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Figure S3. FTIR of 2 as a powder (ATR).
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Figure S5. UV-visible spectra of 1 — 3 in acetonitrile.
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Table S1: Crystal data and structural refinement for Complexes 2 and 3.

Compound
Empirical formula
Formula weight
Temperature (K)
Wavelength (A)
Crystal system
Space group

Unit cell dimension

Volume (A3)

z

Paaled.. (Mg/m?)

Abs. coeff. (mm?)

F(000)

Crystal colour, habit
Crystal size (mm®)

O range data collection (°)
Index ranges

Reflections collected
Independent reflections
Completeness to 6 max
Absorption correction
Max. and min. trans.
Refinement method
Data/restraints/params
Goodness-of-fit- on F?
Final R indices
[1>20(1)]*°

R indices (all data)

Largest difference peak and hole

(eA)

NiATSDM (Complex 2)
C10H18N6Ni82
345.13

100.2(6)

0.71073

Triclinic

P-1

a =7.33437(16)

b = 8.5595(2)
c=11.6784
a=103.865(2)
B=98.2102(19)
v =91.7205(18)
702.92(3)

2

1.631

1.672

360

Orange prism
0.40 x0.34 x0.18
3.40 to 31.57
-10<h<10
-12<k<12
-17<1<17
19998

4702 [R(int) = 0.0217]
99.9 %

Multiscan

1.000 and 0.778
Full-matrix least-squares on F?
4702/0/244

1.013
R1=0.0196

wR2 =0.0533
R1=0.0211

wR2 = 0.0545
0.525 and -0.285

NiATSM-Fg (Complex 3)
ClOHlZFGNGNiSZ
453.09

100(2)

0.71073

Triclinic

P-1

a =8.3598(10)

b =9.4027(10)

¢ =13.5112(17)
a=109.467
B=105.475(11)
v =91.382(9)
957.53(19)

2

1.571

1.291

456

Red-brown plate
0.41 x0.08 x 0.01
3.30 to 26.67
-10<h<10

-11 <k <11
-17<1<17
13904

4031 [R(int) = 0.058]
99.7%

Multiscan

1.00 and 0.678
Full-matrix least-squares on F?
4031/0/288

1.074

R1 =0.0500

wR2 =0.1099
R1=0.0647

wR2 =0.1188
1.176 and -0.477

3R1 = 3||Fo| - [Fe|l/Z|Fo|; P WR2 = {Z[W(Fo?~ Fc?) 2)/z[w(Fo?) 2]}*2; where w = g/d?(Fo?) + (qp) 2 + bp. GOF = S =
{2[w(Fo>~ F¢?) 3/(n - p)}*2, where n is the number of reflections and p is the number of parameters refined.
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Table S2. Selected bond distances (A) and bond angles (°) for 1,1 2, and 3.

Bond distance 12 2 3

Ni-N1 1.861(2) 1.8528(8) 1.854(3)
Ni-N3 1.855(2) 1.8580(8) 1.863(3)
Ni-S1 2.1546(6) 2.1617(3) 2.1542(11)
Ni-S2 2.1598(7) 2.1576(2) 2.1527(10)
S1-C5 1.767(3) 1.7665(9) 1.763(4)
N2-C5 1.315(3) 1.3222(12) 1.308(5)
N1-N2 1.378(3) 1.3694(11) 1.381(4)
N1-C1 1.303(3) 1.3038(11) 1.310(5)
C1-C3 1.489(4) 1.4857(13) 1.487(5)
C1-C2 1.470(3) 1.4658(13) 1.474(5)
N5-C5 1.339(3) 1.3456(12) 1.350(5)
N5-C7 1.449(3) 1.4570(13) 1.440(5)
Bond angle

N1-Ni-S1 87.07(6) 87.09(3) 87.35(10)
N1-Ni-N3 83.59(9) 83.66(4) 83.65(13)
S2-Ni-S1 101.81(3) 102.019(10) 101.94(4)

aMetric parameters for 1 are reported according to the atom labeling scheme in Figure 1,
which differs from prior structural report.*
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Table S3. Bond distances and angles of complex 2.

