a] = 1.641 \text{ M}; [TFE] = 0.410 \text{ M}).$

Figure S-4. A) Reaction time course for "standard conditions" (red points) and "Order in catalyst" experiment (blue points). B) Reaction time course for standard and "Order in catalyst" experiments after multiplication of the original time axis by the catalyst initial concentration (time x [Ni(cod)]₂).

Order in diene 1a

This reaction was carried out according to the standard reaction procedure, with the following concentrations: $[Ni(cod)_2] = 0.0205 \text{ M}; [L_1] = 0.0248 \text{ M}; [1a] = 0.615 \text{ M}; [2a] = 1.641 \text{ M}; [TFE] = 0.410 \text{ M}).$

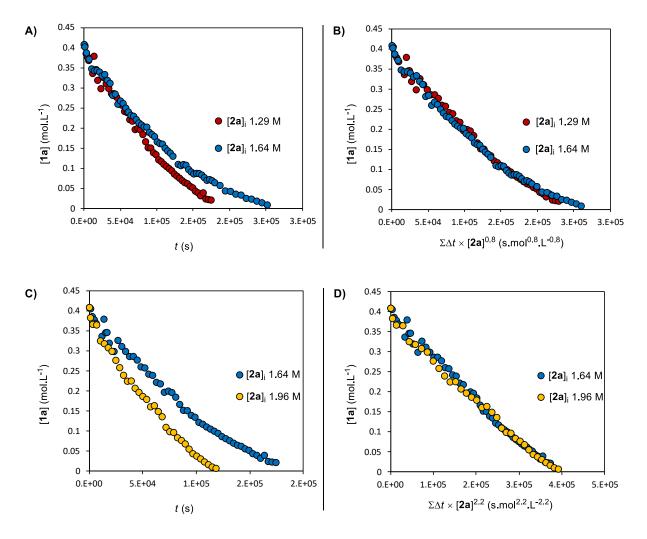

Figure S-5. A) Reaction time course for "standard conditions" (red points) and "Order in diene" experiment (blue points). B) Reaction time course for standard and "Order in diene" experiments after upward concentration shift of the "standard conditions" points (red points: [1a] + 0.205 M).

Order in TFE

These reactions were carried out according to the standard reaction procedure, with the following concentrations:

Red points: [Ni(cod)₂] = 0.0205 M; [L₁] = 0.0248 M; [1a] = 0.410 M; [2a] = 1.641 M; [TFE] = 0.290 M).
Yellow points: [Ni(cod)₂] = 0.0205 M; [L₁] = 0.0248 M; [1a] = 0.410 M; [2a] = 1.641 M; [TFE]

= 0.530 M).


Figure S-6. A) Reaction time course for "standard conditions" (red points) and "Order in TFE" experiments (blue and yellow points). B) Reaction time course for standard and " Order in TFE " experiments after multiplication of the original time axis by [TFE]^{-0.7} (time x [TFE]^{-0.7}).

Order in BnNH₂2a

These reactions were carried out according to the standard reaction procedure, with the following concentrations:

Red points: [Ni(cod)₂] = 0. 0205 M; [L₁] = 0.0248 M; [1a] = 0.410 M; [2a] = 1.290 M; [TFE] = 0.410 M).
Yellow points: [Ni(cod)₂] = 0. 0205 M; [L₁] = 0.0248 M; [1a] = 0.410 M; [2a] = 1.961 M; [TFE]

- Yellow points: $[Ni(cod)_2] = 0.0205 \text{ M}$; $[L_1] = 0.0248 \text{ M}$; [1a] = 0.410 M; [2a] = 1.961 M; 0.410 M).

Figure S-7. A) and C) Reaction time course for standard conditions (blue points) and "Order in BnNH₂ **2a**" experiments (red and yellow points). B) Reaction time course for standard and "Order in BnNH₂ (1.29 M)" experiments after variable time normalization of the original time axis using $t_n = \sum_{i=1}^{n} (t_i - t_{i-1}) \left(\frac{[2a]_i + [2a]_{i-1}}{2}\right)^{0.8}$. D) Reaction time course for standard and "Order in BnNH₂ **2a** (1.96 M)" experiments after variable time normalization of the original time axis using $t_n = \sum_{i=1}^{n} (t_i - t_{i-1}) \left(\frac{[2a]_i + [2a]_{i-1}}{2}\right)^{2.2}$.

11. BnNH₂ NMR titration by TFE

In an N₂-filled glove-box, BnNH₂ (86 mg, 88 μ L, 0.80 mmol) and toluene-*d*₈ (0.40 mL) were charged in a J-Young NMR tube equipped with a sealed glass capillary containing an internal standard solution (*p*-methylanisole ~ 0.010 M; solvent: toluene-*d*₈). ¹H NMR of this solution was recorded, the J-Young tube was brought back into the glovebox. Increasing amounts of trifluoroethanol were then added sequentially, and ¹H NMR spectra were recorded between each point (Figure S-8).

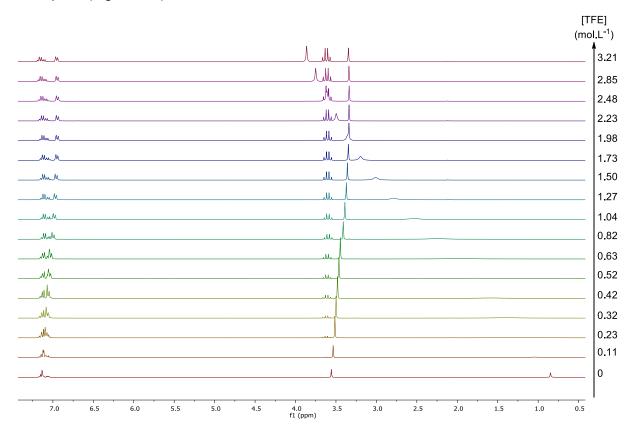
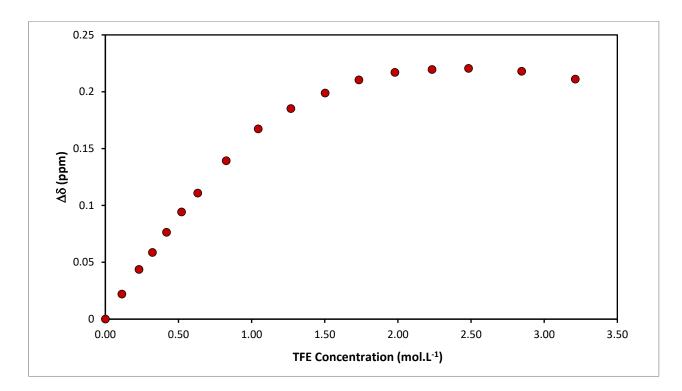
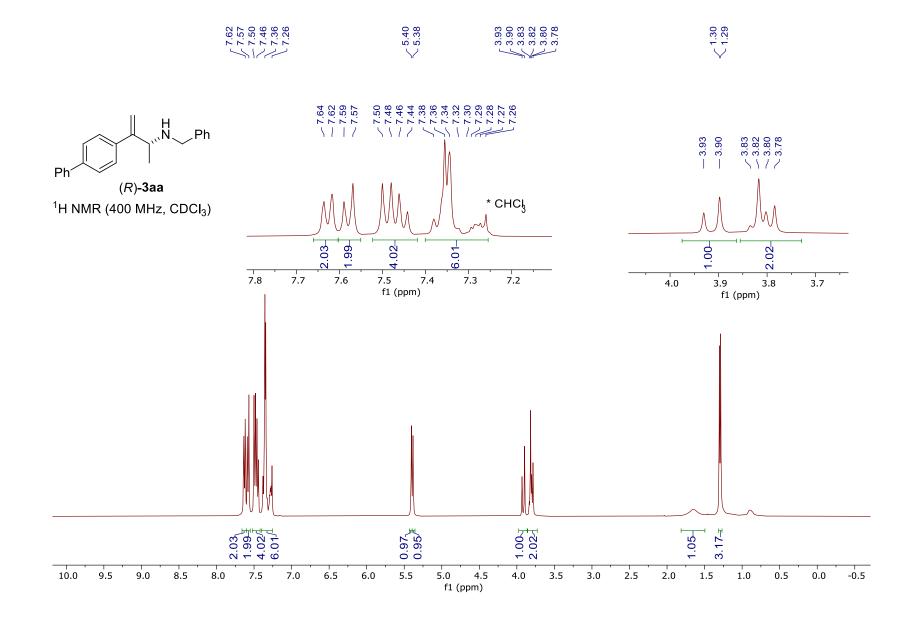
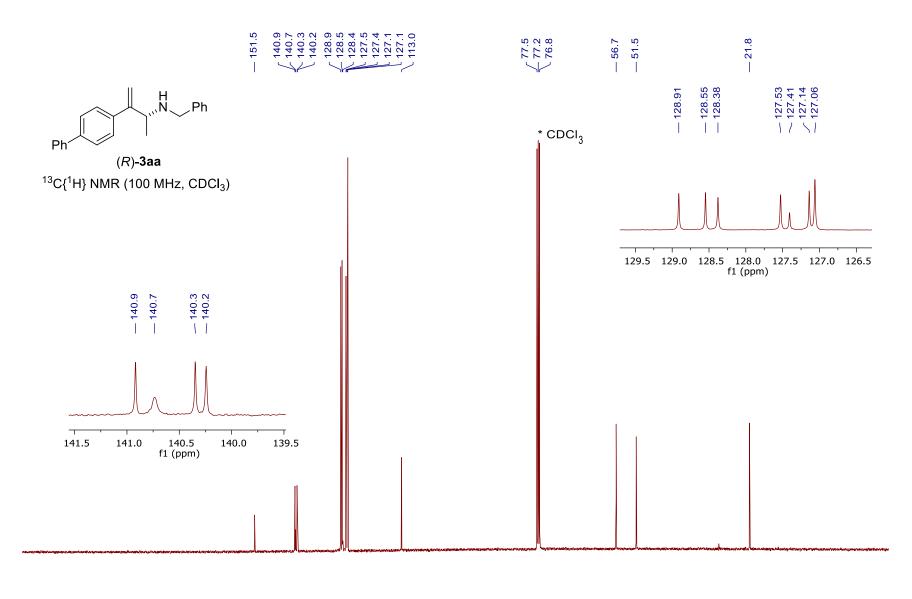
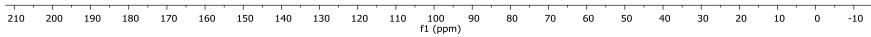



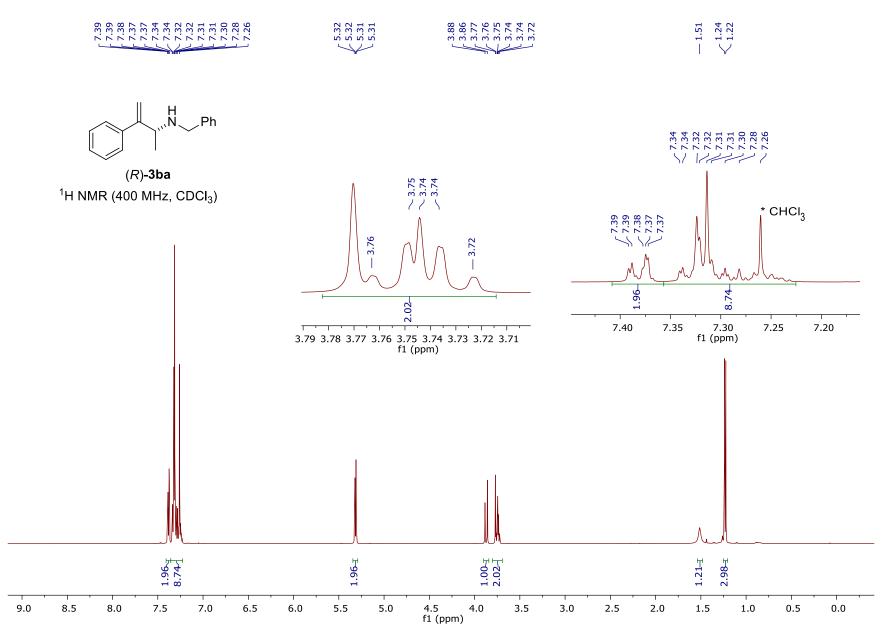
Figure S-8. ¹H NMR of [BnNH₂:TFE] solutions in toluene-*d*₈.

The $\Delta\delta$ ¹H NMR shift of the BnNH₂ benzylic protons for each point compared to the initial 1.64 M BnNH₂ solution was then plotted against the TFE concentration (Figure S-9).

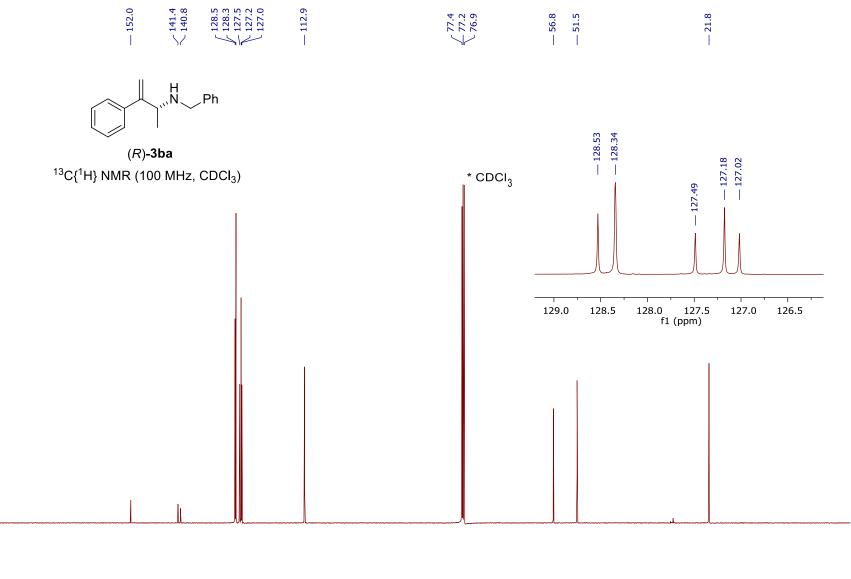

These data were fitted to the 1:1, 2:1 or 1:2 binding models proposed by Thodarson *et al.*.⁴ Good Root Means Square errors were obtained for the 1:2 and 2:1 BnNH₂:TFE models (RMS = 0.0028 and 0.0024 respectively). Although it is not possible to unequivocally determine which one of these fits is better, a 1:2 fit - where a BnNH₂:TFE dimer would form first prior to binding of a second equivalent of TFE to the lone pair of the oxygen of the first molecule of alcohol - seems more likely. Indeed, the signal of the benzylic hydrogens are no longer significantly shifting once the concentration in TFE and BnNH₂ are equals.

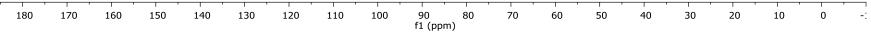

Subsequently, the signal of the exchangeable protons of benzylamine sharpen until a 1:2 stoichiometry is reached.

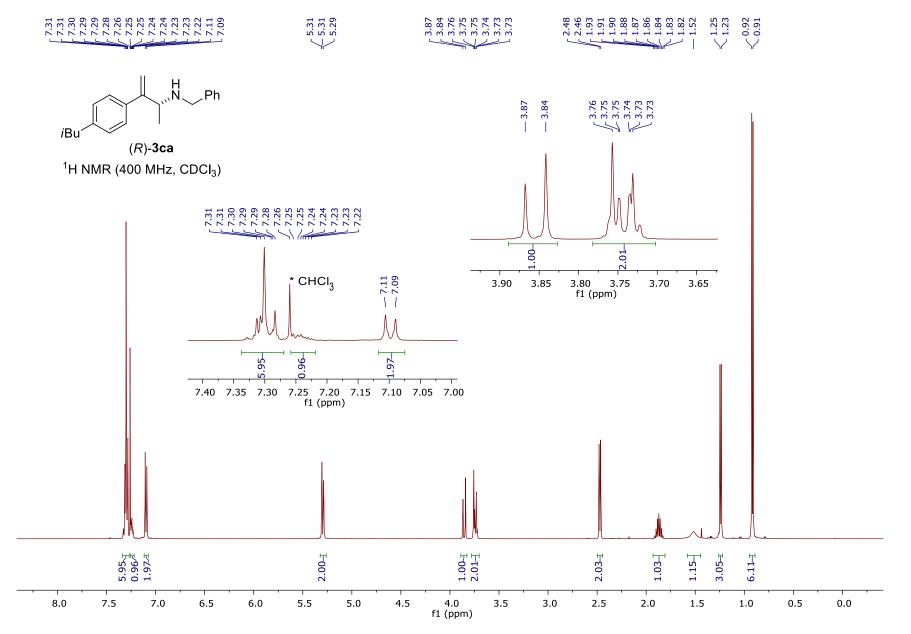


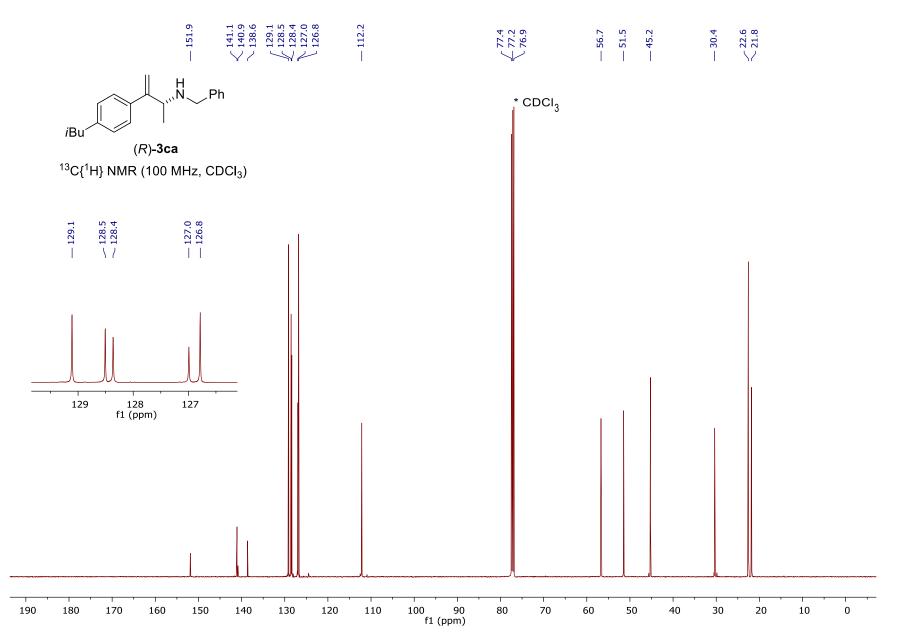

Figure S-9. ¹H NMR titration of Benzylic amine by CF₃CH₂OH.

