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Experimental Results

Instrumentation

High temperature size exclusion chromatography (HT-SEC) was performed with a PL-

GPC 220 (Agilent Technologies, US) with an online degasser, an online preinjection filter

and two PLgel Olexis columns (Agilent Technologies, US) filled with polystyrene as a

packing material (13µm nominal particle size). Measurements took place at an operat-

ing temperature of 150 °C. 1,2,4-Trichlorobenzene was used as an eluent. The flow rate

was set to 1mL·min−1. Samples were dissolved between 1-2 h depending on the respective

topology. The injection volume was set to 200µL. The chromatograph was coupled to

four consecutive detectors namely a DAWN® HELEOS™-II light scattering photometer

with 18 angels (MALLS, Wyatt Technology, US), a DYNAPRO® Nanostar™- (DLS,

Wyatt Technology, US), a four capillary viscometer (VISCO, Agilent Technologies, US)

and a differential refractometer (dRI, Agilent Technologies, US). The Visco and dRI de-

tector are arranged parallely which requires a 50/50 split of the eluent flow. The DLS is

connected to the MALLS detector using an optical fiber positioned at detector channel

12 (99° relative to the incident laser beam). For normalization of MALLS photodiodes,

adjustment of interdetector delays and band broadening a 30kDa polystyrene standard

(PSS, DE) with narrow molar mass distribution was used. For determination of the dRI

constant a 200 kDa polystyrene standard (PSS, DE) was used. Ambient SEC was per-

formed using HPLC pump (Knauer, DE) coupled to ETA-2020 dRI detector (WGE Dr.

Bures, DE) and a DAWN® Eos™- MALLS detector with three channels (Wyatt Tech-

nology, US). A PL Mixed C column (Agilent Technologies, US) with a nominal particle

size of 5µm was used for separation. The flow rate was 1mL·min−1 and the injection vol-

ume was 25µL.Refractive index increments δn/δc were determined assuming a total mass

recovery δn/δcTHF,25°C=0.080mL/g and δn/δcTCB,150°C=-0.100mL/g. The raw data was

processed and analyzed using ASTRA 6 (Wyatt Technology, US). Zimm Model (fit degree

1) was applied for static light scattering calculations. All sample averages and standard

deviations were calculated from 3 determinations implying 3 separate dissolutions à 3
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injections with a concentrations between 3.5-4.0mg/mL.

Nuclear magnetic resonance (NMR) spectra were partly recorded on a Avance 500

NMR spectrometer (Bruker-Biospin, DE) using CDCl3 as a solvent. The 1H analyses

acquisition time was 1.59s and the relaxation delay 10 s. The 13C NMR spectra (125.77

MHz) were recorded using 90° 13C pulses and inverse gated 1H decoupling. The acqui-

sition time was 1.05 s and the relaxation delay 10 s. Residual 13C-NMR spectra were

collected on a Bruker Avance DRX 500 spectrometer using 90° pulse and a relaxation delay

of 10s. The chemical shifts were referenced internally to the major backbone methylene

carbon resonance, which was taken at δ = 30ppm from tetramethylsilane. The total

number of branching NBr from 1H NMR was calculated using Eq. (32) by integrating

methyl proton signals with respect to signals of all protons in the spectrum. NBr from

13C NMR was obtained by summing up integrals of signals obtained in the methyl region

(δ > 20.06ppm). The interpretation of 13C NMR spectra was based on the previously

published literature.1

Small Angle Neutron Scattering (SANS) experiments were performed at the D11-

instrument at the ILL in Grenoble, France. Measurements were performed at two wave-

lengths of 6Å and 4.6Å and two detector distances 8m and 1.4m resulting in momentum

transfer range of q = 0.04298Å
−1 − 0.45Å

−1

and q = 0.00753Å
−1 − 0.08617Å

−1

, respec-

tively. The samples were dissolved in THF-d8 for 24 h and transferred into Hellma®

precision cells. The sample volume was 1mL. The scattering intensities were normalized

with a standard water measurement. The solvent was separately measured, normalized

and substracted from the solution data. Each sample was measured at five concentrations

between 0.7− 5%.

Atomic Force Microscopy (AFM): Samples were dissolved in TCB with c = 10−2 mg/mL.

The hot solution was transferred onto highly oriented pyrolytic graphite (HOPG) sub-

strate and spin coated for 40 s with 2000 rpm and 100 rpm acceleration. The coated sub-

strate was dried with nitrogen stream. The thin parallel lines visible in the AFM images

originate prom the highly oriented pyrolytic graphite (HOPG) substrate and are regularly

occurring edges on the substrate’s surface. Due to spin-coating treatment, the deposited
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CW structures entangle along these edges and expose the predicted bottle-brush shape.