Atoms Distance (A) Atoms Angle (°)
Ni-N1 1.8528(8) N1-Ni-N3 83.66(4)
Ni-N3 1.8580(8) N1-Ni-S2 170.88(3)
Ni-S1 2.1617(3) N3-Ni-S2 87.23(3)
Ni-S2 2.1576(2) N1-Ni-S1 87.09(3)
S1-C5 1.7665(9) S2-Ni-S1 102.019(10)
N1-C1 1.3038(11) C5-S1-Ni 94.59(3)
N1-N2 1.3694(11) C1-N1-N2 119.80(8)
N2-C5 1.3222(12) C1-N1-Ni 115.46(6)
N5-C5 1.3456(12) N2-N1-Ni 124.64(6)
N5-C8 1.4453(13) C5-N2-N1 110.47(8)
N5-C7 1.4570(13) C5-N5-C8 124.17(9)
Cl-C2 1.4658(13) C5-N5-C7 118.67(8)
C1-C3 1.4857(13) C8-N5-C7 117.15(8)
N1-C1-C2 112.75(8)
N1-C1-C3 123.71(9)
C2-C1-C3 123.52(8)
Cl-C2-C4 122.36(8)
N2-C5-N5 116.74(8)
N2-C5-S1 123.18(7)
N5-C5-S1 120.06(7)
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Table S4. Bond distances and angles of complex 3.

Atoms Distance(A) Atoms Angle(®)
Ni-N1 1.854(3) N1-Ni-N3 83.65(13)
Ni-N3 1.863(3) N1-Ni-S2 170.63(10)
Ni-S2 2.1527(10) N3-Ni-S2 87.12(9)
Ni-S1 2.1542(11) N1-Ni-S1 87.35(10)
S1-C5 1.763(4) S2-Ni-S1 101.94(4)
N1-C1 1.310(5) C5-S1-Ni 94.17(13)
N1-N2 1.381(4) C1-N1-N2 120.5(3)
N2-C5 1.308(5) C1-N1-Ni 115.3(2)
N5-C5 1.350(5) N2-N1-Ni 124.2(2)
N5-C7 1.440(5) C5-N2-N1 109.8(3)
F1-C8 1.338(5) C5-N5-C7 123.5(3)
F2-C8 1.339(4) N1-C1-C2 112.6(3)
F3-C8 1.347(4) N1-C1-C3 124.1(3)
Cl-C2 1.474(5) C2-C1-C3 123.3(3)
C1-C3 1.487(5) Cl-C2-C4 122.6(3)
N2-C5-N5 119.3(3)
N2-C5-S1 124.4(3)
N5-C5-S1 116.2(3)
N5-C7-C8 111.7(3)
F1-C8-F2 106.7(3)
F1-C8-F3 106.7(3)
F2-C8-F3 106.0(3)
F1-C8-C7 112.6(3)
F2-C8-C7 111.4(3)
F3-C8-C7 112.8(3)
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Figure S6. Effects of reductive cycling from 0 to -0.8 V vs. RHE at 50 mV/s on the
performance of the three modified electrodes. Vertical scale is expanded to show peak
cathodic current for each electrode.
(A) Polarization curves for GC-1 which exhibits peak HER performance after 300 cycles. (B)
Polarization curves for GC-2 which exhibits peak HER performance after 200 cycles. (C)
Polarization curves for GC-3 which exhibits peak HER performance after 300 cycles.
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Figure S7. Effect on HER performance of dipping modified electrodes in acetonitrile for 30
seconds at 800 RPM rotation.

(A) GC-1 conditioned to peak activity (300 cycles, red trace) and then washed in acetonitrile (blue
trace) and compared to bare glassy carbon electrode (black trace). (B) GC-2 conditioned to peak
activity (200 cycles, red trace) and then washed in acetonitrile (blue trace) and compared to glassy
carbon (black trace). (C) GC-1 washed in acetonitrile before any conditioning (black trace) and
subsequently conditioned to 300 cycles (red trace). (D) GC-2 washed in acetonitrile before any
conditioning (black trace) and subsequently conditioned to 200 cycles (red trace).
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Figure S8. UV-Visible Spectroscopy data for complex 2 in solution

(A) UV-Vis spectra for complex 2 in acetonitrile solutions of known concentration and of
unknown concentration after being washed off GC-2 after conditioning to peak activity (200
cycles). (B) Calibration curve constructed from measured absorbances and known concentrations

of standard acetonitrile solutions of 2.
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Figure S9. Raman spectra of various electrodes and organic solutions with bands labelled.

Raman spectrum of (A) Glassy carbon electrode with Nafion film. (B) Bare glassy carbon
electrode. Peaks labelled with * are attributed to the glassy carbon electrode.
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Figure S10. Raman spectra of various electrodes and organic solutions with bands labelled.

Raman spectrum of (A) Acetonitrile. (B) Complex 2 in acetonitrile ink with Nafion. (C) GC-2 as
deposited. (D) GC-2 after conditioning to peak activity (200 cycles). Peaks labelled with * are
attributed to the glassy carbon electrode. Peaks labelled with * are attributed to acetonitrile. Peaks
labelled with * are attributed to complex 2.
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Figure S12. EDS of GC-2 after 1000 cycles.
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Figure S13. Survey scans of the GC-2 electrode before (red) and after (black) conditioning

Binding Energy (eV)

to 1000 cycles (a) and of a pristine GCE (b).