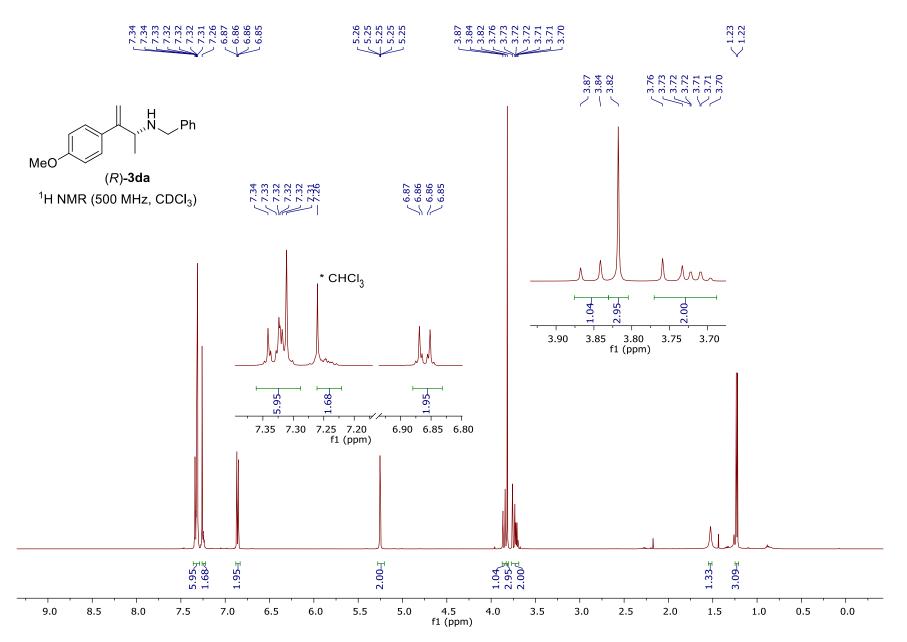
12. NMR Spectra of organic compounds

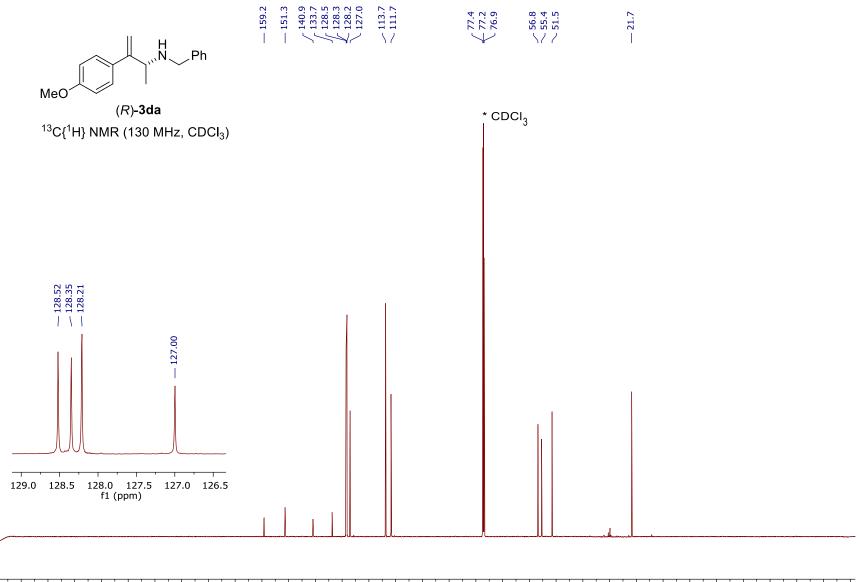




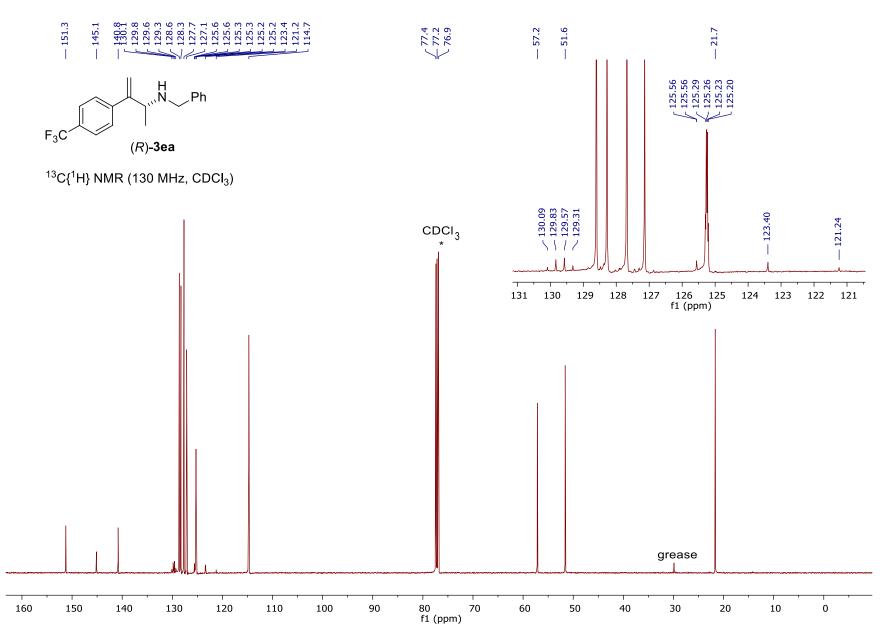


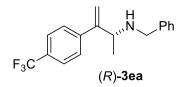

S97



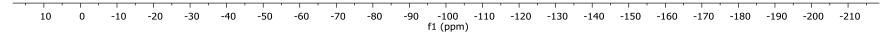


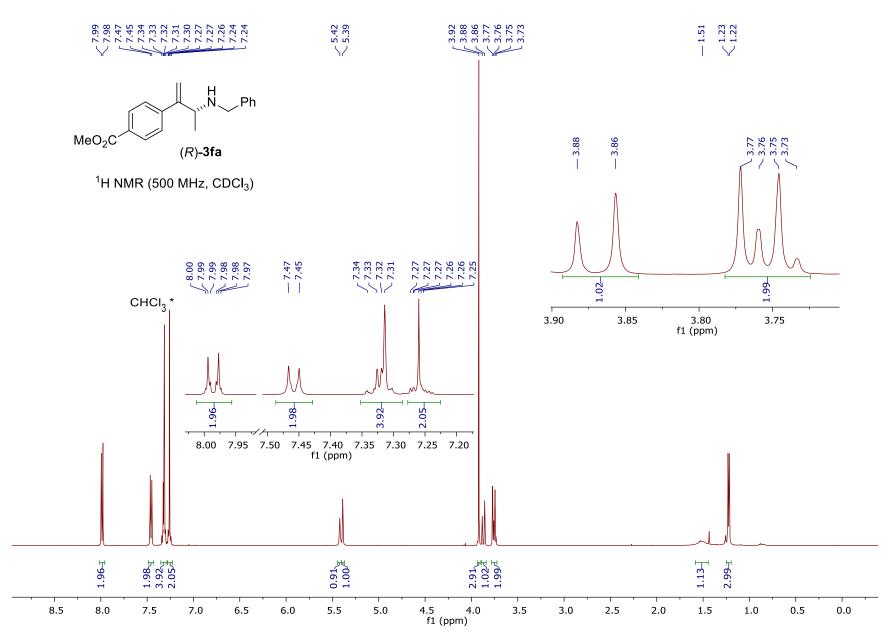

S99

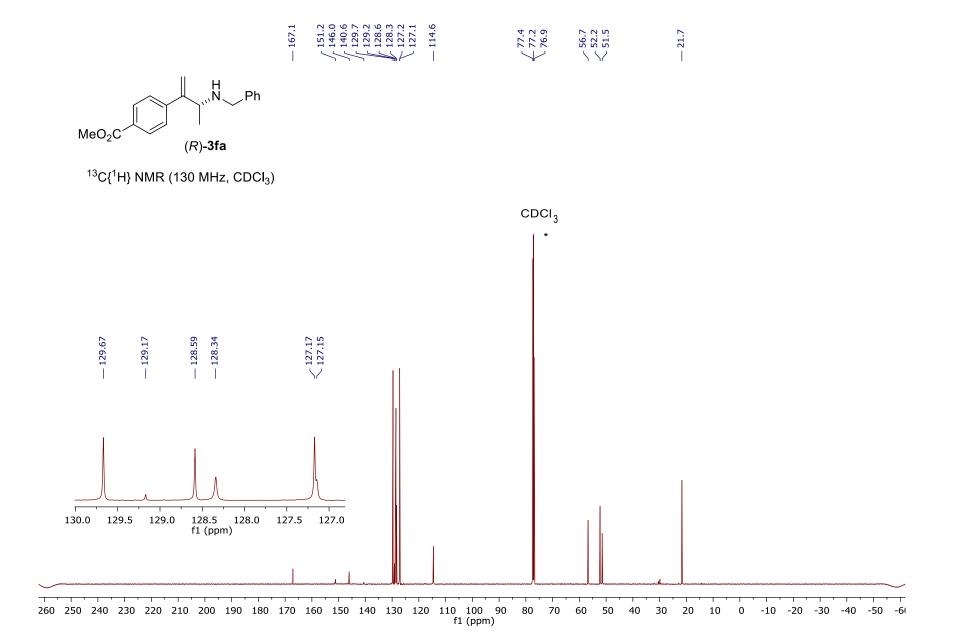


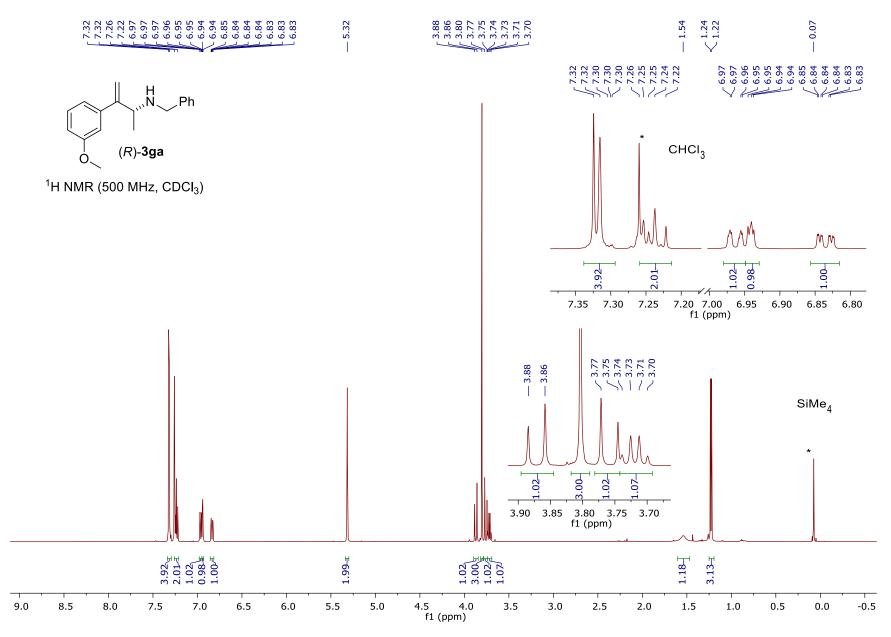


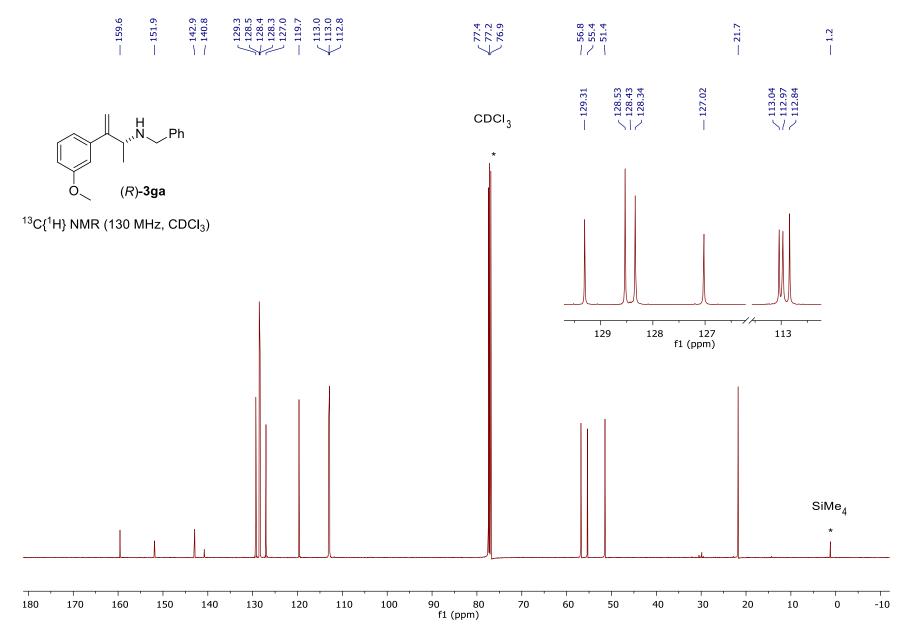
260 250 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 f1 (ppm)

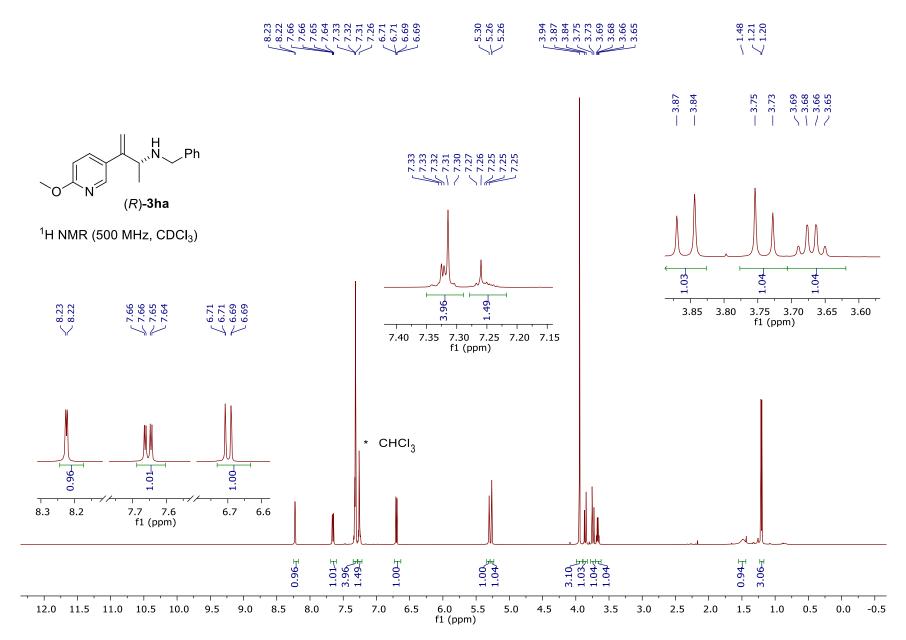


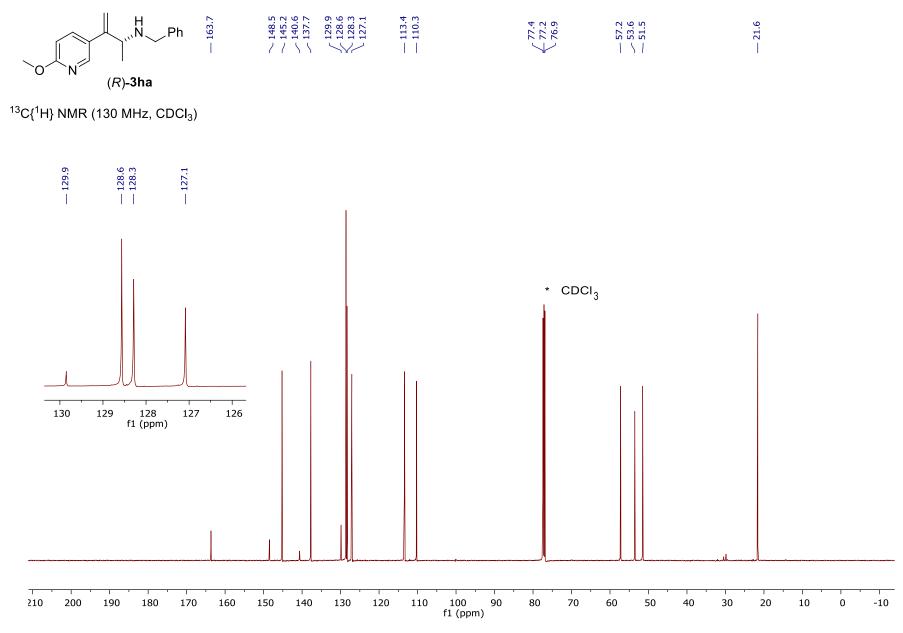


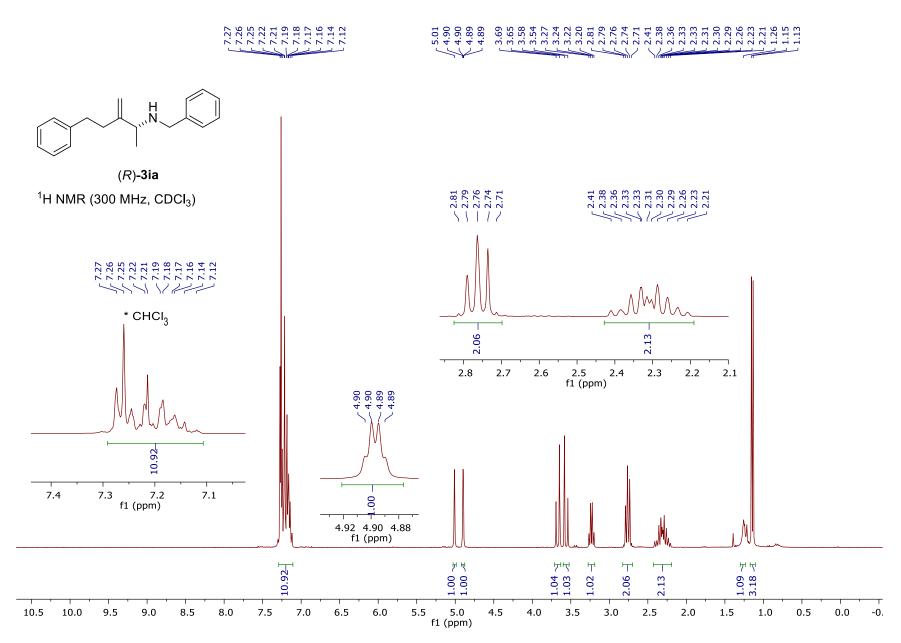


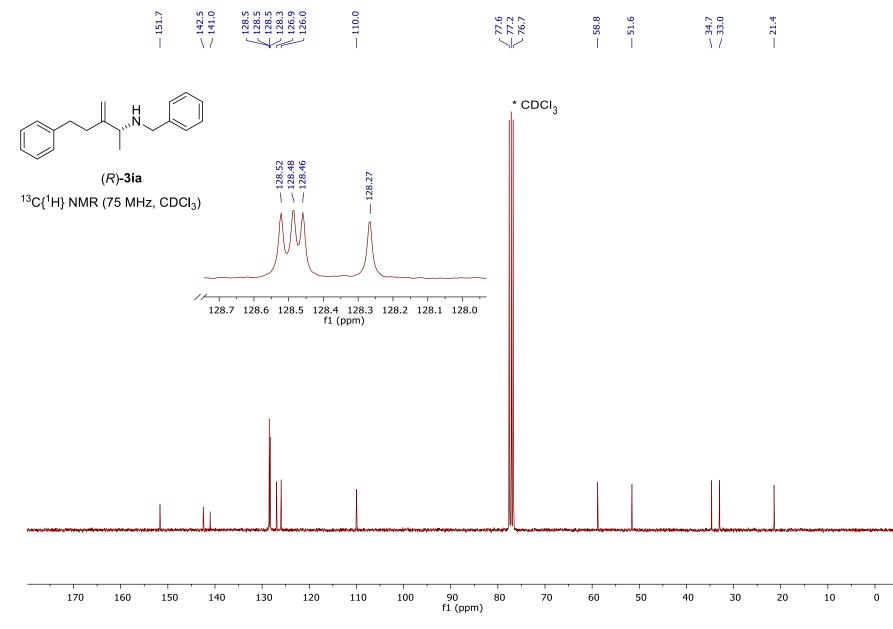


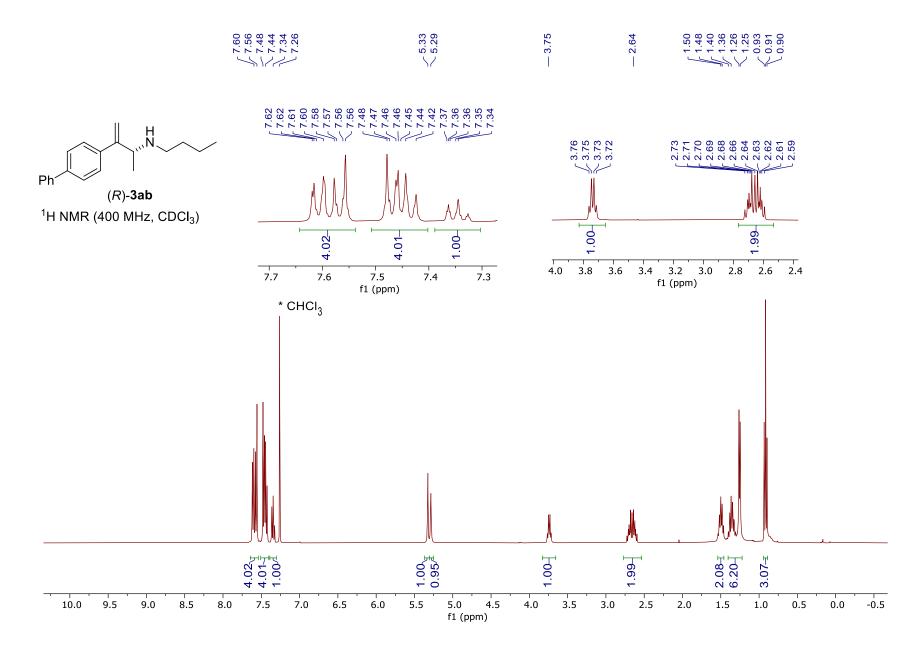




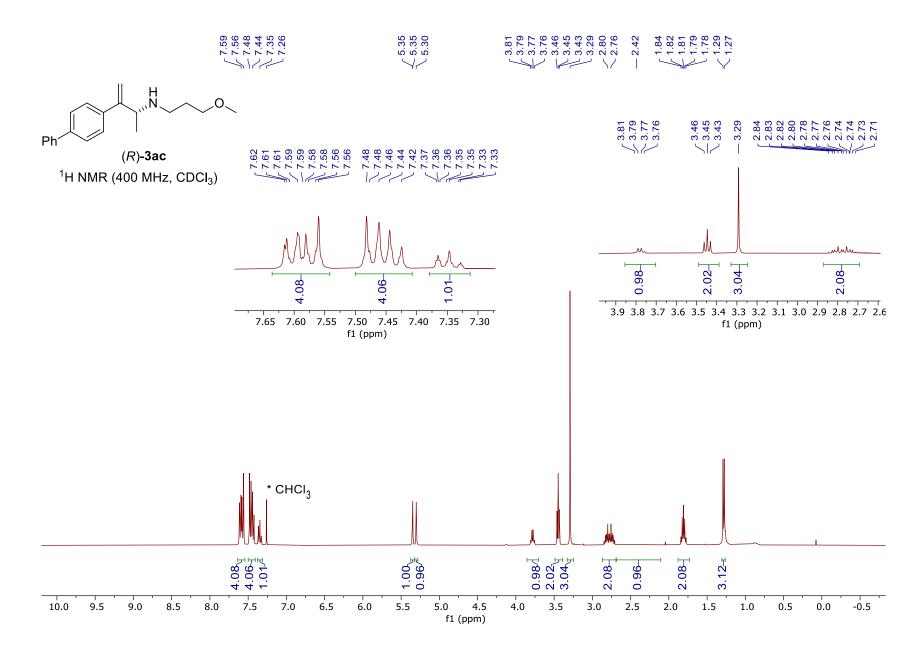

S106

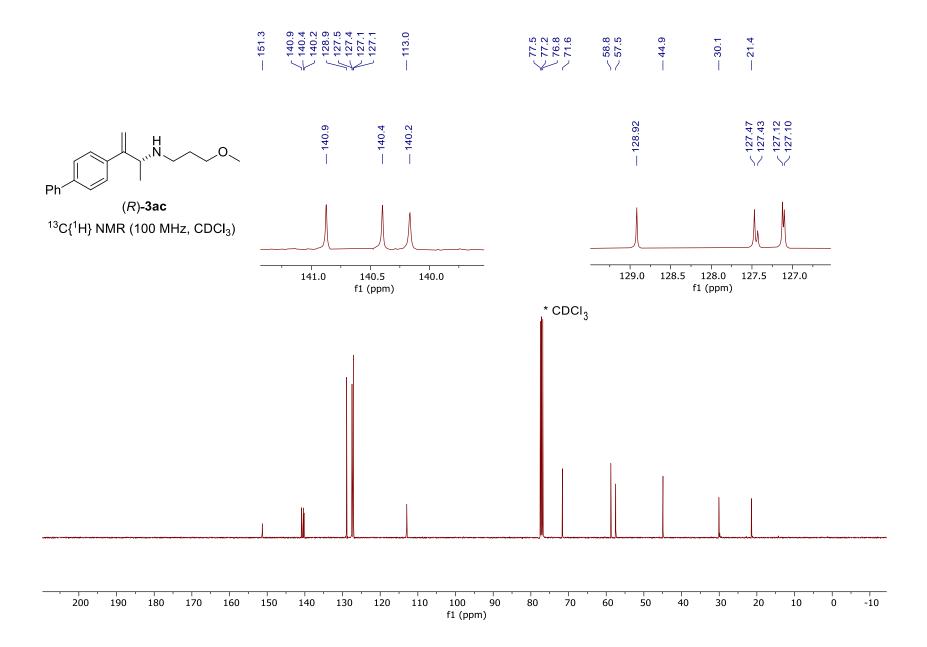


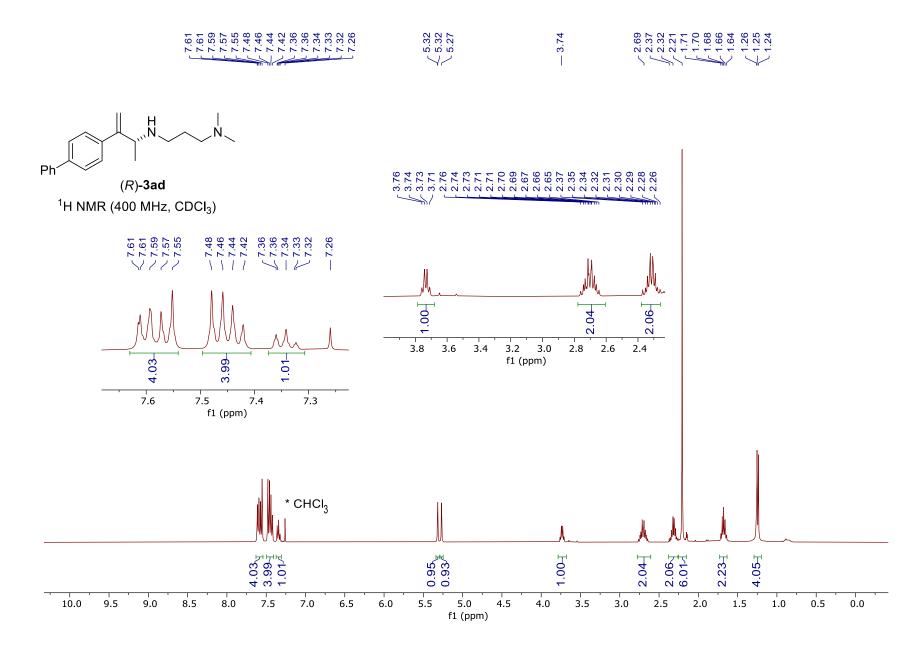


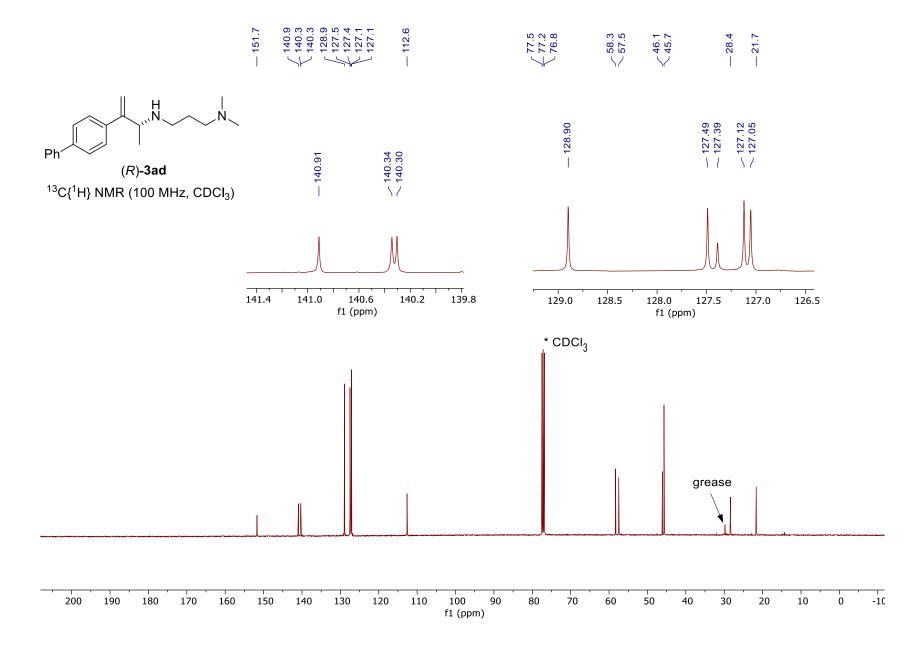


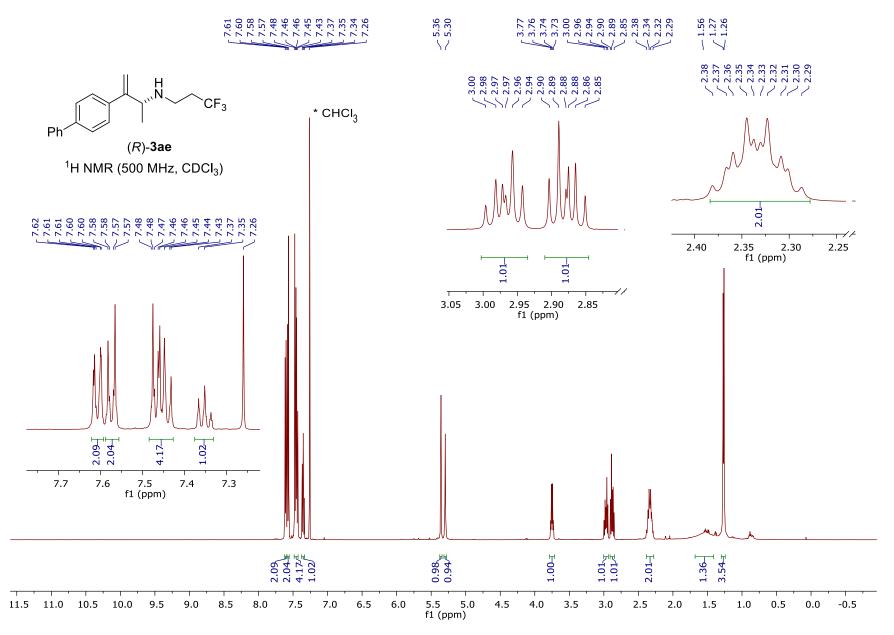


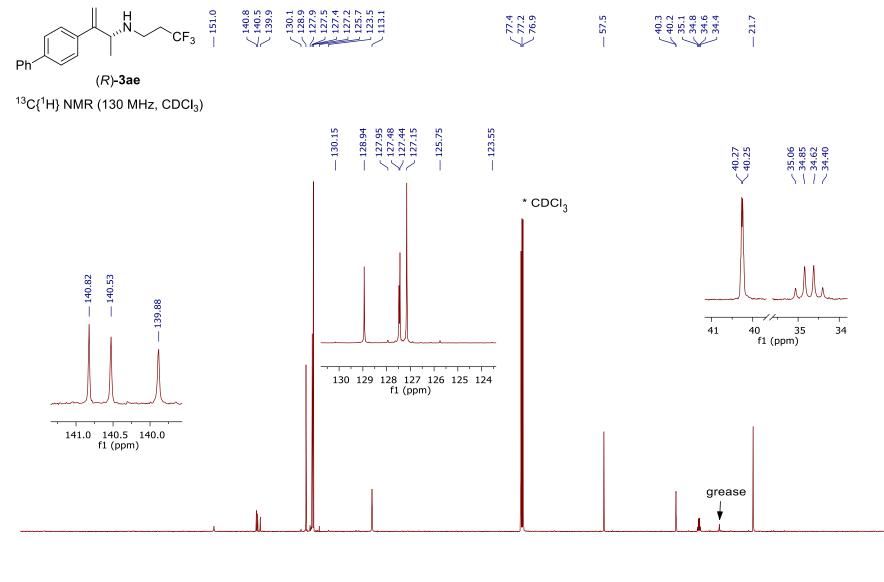


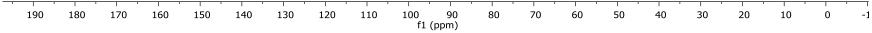