Table S5. Atomic % of Ni2p, S2p and Nils before and after conditioning (1000 cycles).

N1s, at% S2p, at% Ni2p, at%
Before 61.3 26.74 11.96
After 66.74 23.35 9.91
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Table S6. XPS fitting parameters for nickel (Figure 8A).

Band Pos PosSep |B FWHM| FWHM | Height | %Gauss Area %Area |ChiSquared
| 853.38 0 3.12 3.12 1459 80 5309 37.12 1.94
2 859.24 5.86 6.72 6.72 482 80 3775 26.4
3 870.81 17.43 3.37 3.37 675 80 2654 18.56
4 876.33 22.95 6.39 6.39 344 80 2564 17.93
Table S7. XPS fitting parameters for sulfur (Figure 8B).
Band Pos PosSep |B_ FWHM| FWHM | Height [ %Gauss Area %Area |ChiSquared
1 162.93 0 2.6 2.6 211 80 640 56.12 1.35
2 164.13 1.2 2.6 2.6 109 87 320 28.06
3 168.33 5.4 2.7 2.7 37 70 120 10.54
4 169.53 6.6 2.65 2.65 19 70 60 5.27
Table S8. XPS fitting parameters for nickel (Figure 10A).
Band Pos PosSep |B FWHM| FWHM | Height | %Gauss | Area %Area |ChiSquared
1 853.31 0 2.84 2.84 6436 90 20406 29.53 2.81
2 858.1 4.79 8.79 8.79 2405 90 23572 34.11
3 870.58 17.28 3.96 3.96 2656 90 11718 16.95
4 876.2 22.89 8.94 8.94 1346 90 13417 | 19.41
Table S9. XPS fitting parameters for sulfur (Figure 10B).
Band Pos PosSep |B FWHM| FWHM | Height | %Gauss Area %Area |ChiSquared
1 162.32 0 2.57 2.57 1571 100 4293 51.15 1.71
2 163.52 1.2 2.57 2.57 718 80 2146 25.57
3 164.48 2.16 3.2 32 221 60 895 10.66
4 165.68 3.36 3.2 32 116 71 447 5.33
5 168.22 5.9 2.7 2.7 124 70 408 4.86
6 169.42 7.1 2.7 2.7 65 79 204 2.43
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Figure S14. Elemental mapping of nickel and sulfur.

Elemental mapping of nickel (top left), sulfur (top right), and an overlay of both (bottom left) at
200 x 100 um scanned area and XPS spectra (right bottom) in which the red trace and blue trace
correspond to the pixels integrated through red and blue squares respectively.
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Figure S15. Equivalent circuit model used to fit EIS data.
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Table S10. Parameters obtained by fitting frequency response analysis (FRA) data to
simulated RCW circuit.

Zview software? was used to fit data. Q is the magnitude of the CPE, R. is the charge transfer
resistance, Rs is approximate solution resistance, n is the CPE exponent, and C is the capacitance.

Capacitance values were calculated using C = Rcl_Tn * Q%.”
GC 1 2 3
#Cycles | 0 300 1000 0 200 1000 0 300 1000
Q(Fs"™Y) | 243E-6 4.52E-6 4.46E-6 | 2.63E-6 6.10E-6 6.33E-6 | 3.55E-5 3.20E-5 5.14E-5
Rc () 25099 270 374 18843 158 374 54764 631 1093
Rs (2) 26.22 20.12 17.99 16.80 15.09 13.9 11.14 6.44 5.78
N 0.908 0.929 0.913 0.916 0.893 0.864 0.951 0.729 0.717

CF) 1.83E-6 2.71E-6 2.43E-6 | 2.00E-6 2.65E-6 2.49E-6 | 3.67E-5 7.52E-6 1.66E-5

i 0.00015 0.00121 0.00141 | 0.00072 0.00057 0.00057 | 0.03272 0.00163 0.00434
A B C
10000 + 0 Cycles 300 = 0Cycles 300 = 300 Cycles
—0 Cycles Fit 2501 —0 Cycles_Fit 2501 —300 Cycles_Fit
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Figure S16. Nyquist plots showing the effects of reductive cycling from 0 to -0.8 V vs. RHE
at 50 mV/sec on the impedance of GC-1.

Solid traces represent fitted impedance data, while dotted traces represent actual data. (A) Nyquist
plot showing impedance at 0 cycles (before any reductive cycling) and after 300 cycles (peak
activity, in small frame). (B) The same data as in (A), but with axes scaled down to show
impedance after 300 cycles in greater detail. (C) Comparison of Nyquist plots for GC-1 after 300
cycles and 1000 cycles.
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Figure S17. Nyquist plots showing the effects of reductive cycling from 0 to -0.8 V vs. RHE
at 50 mV/sec on the impedance of GC-2.