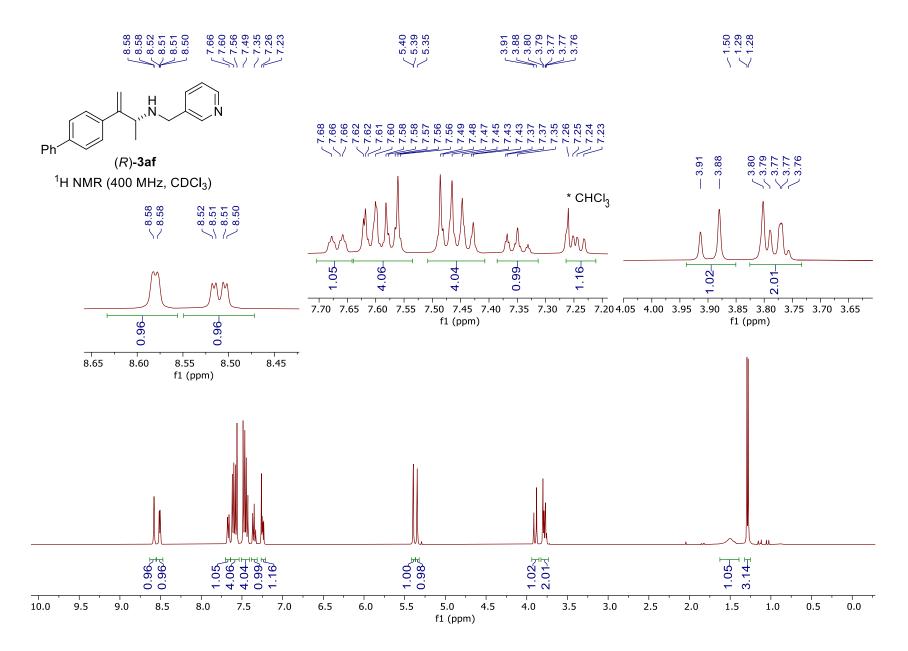


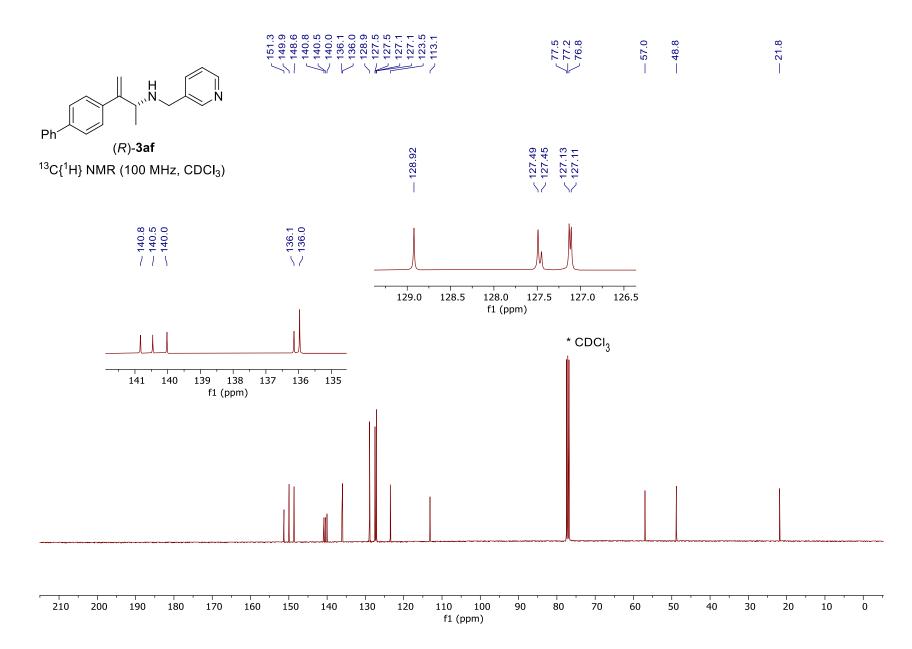


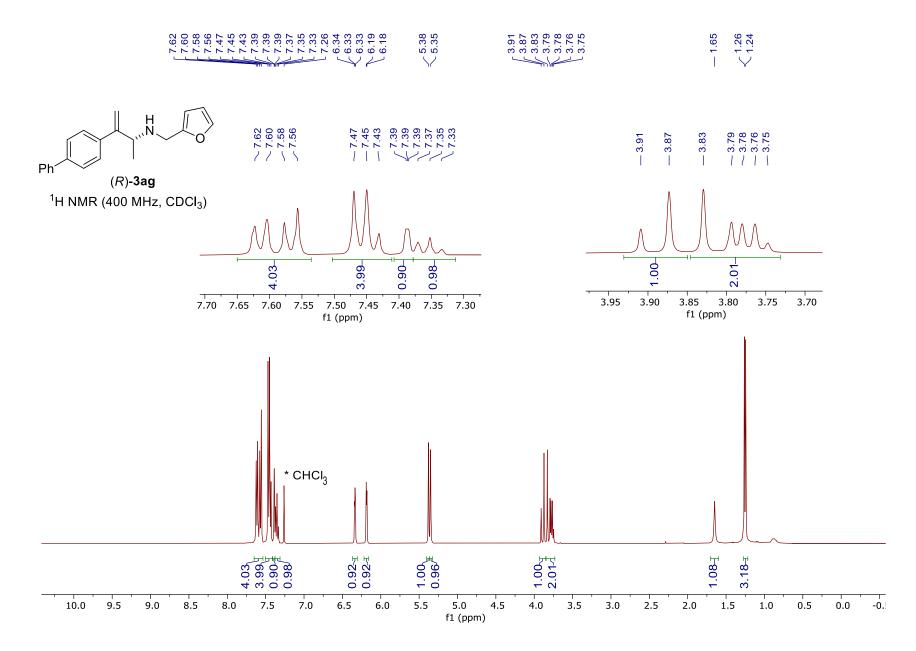


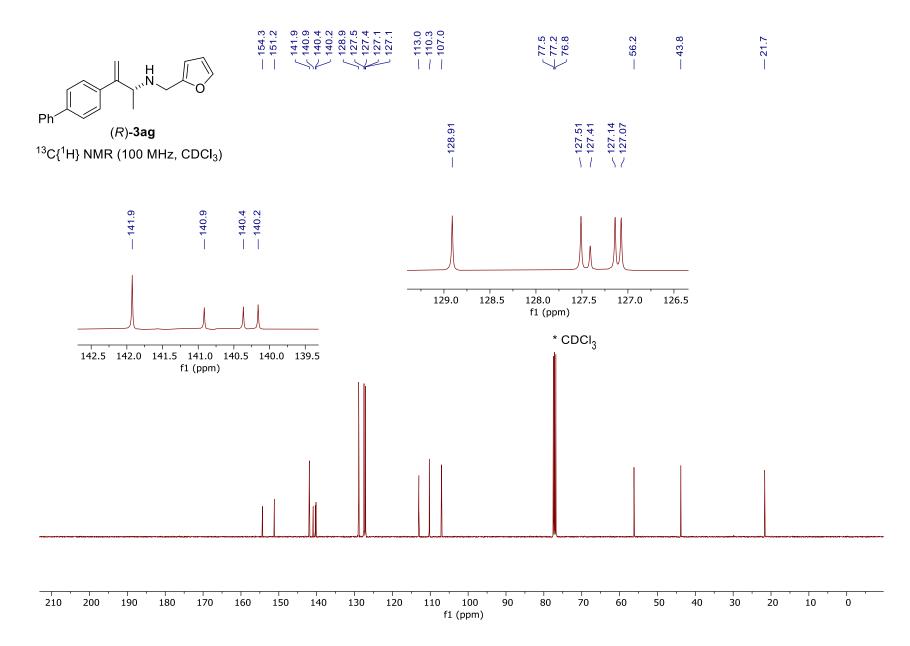



S117

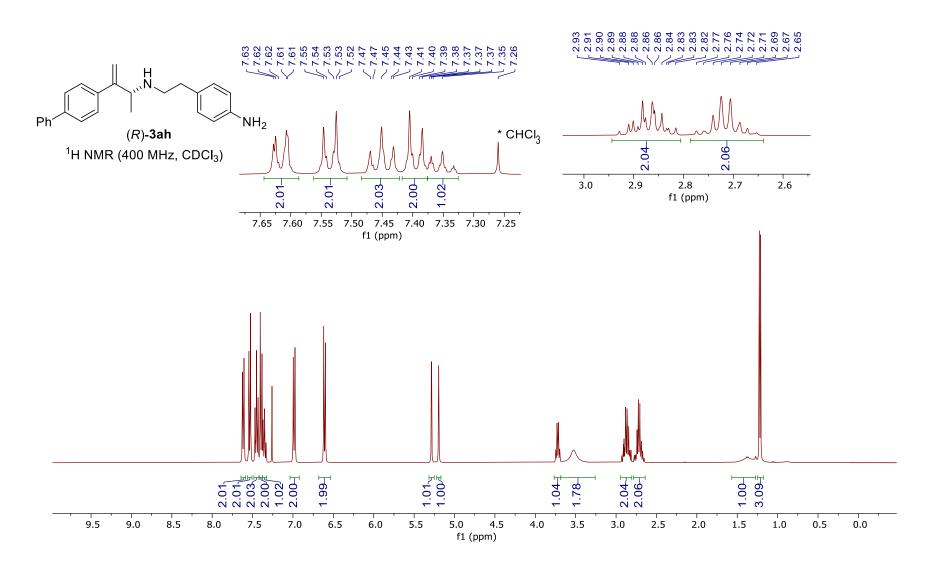


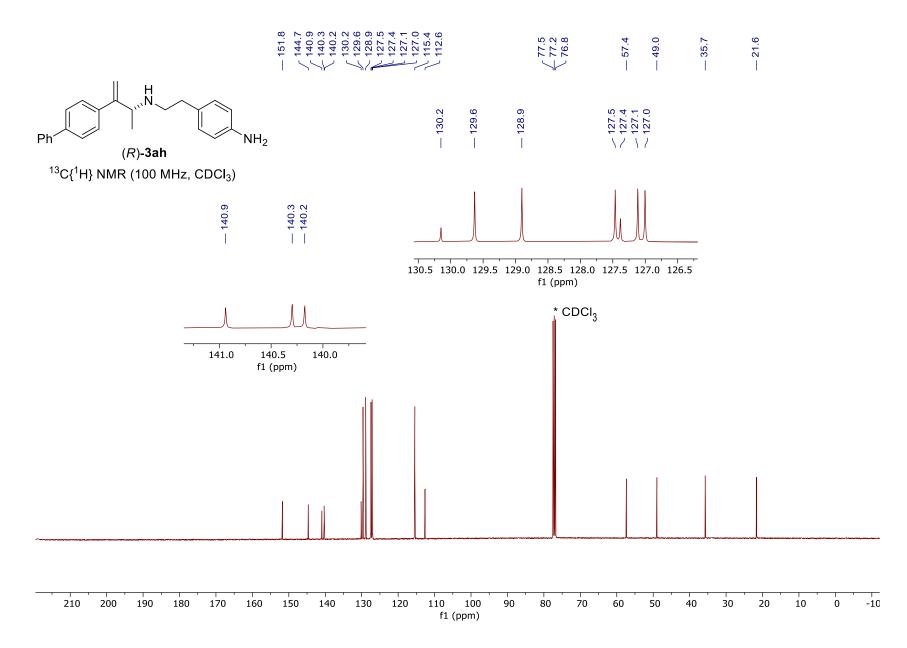


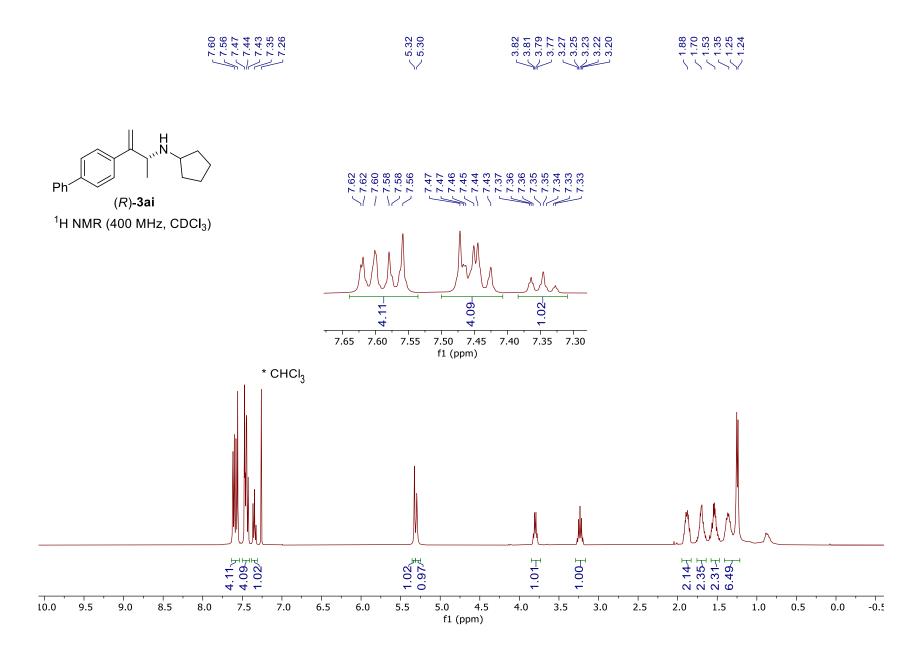


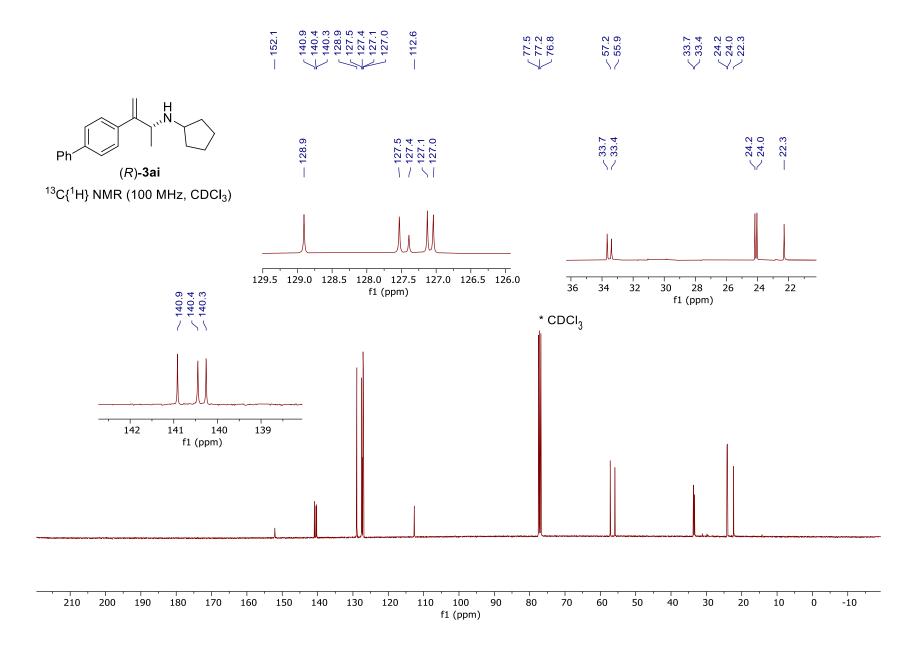

H N. °CF₃ Ph (*R*)-3ae ¹⁹F{¹H} NMR (280 MHz, CDCl₃)

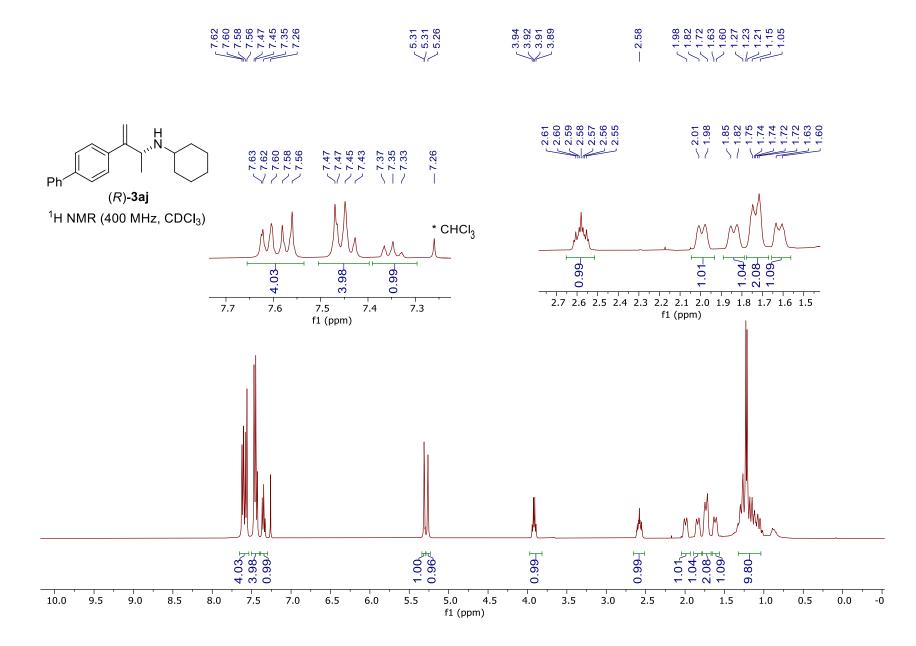
10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

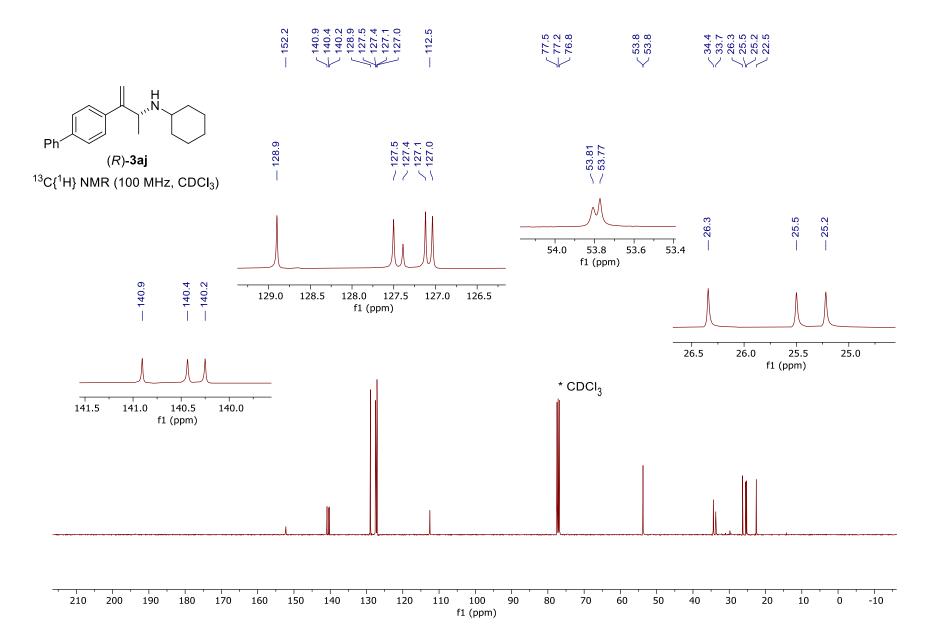




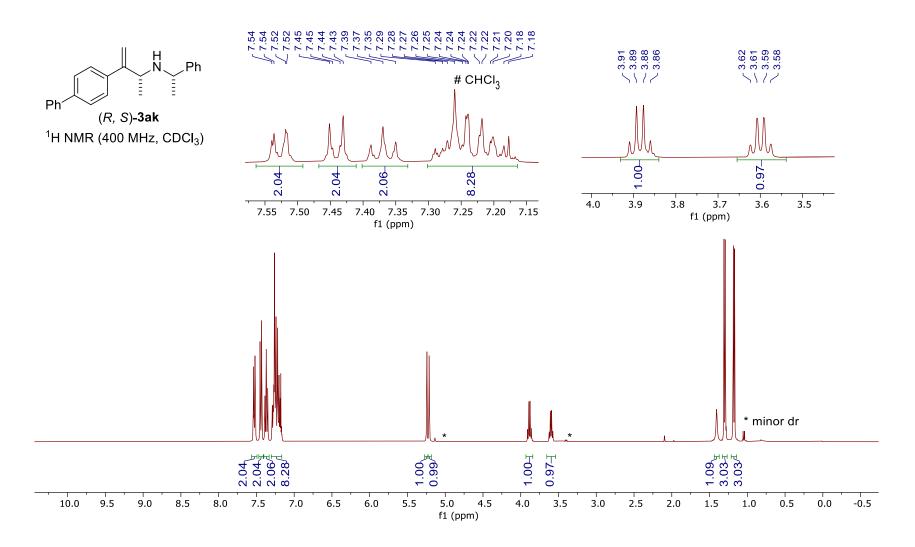


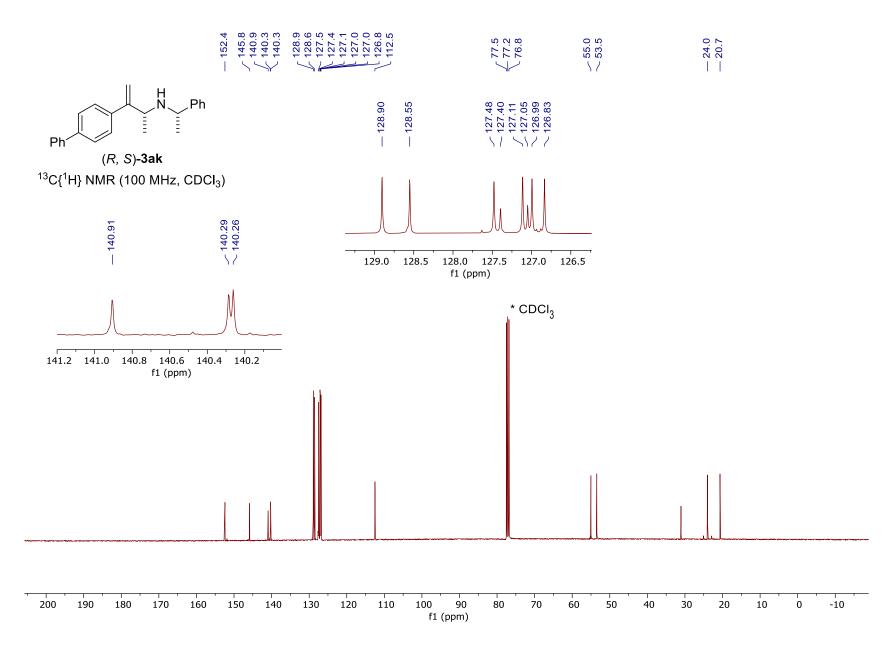


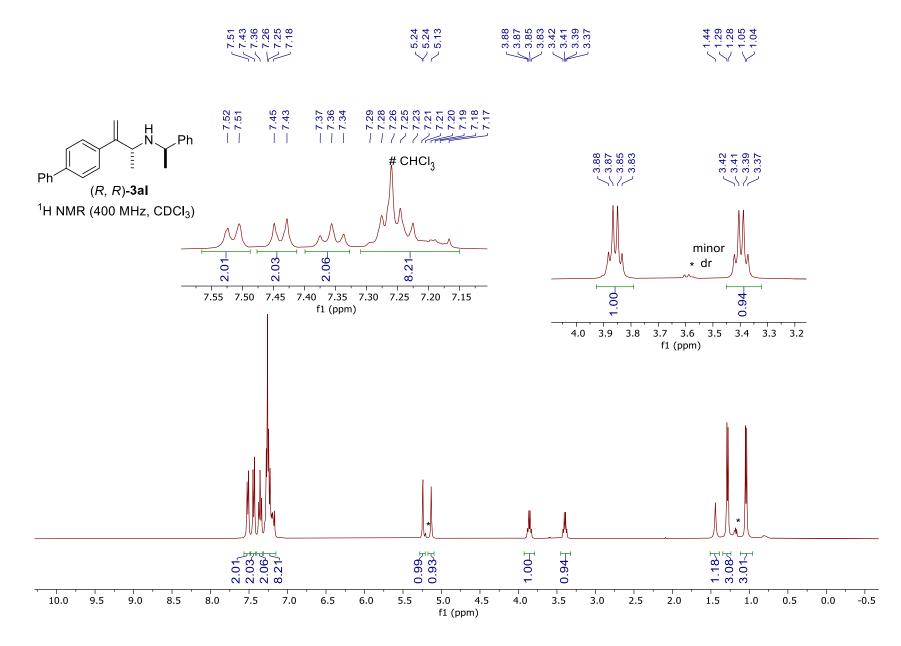


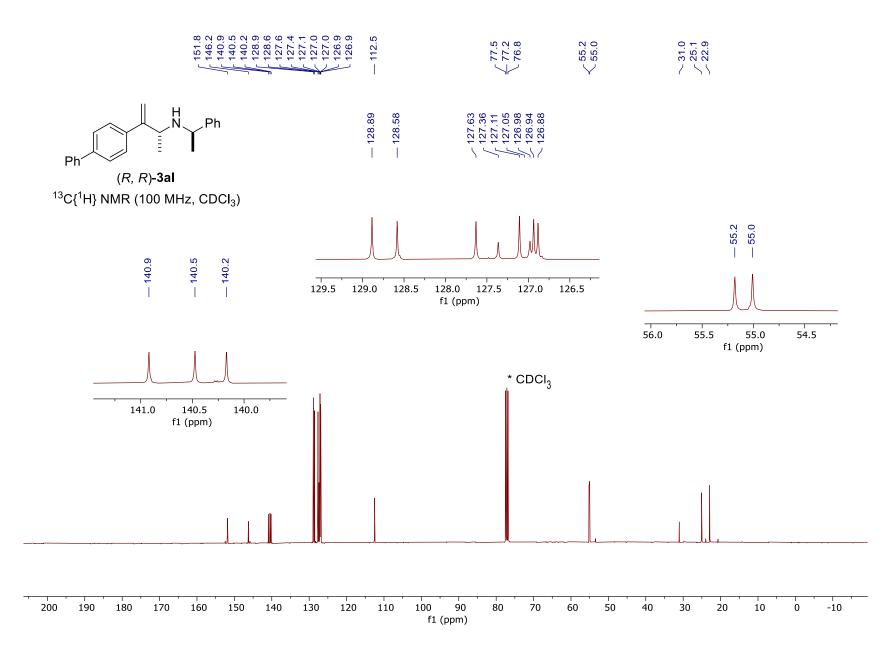


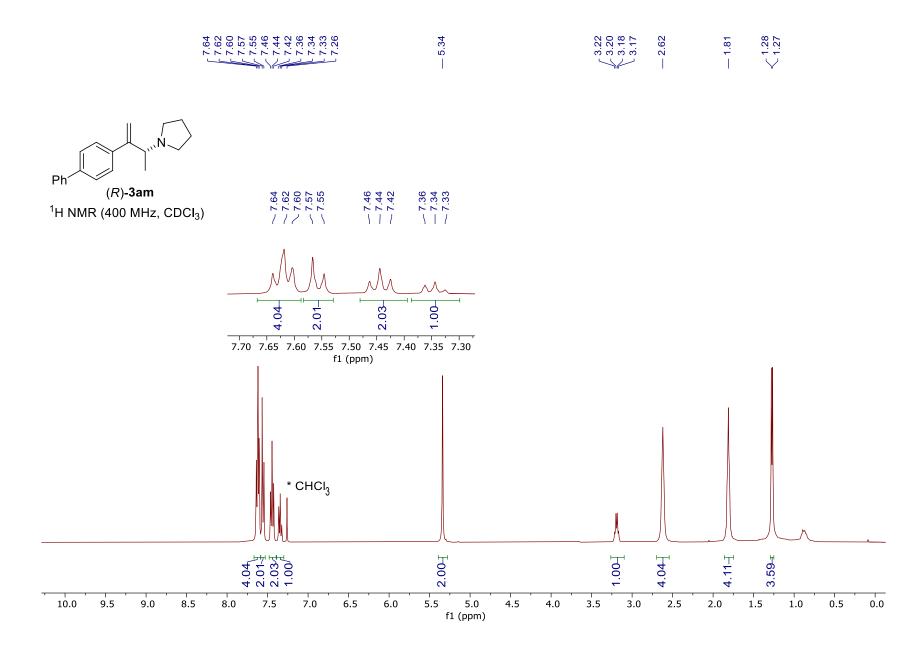
S128

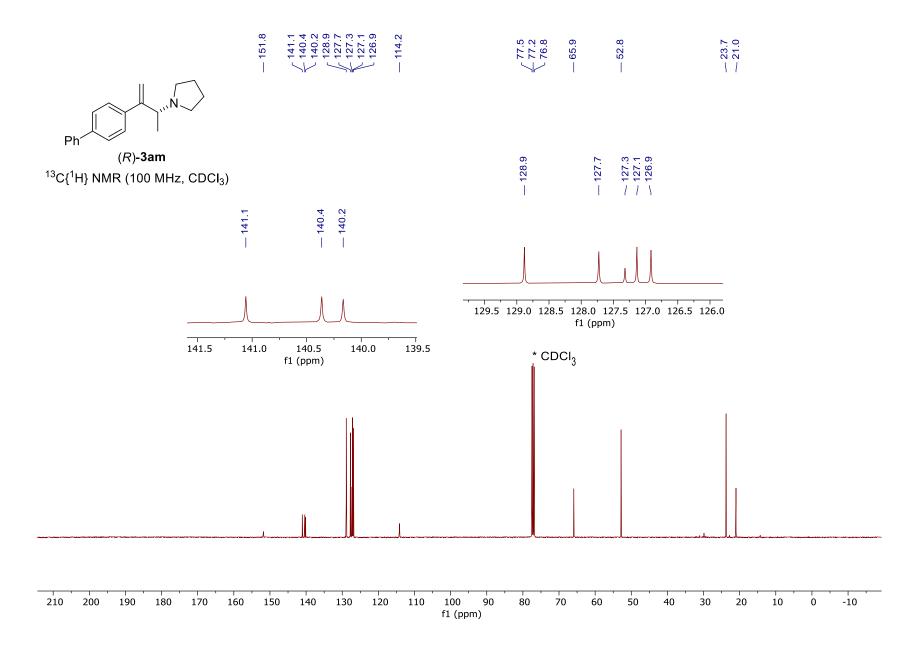


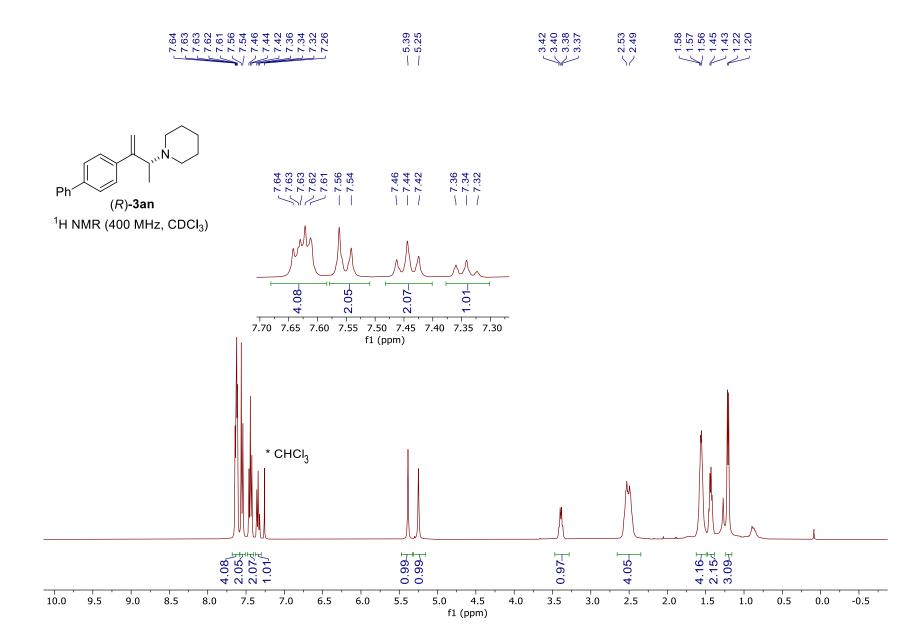


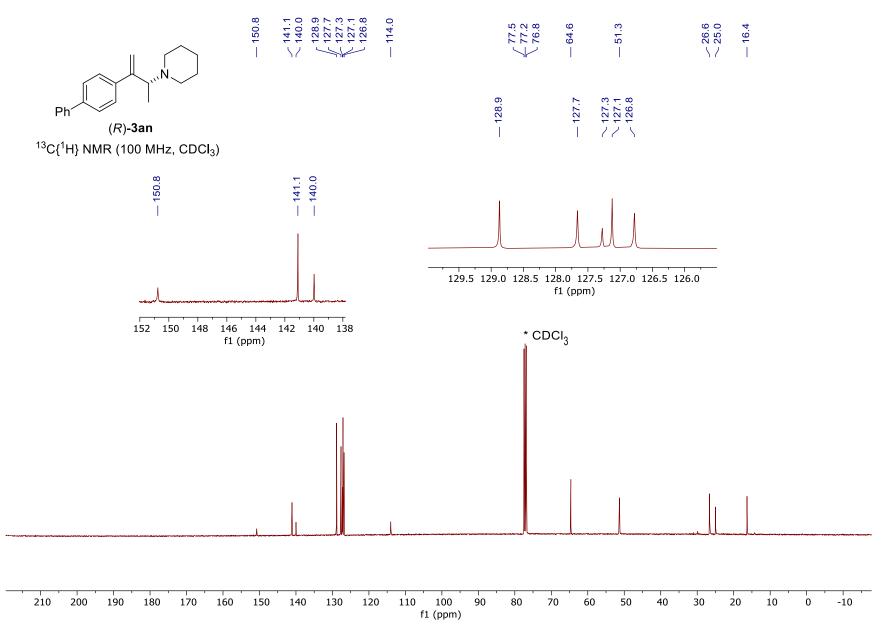


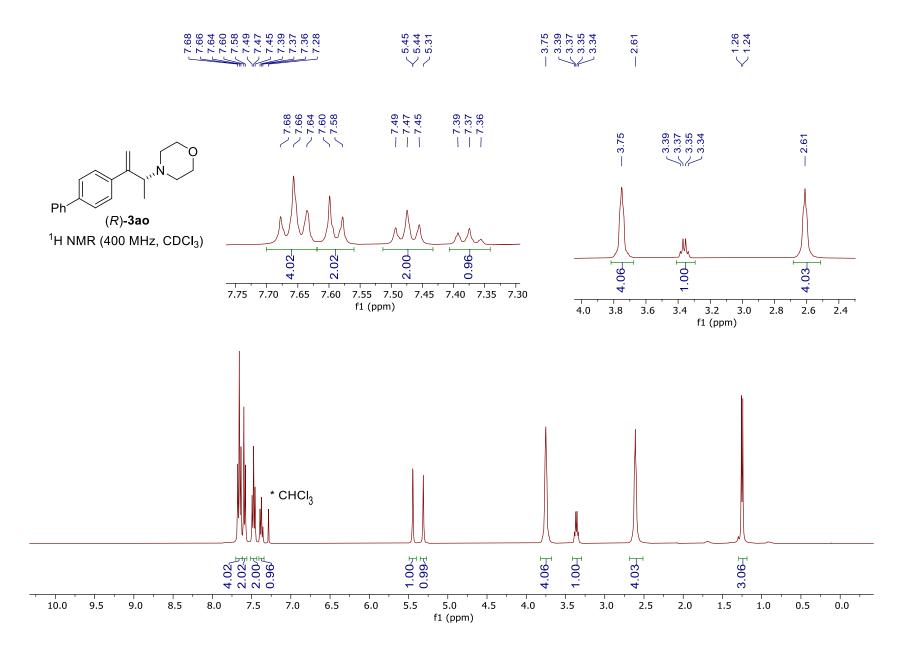


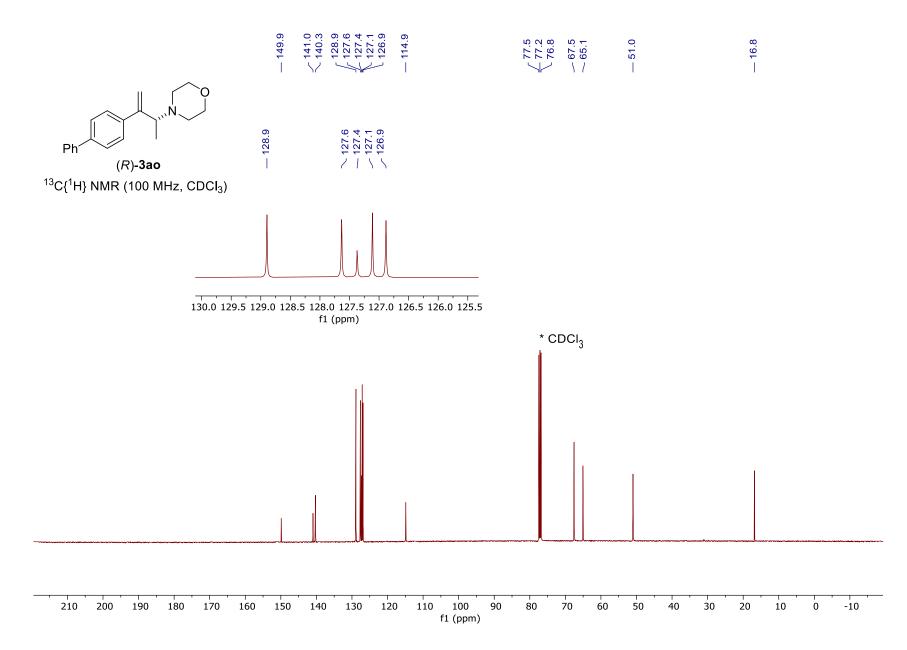


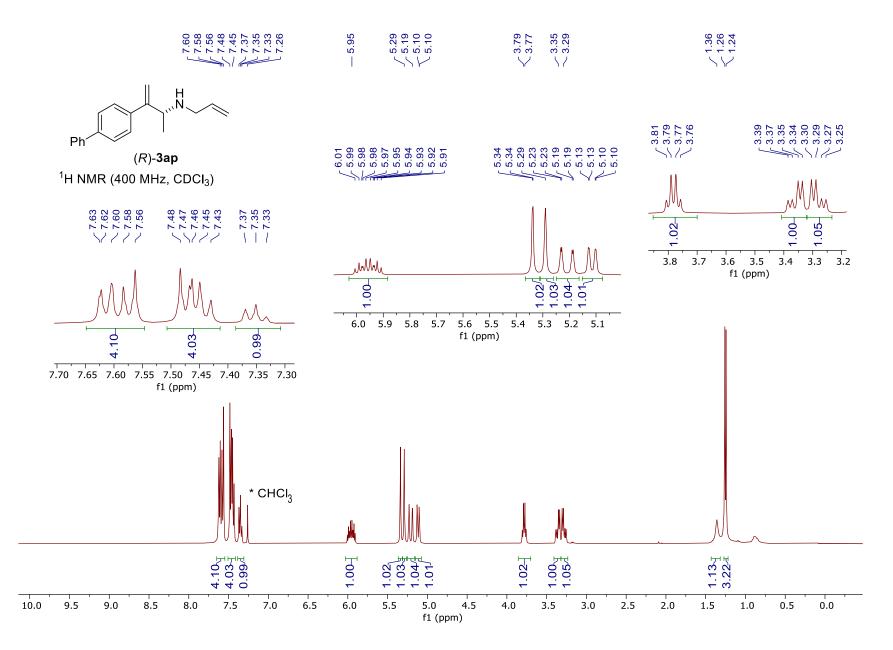


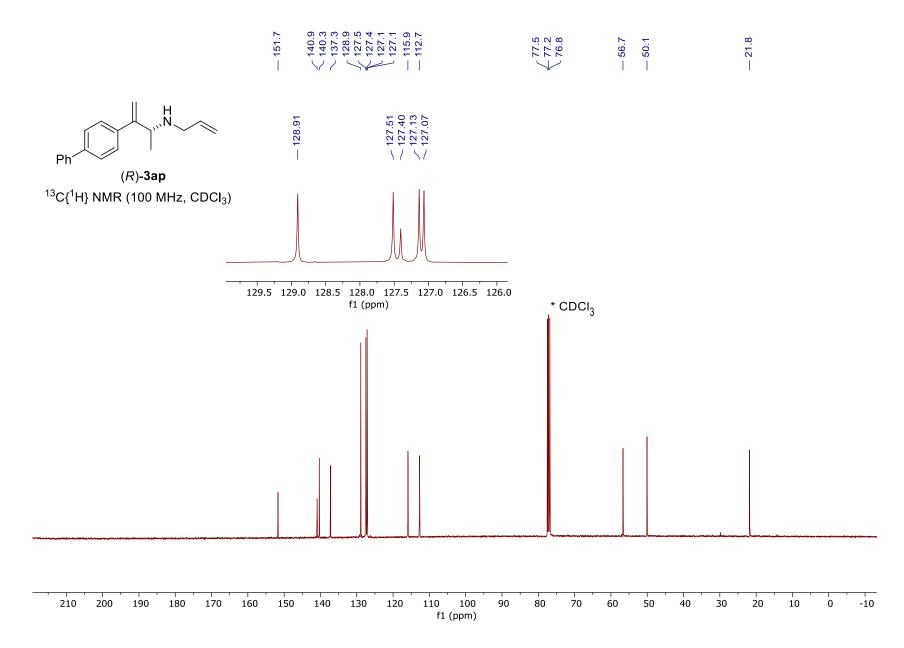


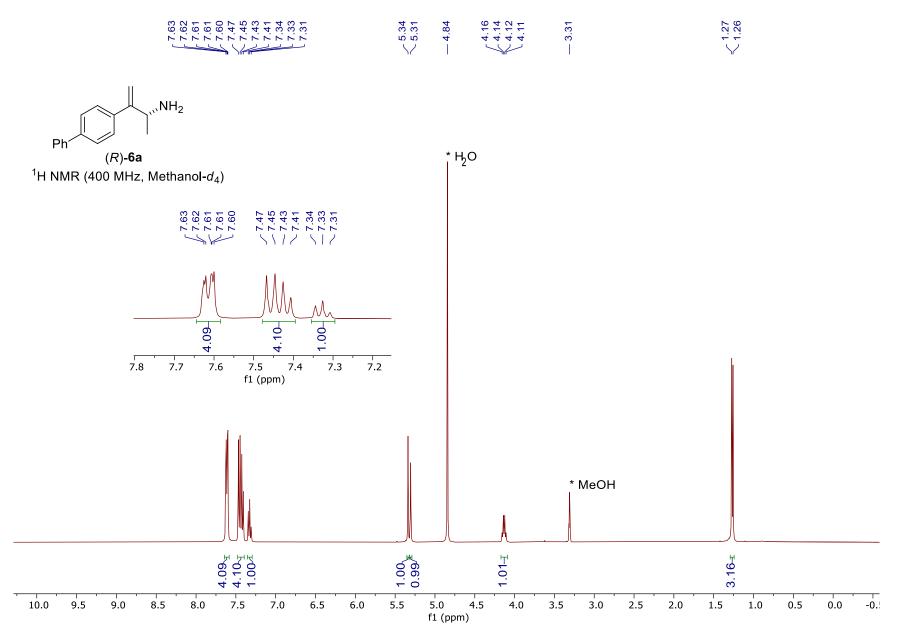


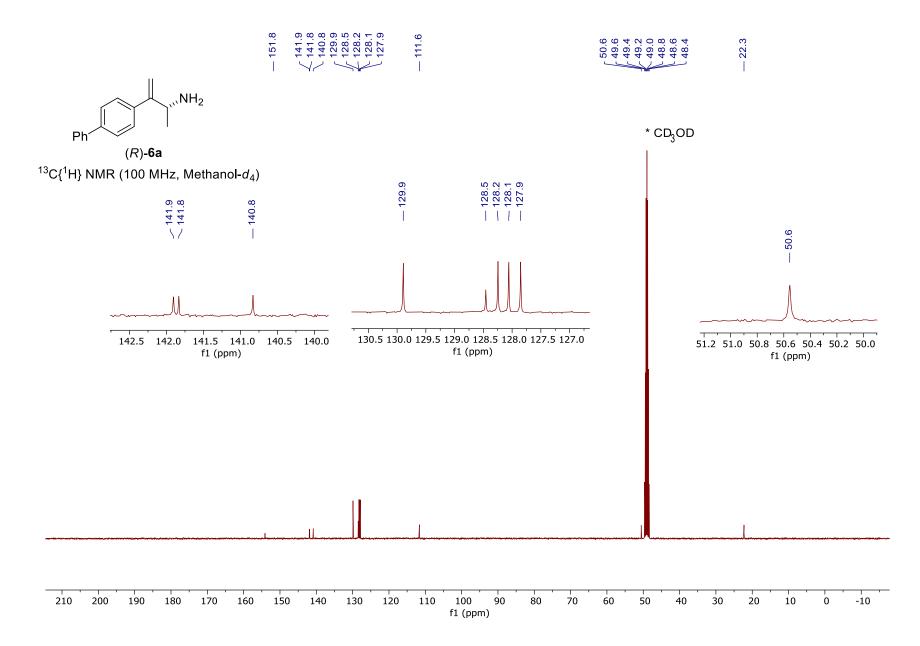


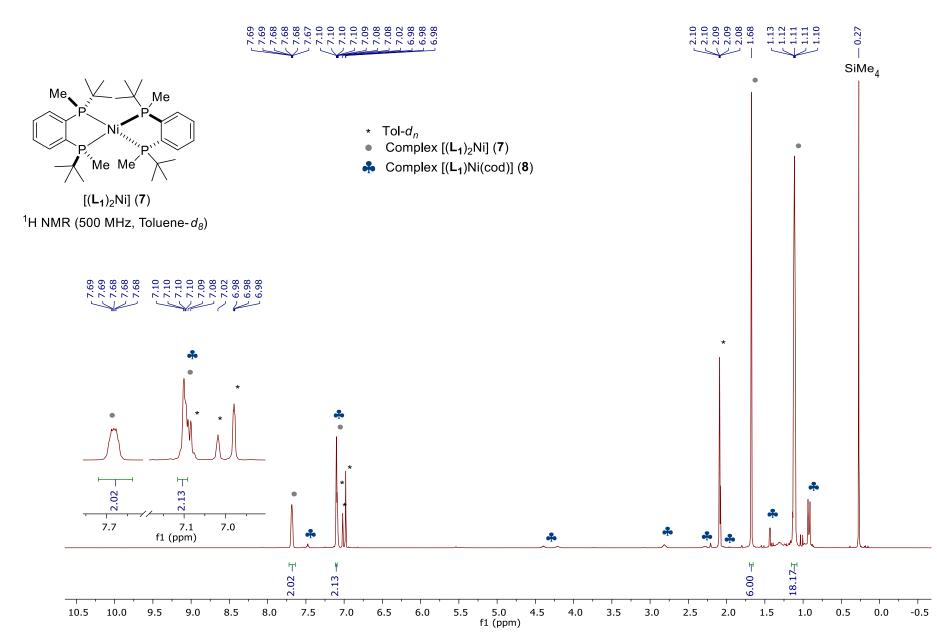


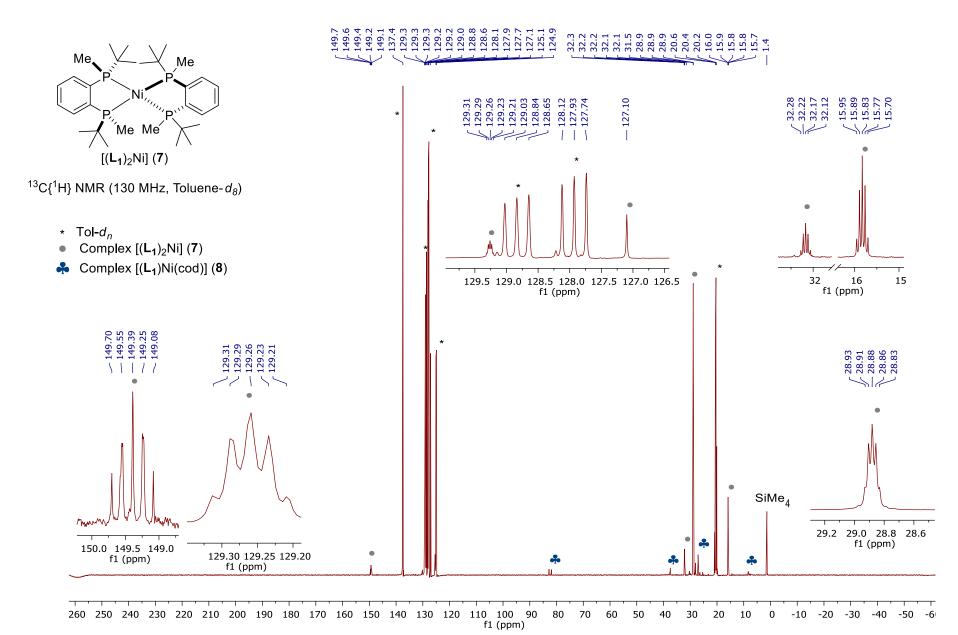


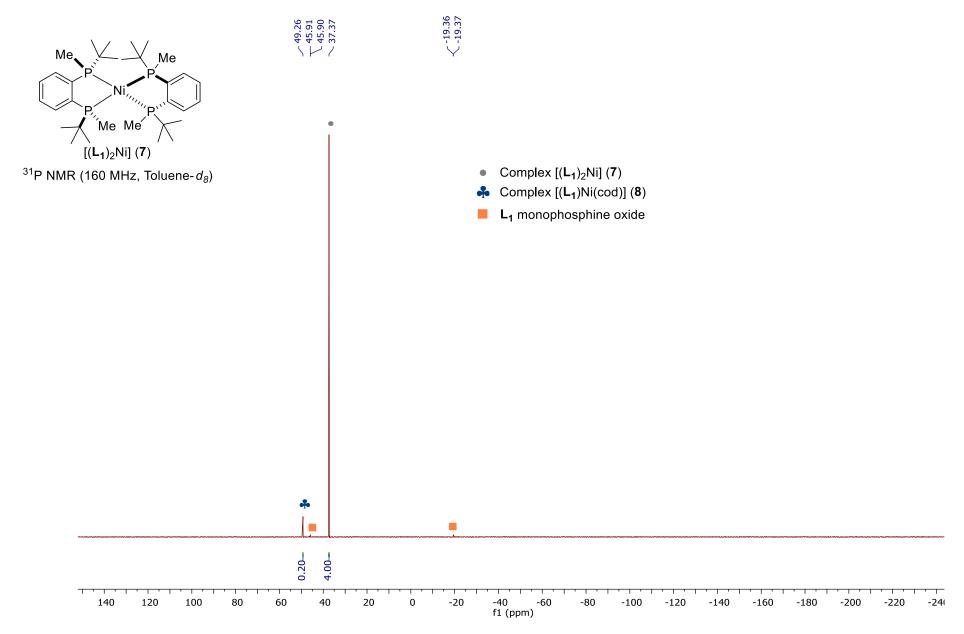


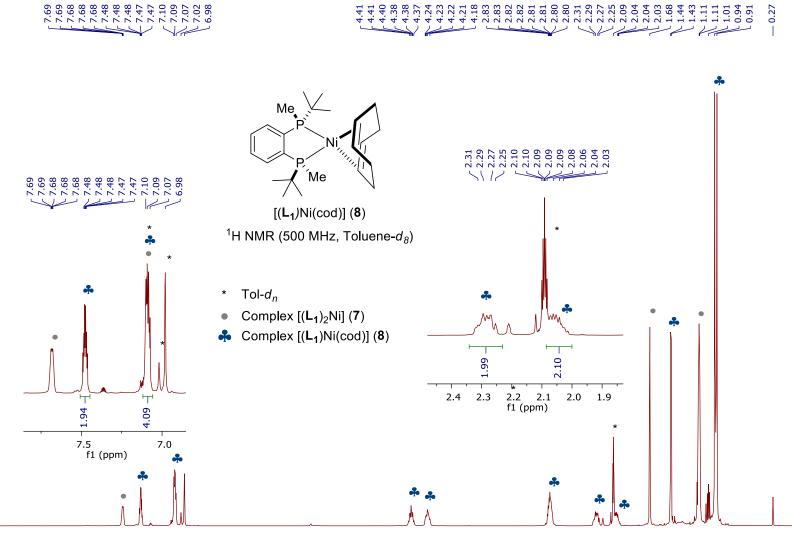


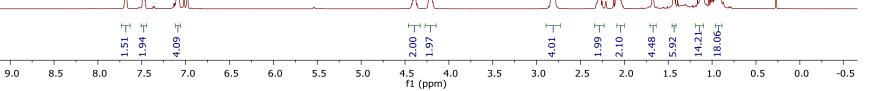


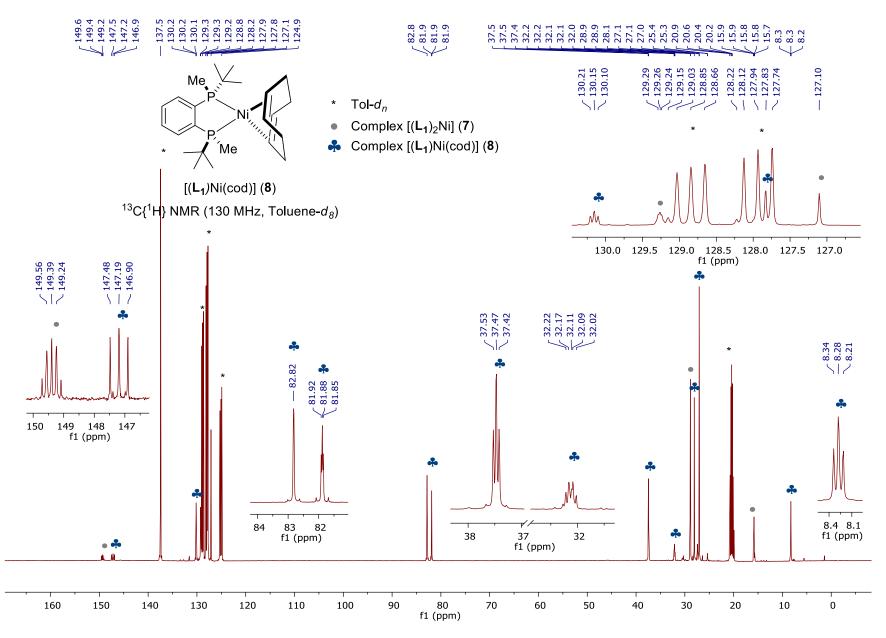

S144

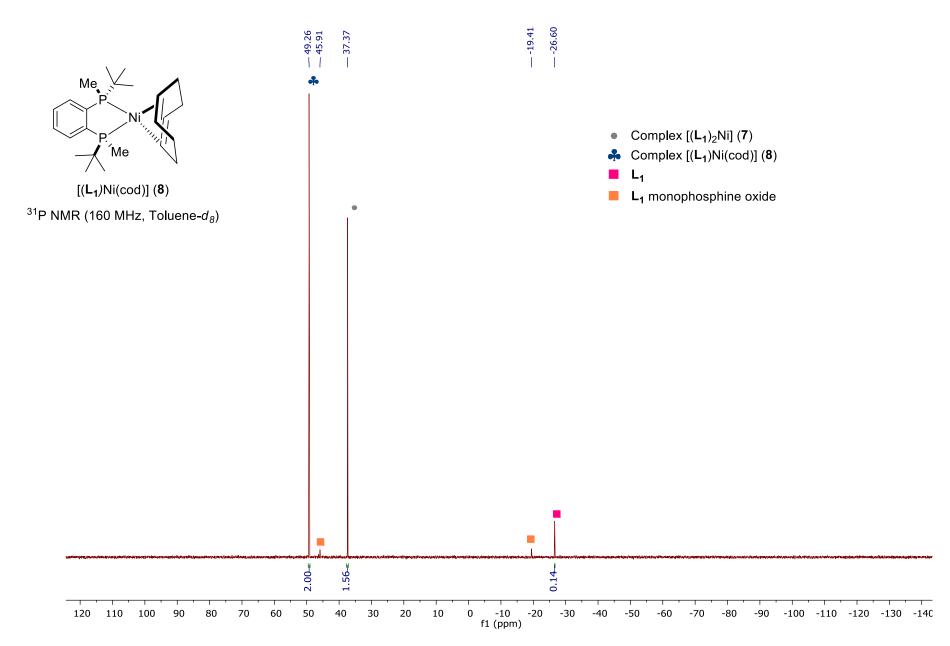

S145

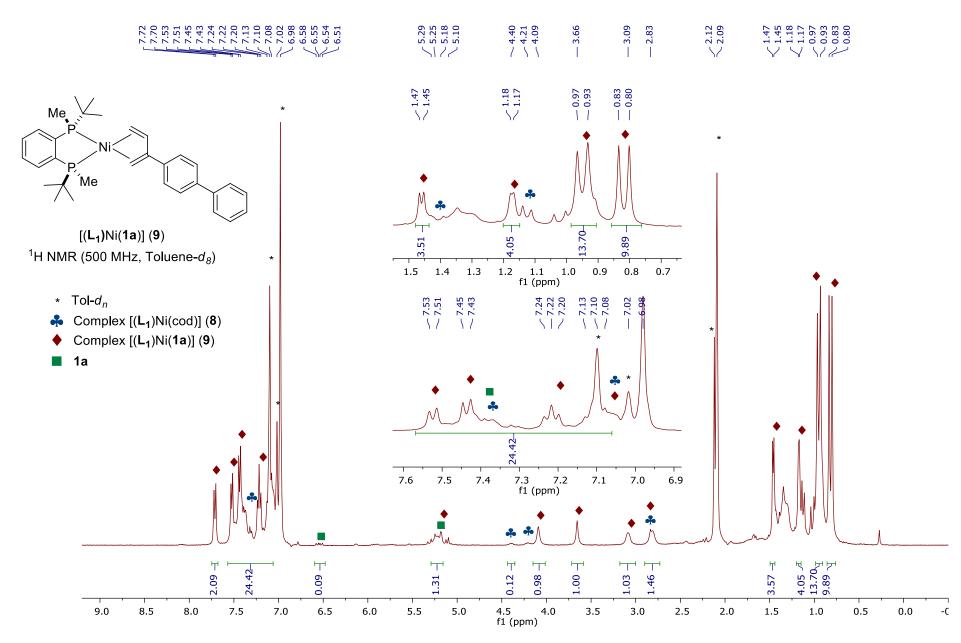


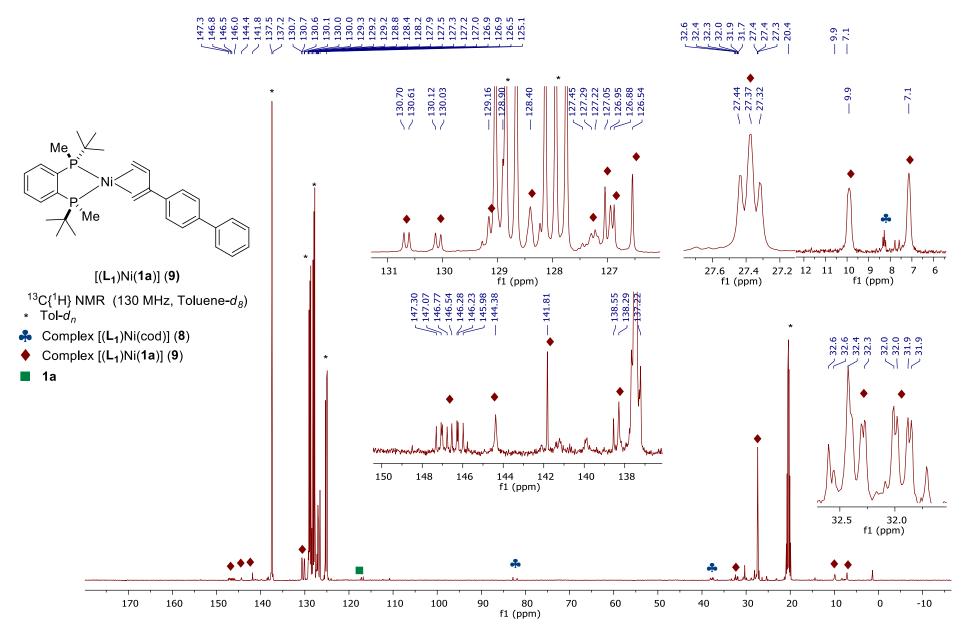

13. NMR Spectra of organometallic compounds

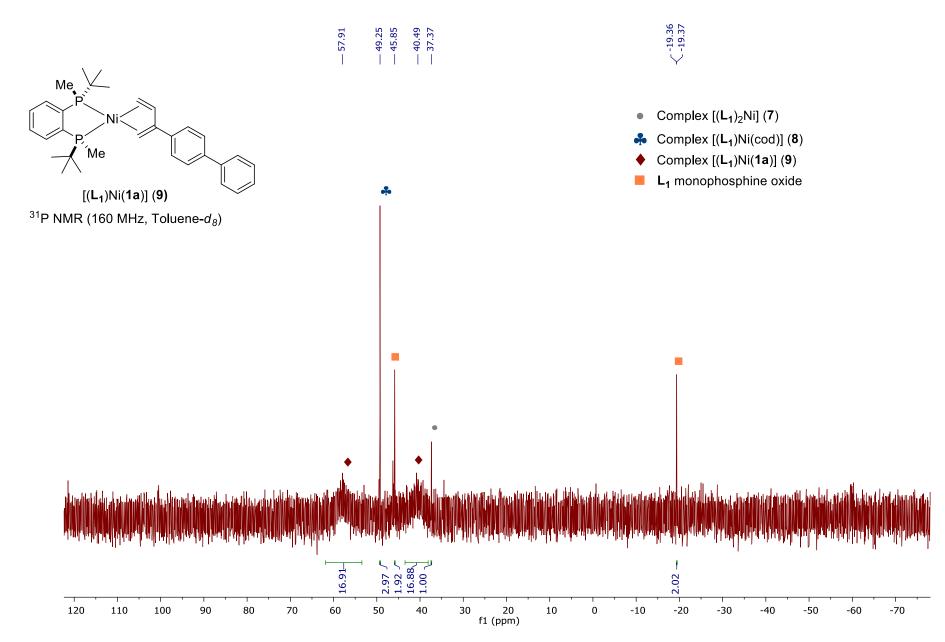


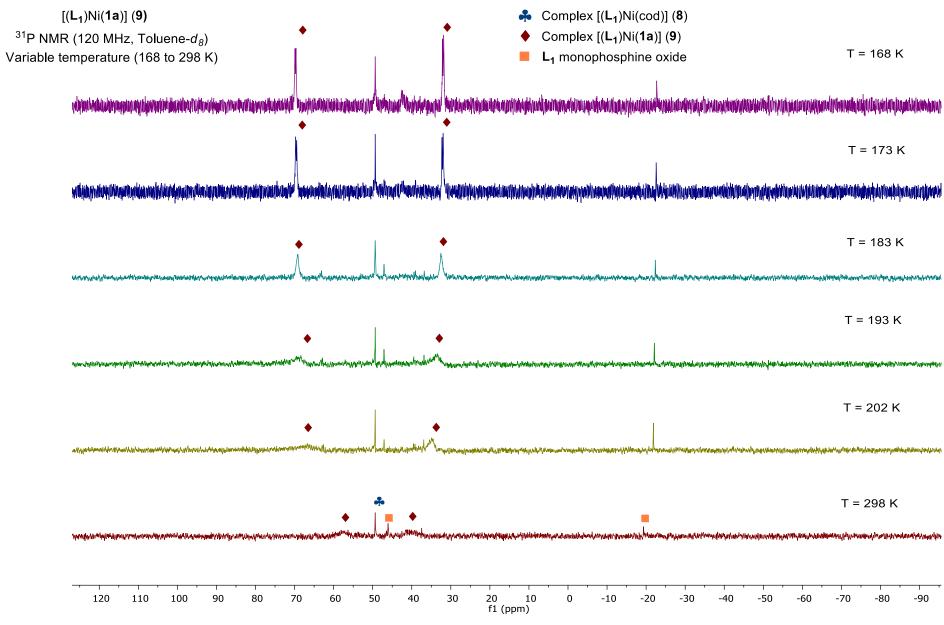

S148

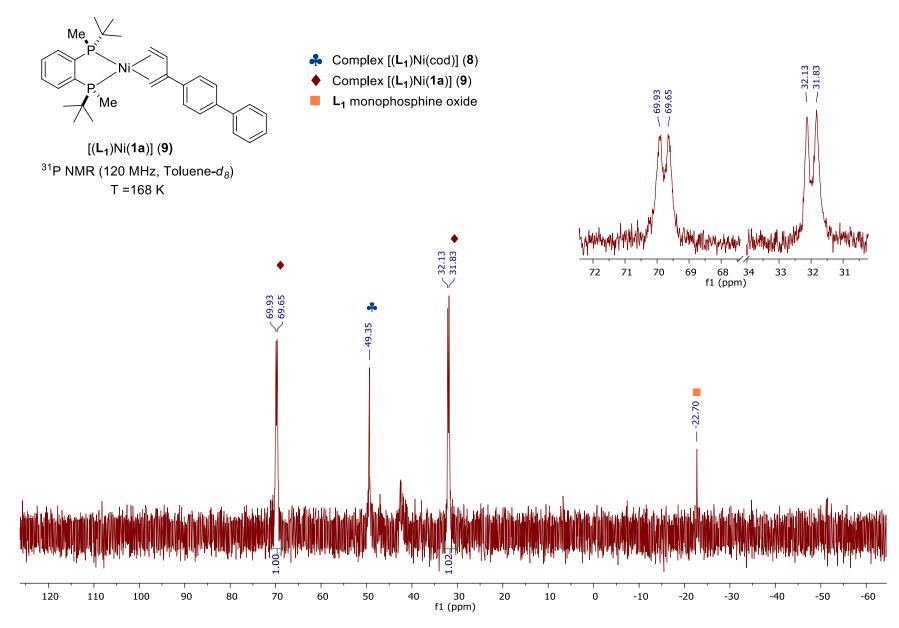