Solid traces represent fitted impedance data, while dotted traces represent actual data. (A) Nyquist
plot showing impedance at 0 cycles (before any reductive cycling) and after 200 cycles (peak
activity, in small frame). (B) The same data as in (A), but with axes scaled down to show
impedance after 200 cycles in greater detail. (C) Comparison of Nyquist plots for GC-2 after 200
and 1000 cycles.
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Figure S18. Nyquist plots showing the effects of cycling from 0 to -0.8 V vs. RHE at 50 mV/sec
on the impedance of GC-3.

Solid traces represent fitted impedance data, while dotted traces represent actual data. (A) Nyquist
plot showing impedance at 0 cycles (before any reductive cycling) and after 300 cycles (peak
activity, in small frame). (B) The same data as in (A), but with axes scaled down to show
impedance after 300 cycles in greater detail. (C) Comparison of Nyquist plots for GC-3 after 300
and 1000 cycles.
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Figure S19. Cyclic voltammetry plots showing the capacitive effects of varying scan speed
over a non-Faradaic potential range for GC 1 — 3 as-deposited.

(A) GC-1 at 0 cycles. (B) GC-2 at 0 cycles. (C) GC-3 at 0 cycles
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Figure S20. Cyclic voltammetry plots showing the capacitive effects of varying scan speed
over a non-Faradaic potential range for GC 1 — 3 after cycling to peak activity.

(A) GC-1 after 300 cycles. (B)
carbon electrode.
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Figure S21. Plot of average

170 255 340

Scan Rate (mV s™)

85

current density at 0.3 V vs. RHE as measured during anodic

sweep as a function of scan rate for as-deposited electrodes.
Slopes of the traces give the approximate capacitances of each modified electrode per unit
geometric area (denoted in the same color as the corresponding trace).
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Figure S22. Plot of average current density at 0.3 V vs. RHE as measured during anodic
sweep as a function of scan rate for GC 1 — 3 after cycling to peak activity.
Slopes of the traces give the approximate capacitances of each modified electrode per unit

geometric area. The black trace corresponds to GC-1 after 300 cycles, the red trace corresponds
to GC-2 after 200 cycles, and the blue trace corresponds to GC-3 after 300 cycles.

S22



A1.5— B 24
1.0
o = 1 Ca
E 0] g %& 5
2 O g 0 2
E-05 E N E
S0 > K
15 | | | o | | . | —— 10 mV/s
‘04 06 08 10 12 04 06 08 10 12 —— 20 mV/s
E vs. RHE (V) E vs. RHE (V) 40 mV/s
C.o D, . —— 80 mV/s
1.0l 160 mV/s
—~ 0.5 - — 320 mV/s
£ c 05
§ 0- § 0-
£ 05 Eos5
- 1.0
-1.0 w , : 1.5 : : : :
04 06 08 10 12 04 06 08 10 12

E vs. RHE (V)

E vs. RHE (V)

Figure S23. Oxidation (top peak) and reduction (bottom peak) of ferricyanide redox couple
at5 mM in 0.1 M potassium nitrate solution.

(A) GC-1 as-deposited. (B) GC-1 after conditioning to 300 cycles. (C) GC-2 as-deposited. (D)
GC-2 after conditioning to 200 cycles.
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Figure S24. Plot of maximum current (top, for anodic sweeps) and minimum current
(bottom, for cathodic sweeps) associated with ferricyanide reduction/oxidation cyclic
voltammetry experiment as a function of the square root of scan rate.

Table S11. Slopes of the traces of maximum/minimum current densities as a function of the
square root of scan rate for ferricyanide oxidation/reduction experiments as well as areas
calculated from the Randles-Sevcik equation.

Anodic Cathodic
Material Slope | Area (cm?) | Slope Area (cm?)
GC-1_300 Cycles | 4.5x10* | 0.12 -4.8x10™ | 0.14
GC-1 0 Cycles |3.8x10*|0.11 -4.1x10% | 0.12
GC-2_200 Cycles | 3.1x10* | 0.09 -3.2x10* | 0.09
GC-2_0 Cycles 2.5x10* | 0.07 -2.7x10* | 0.08
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Figure S25. Plot of theoretical hydrogen, measured hydrogen, and Faradaic efficiencies for
GC 1 - 3 after cycling to peak activity.

Theoretical Hy is calculated from the coulombs of charge passed during the experiment. Measured
H> was detected via gas chromatography. The Faradaic efficiency was calculating by comparing
these two values. GC 1 — 3 were evaluated after 300, 200, and 300 cycles respectively.
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