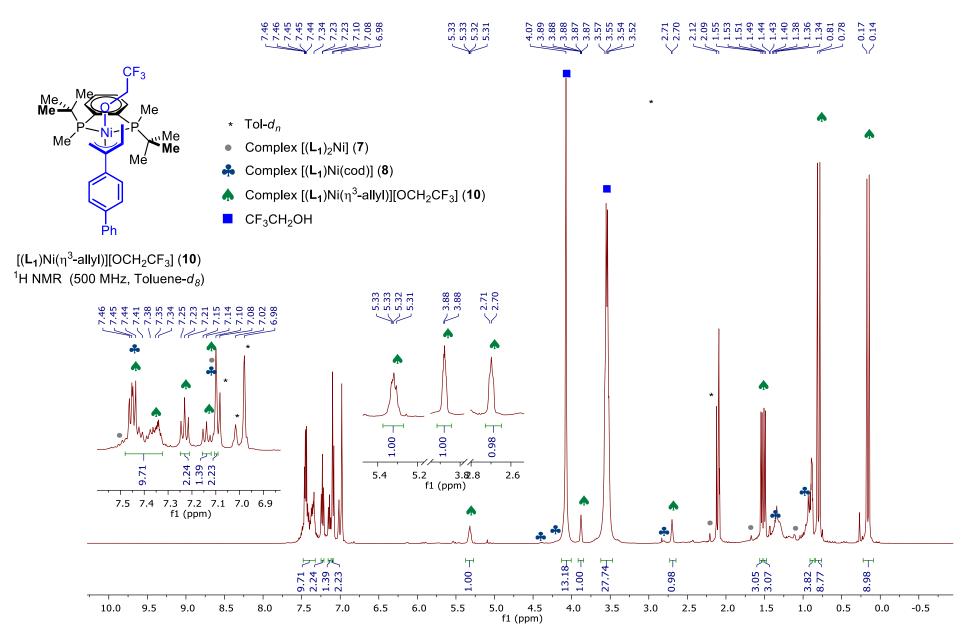


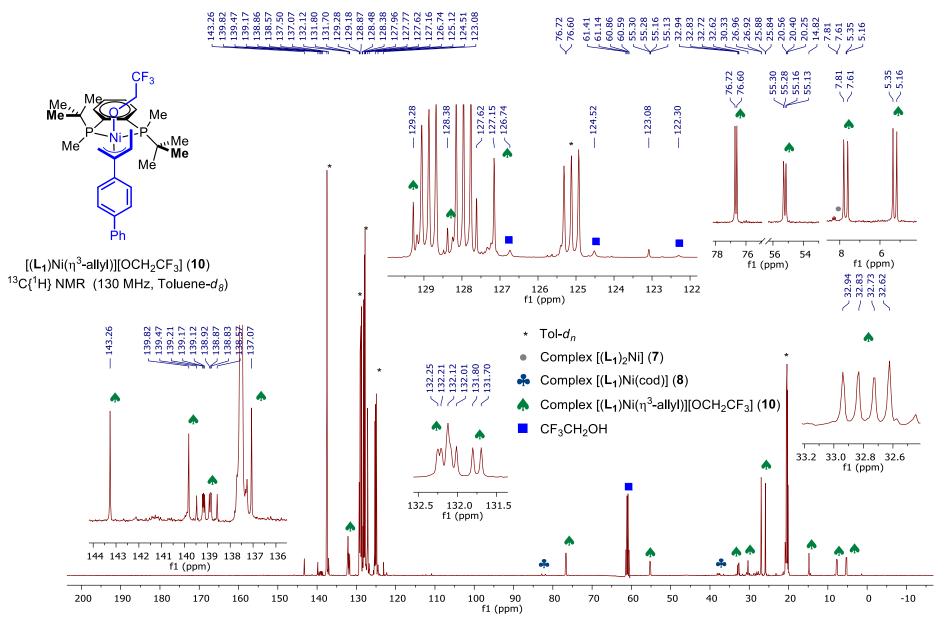


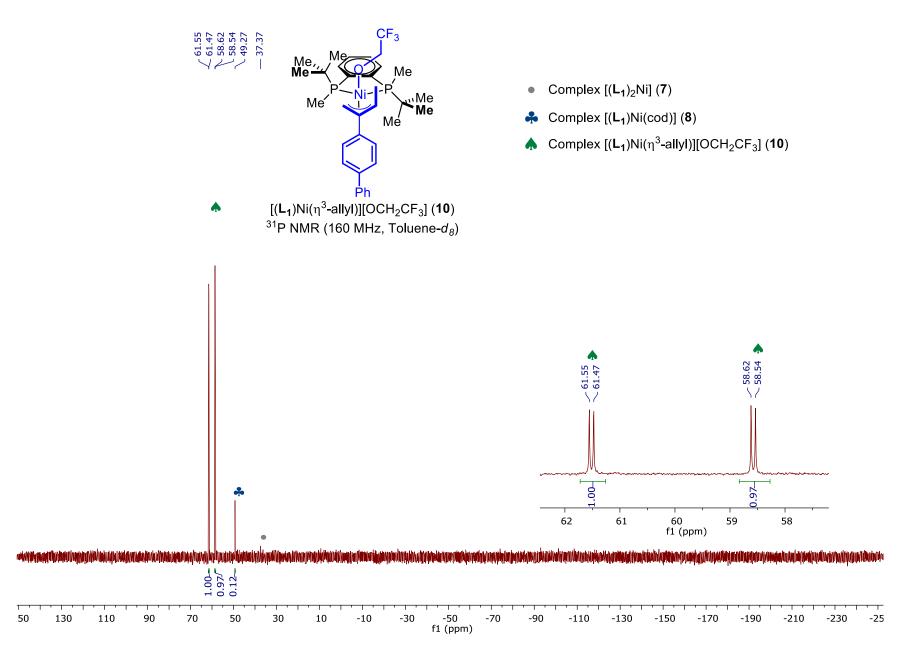


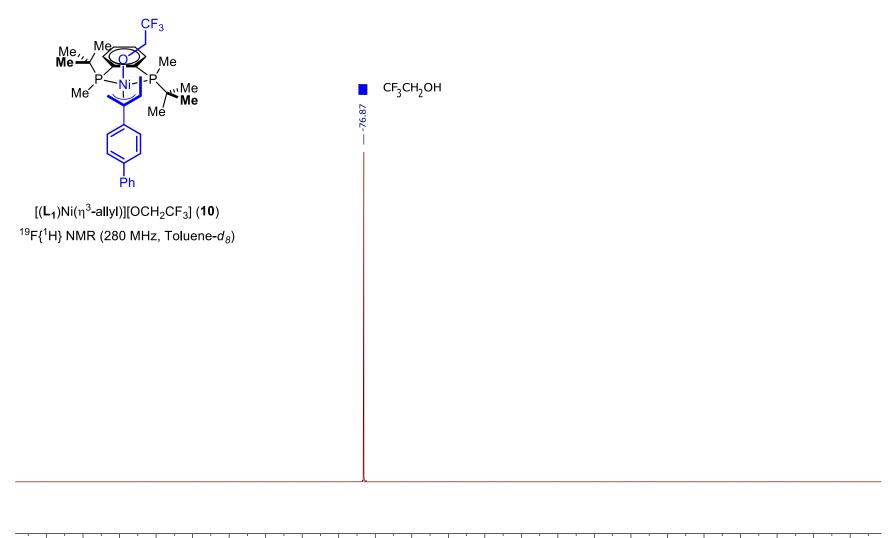




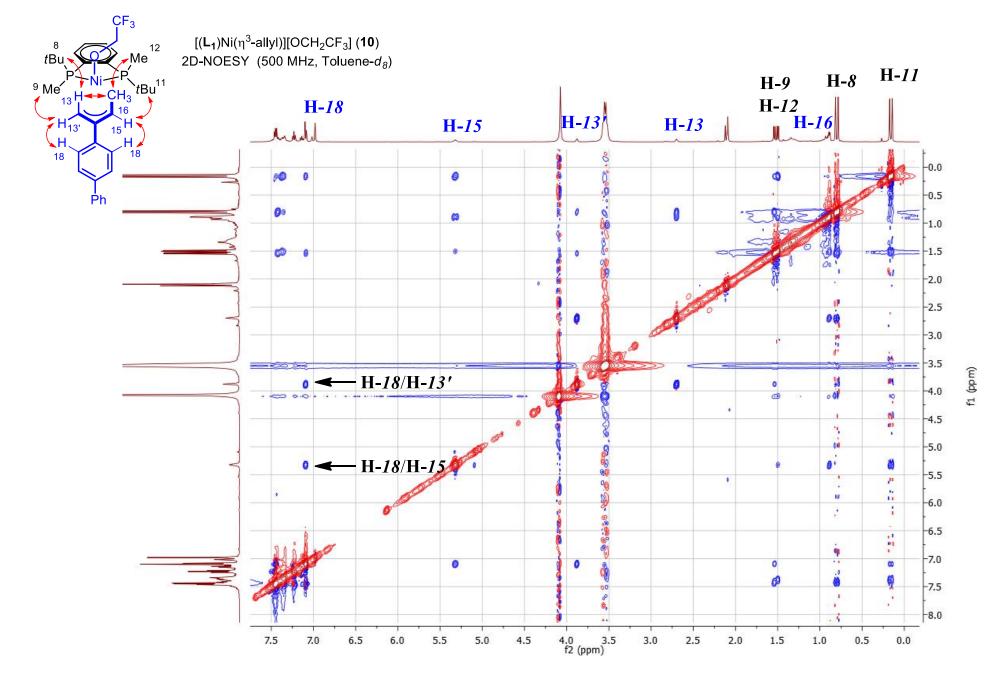


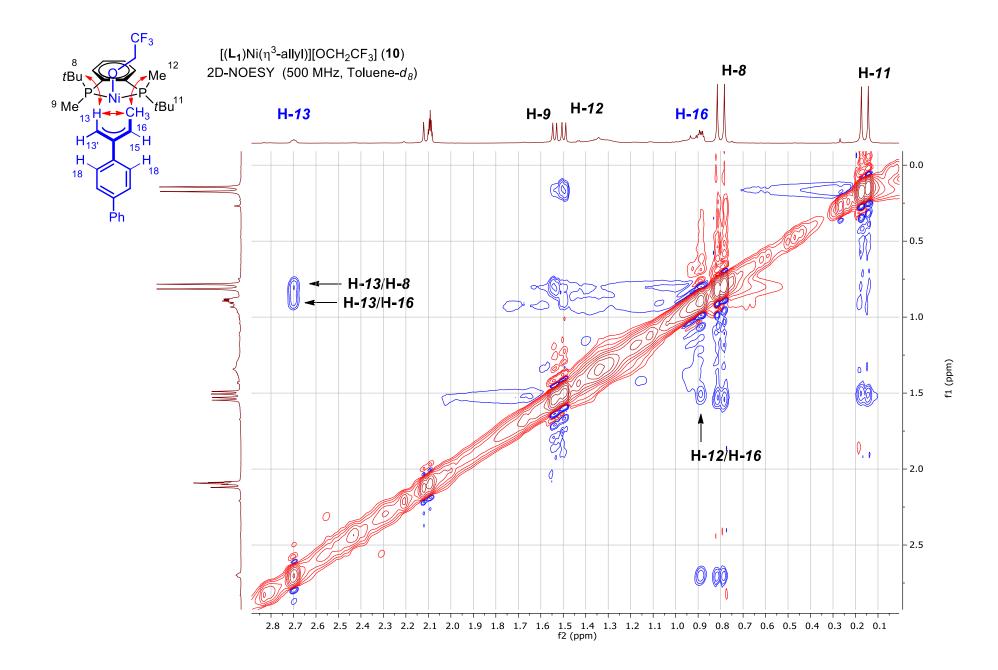


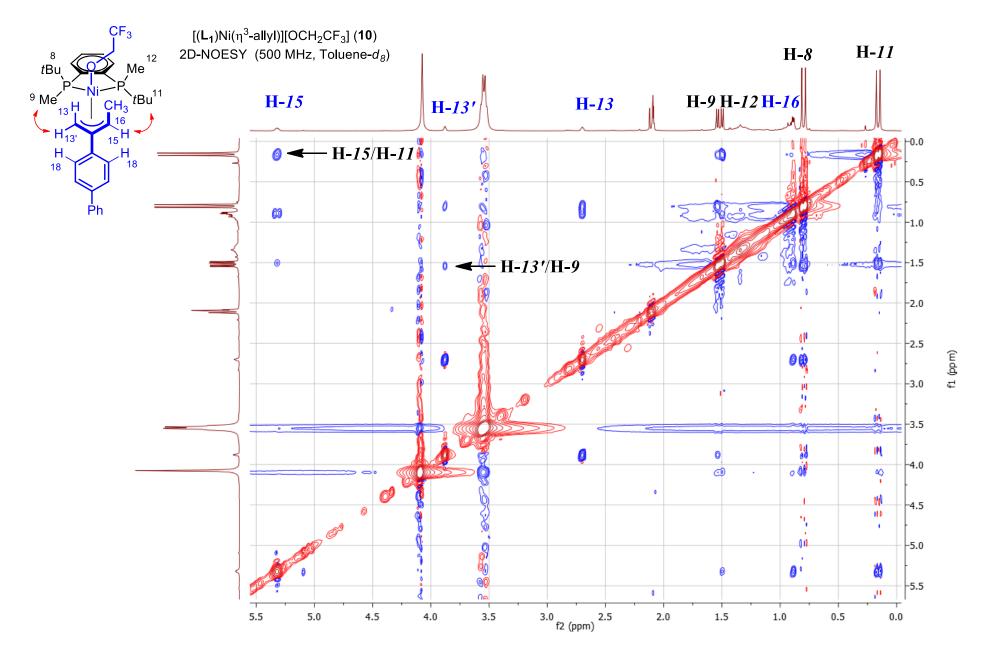


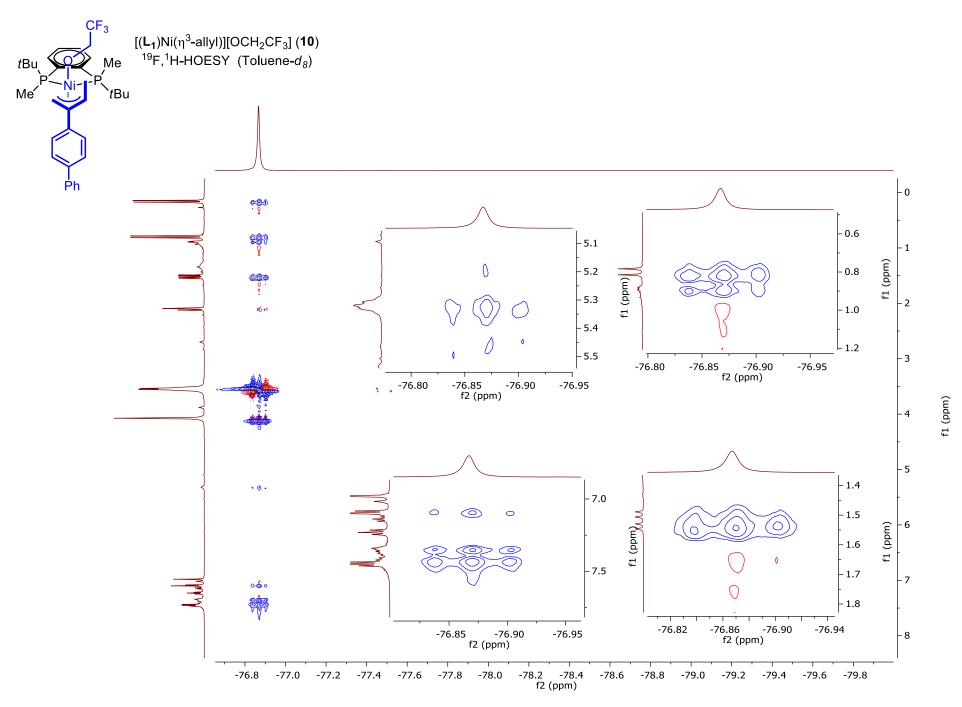


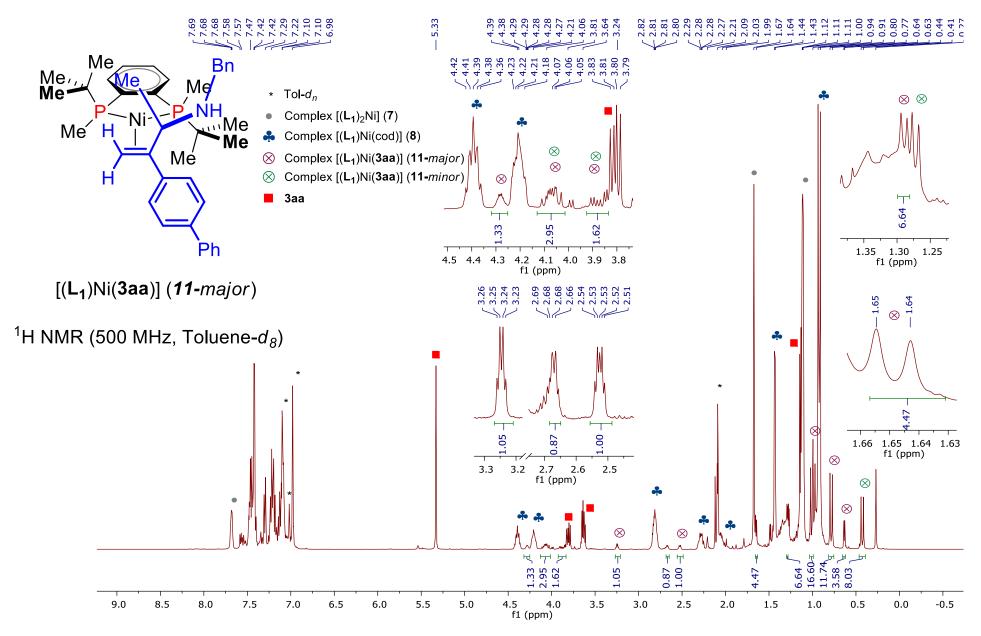
S158

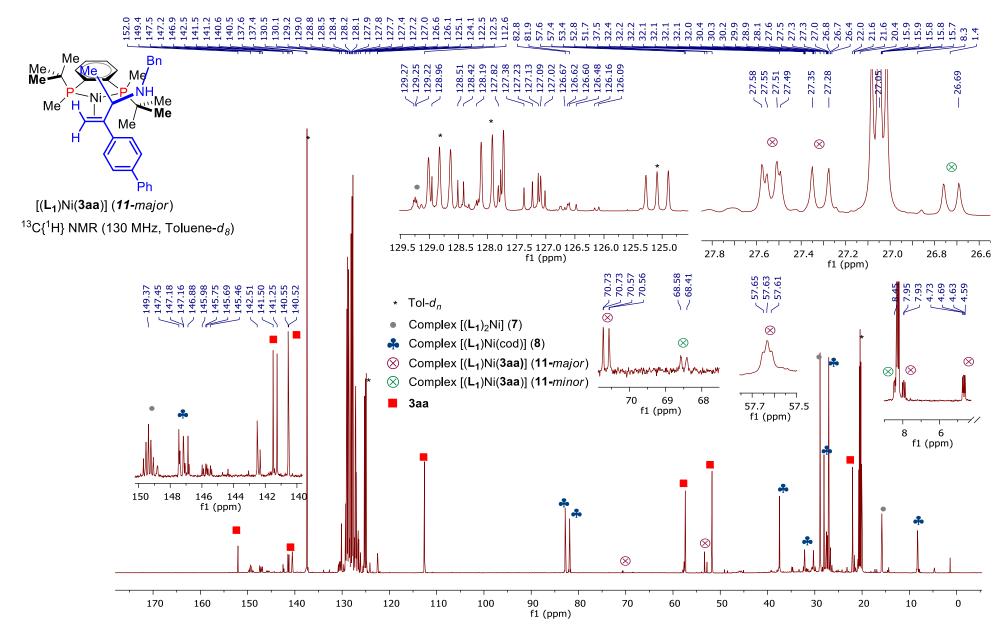


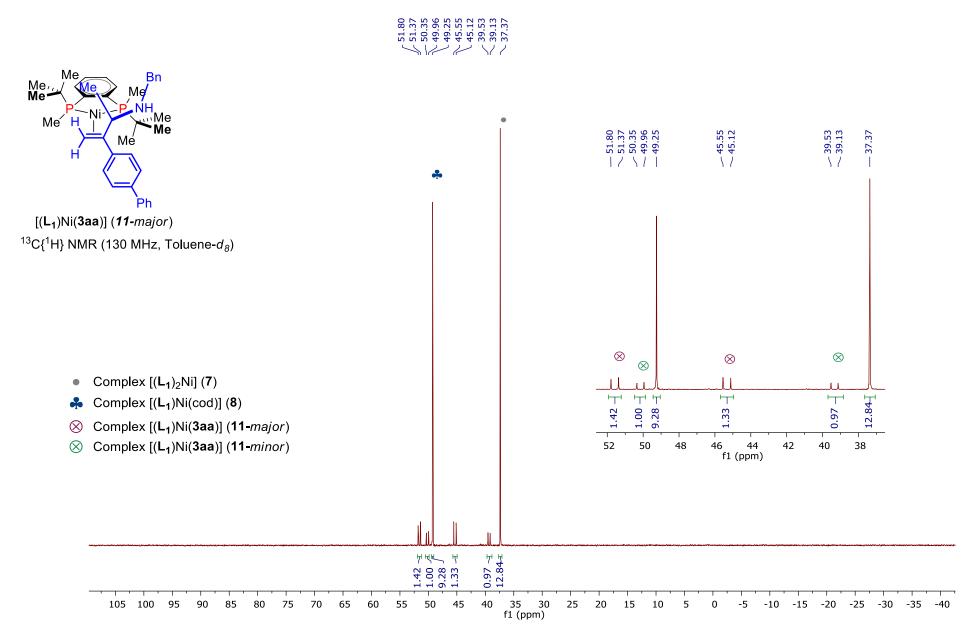







10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)





14. X-Ray analysis

All data were collected on an Agilent Supernova diffractometer equipped with an ATLAS CCD detector using Cu radiation. The crystal was kept at 180.01(10) K during data collection. Using Olex2, the structure was solved with the ShelXT structure solution program using Intrinsic Phasing and refined with the ShelXL refinement package using Least Squares minimization.⁵ Crystallographic data are found in **Table S3**.

Identification code	3aa	ą.
CCDC	1938704	٩
Empirical formula	C ₂₃ H ₂₄ CIN	
Formula weight	349.88	
Temperature/K	180.01(10)	
Crystal system	monoclinic	
Space group	P21	
a/Å	10.48643(15)	
b/Å	7.50634(11)	
c/Å	12.56284(19)	
α/°	90	
β/°	91.0457(13)	
γ/°	90	
Volume/Å ³	988.72(2)	
Z	2	
ρ _{calc} g/cm ³	1.175	
µ/mm ⁻¹	1.719	
F(000)	372.0	
Crystal size/mm ³	0.957 × 0.155 × 0.07	76
Radiation	CuKα (λ = 1.54184)	
20 range for data collection/	"7.038 to 141.102	
Index ranges	-12 ≤ h ≤ 12, -9 ≤ k ≤	≤ 9
Reflections collected	15843	
Independent reflections	3737 [R _{int} = 0.0315,	R
Data/restraints/parameters	3737/1/236	
Goodness-of-fit on F ²	1.033	
Final R indexes [I>=2σ (I)]	$R_1 = 0.0278, wR_2 = 0$	0
Final R indexes [all data]	$R_1 = 0.0298, wR_2 = 0$	С
Largest diff. peak/hole / e Å-	³ 0.13/-0.17	
Flack parameter	-0.012(13)	

Table S3. Crystal structure and data refinement for 3aa-HCI salt (CCDC 1938704)

15. References

¹ Fiorito, D.; Folliet, S.; Liu, Y.; Mazet, C. A General Nickel-Catalyzed Kumada Vinylation for the Preparation of 2-Substituted 1,3-Dienes *ACS Catal.* **2018**, *8*, 1392.

² Doi, H.; Sakai, T.; Yamada, K.-I.; Tomioka, K. *N*-Allyl-*N*-*tert*-butyldimethylsilylamine for chiral ligand-controlled asymmetric conjugate addition to *tert*-butyl alkenoates. *Chem. Commun.* **2004**, 1850.

³ Burés, J. Variable Time Normalization Analysis: General Graphical Elucidation of Reaction Orders from Concentration Profiles. *Angew. Chem. Int. Ed.* **2016**, *55*, 16084-16087.

⁴ (a) <u>http://supramolecular.org</u> (b) Thordarson, P. Determining Association Constants from Titration Experiments in Supramolecular Chemistry. *Chem. Soc. Rev.* **2011**, *40*, 1305. (c) Hibbert, D. B.; Thordarson, P. The Death of the Job Plot, Transparency, Open Science and Online Tools, Uncertainty Estimation Methods and Other Developments in Supramolecular Chemistry Data Analysis. *Chem. Commun.* **2016**, *52*, 12792. (d) Fit for 1:1 model: http://app.supramolecular.org/bindfit/view/4d262417-28b2-4c9b-8a4d-3a9f4f48be85. (e) Fit for 1:2 model: http://app.supramolecular.org/bindfit/view/65f19228-fb6e-48a1-9bd1-d8f2f5b5344f. (f) Fit for 2:1 model: http://app.supramolecular.org/bindfit/view/d1bb8d30-cf61-4fe6-afe9-b8adbe0af3e8.

⁵ (a) Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J; Howard, J.A.K.; Puschmann, H. OLEX2: A Complete Structure Solution, Refinement and Analysis Program. *J. Appl. Cryst.* **2009**, *42*, 339. (b) Sheldrick, G. M. SHELXT - Integrated Space-Group and Crystal-Structure Determination. *Acta Cryst.* **2015**, *A71*, 3. (c) Sheldrick, G. M. Crystal Structure Refinement with SHELXL. *Acta Cryst.* **2015**, *C71*, 3.