Chemicals

THF for SEC measurements was purchased from Acros Organics (DE) and stabilized

with 0.025% Butylated Hydroxytoluene (BHT, Roth, ≥ 98%) to prevent autooxidation.

THF for SLS and DLS was purchased from Acros Organics (DE) with a purity of 99.5%

(stabilized, extra dry over molecular sieve). 1,2,4-Trichlorobenzene was purchased from

Sigma Aldrich with a purity of ≥ 99% and stabilized with 1 g/L BHT to prevent thermo-

oxidative degradation. THF-d8 was purchased from Euriso-Top (France) with a residual

water content of ≤ 0.05%. All manipulations with air-sensitive compounds were done

using Schlenk techniques. Chlorobenzene was dried over CaH2 and freshly distilled before

use. Ethylene (99.9%, Linde) was purified by passing through the column packed with

deoxygenating catalyst and molecular sieves.

Catalyst synthesis

Palladium-α-diimine complex [(N,N’-bis(2,6-diisopropyl)butane-2,3-diimine)

Pd(CH2)3COOCH3] + [BArF
4
]− (Ar’=3,5-bis(trifluoromethyl)phenyl) was prepared

according to the literature procedure2,3 (see Figure SS1).

i-Pr i-Pr

Me Me

N N

i-Pr i-Pr
OMe

O
Pd+

(BArF
4)-

ArF =

CF3

CF3

Figure S1: Palladium-α-diimine complex catalyst for synthesis of CWPE1-CWPE9, CW-
PEx.

Polymerization procedure

A 100 ml Fisher-Porter tube with a magnetic stirring bar was charged with the ap-

propriate amount of solid catalyst (c = 0.3 mg/mL for all analytes but CWPEx, c =
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0.6 mg/mL). The desired volume of dry chlorobenzene was transferred via cannula to

the reaction ampule. After stirring for 10 min at the desired temperature, the polymer-

ization was started by the saturation of the reaction mixture with ethylene. Absolute

ethylene pressure (8 bar, 7 bar on the gauge) was controlled by a gas regulator. For the

polymerizations at 0.14 or 0.05 bar of ethylene, a mixture of ethylene and nitrogen was

prepared and bubbled through the reaction mixture. After allotted polymerization time

the ethylene pressure was released, and the reaction was quenched by the addition of 0.3

ml of triethylsilane. The chlorobenzene was evaporated on a rotary evaporator. Obtained

polyethylene was dissolved in toluene and passed through a column packed with silica gel

and alumina to remove the rest of the catalyst. Then, the solvent was evaporated and

obtained polymer was dried under vacuum overnight at 50 °C.

Theoretical Background

The connection between molar mass and Rg is given by power law

Rg = K ·Mν (1)

in which the scaling between molar mass and size is topologically characteristic and is

given by the exponent ν. While Rg is defined geometrically, the hydrodynamic radius RH

is also dependent on the solvation state of the polymer. It is expressed by

RH =
kB · T
6πη0D

, (2)

where kB is the Boltzmann´s constant, T is the absolute temperature, η0 is the viscosity

of the solvent, and D is the translational diffusion coefficient. The intrinsic viscosity is

calculated from

[η] = lim
c→0

(

η − η0
η0

1

c

)

=
10π

3
NA

R3

M
(3)
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in which η is the viscosity of the dissolved macromolecules. The intrinsic viscosity [η] is

related to Rg and molar mass by the Flory-Fox4,5 relationship with

[η] = Φ
R3

g

M
(4)

with the Flory parameter Φ. [η] can also be expressed by power law as Kuhn-Mark-

Houwink-Sakurada equation

[η] = Kη ·Mα (5)

where the exponent α is related to the topology of the molecule. Using the intrinsic

viscosity another hydrodynamic radius can be calculated via

Rη =

(

[η]M

(10π/3)NA

)1/3

(6)

Alternatively, the branching density can be expressed using the contraction factor ac-

counts for

g =

(

R2

gBRA

R2
gLIN

)

M

(7)

which gives the size reduction of a branched polymer R2

gBRA
compared to its linear ana-

logue R2

gLIN
at definite molar mass. While g is defined by Rg the contraction factor can

also be calculated from [η] with

g′ =

(

[η]BRA

[η]LIN

)

M

(8)

that can be more accurate especially for small macromolecules when SLS reaches its

limitations regarding resolution. Both contraction factors are correlated by the branching

index ε by

g′ = gε . (9)
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Theoretical values are given with ε = 0.5 for linear chains and ε = 1.5 for highly branched

structures. Long chain branching can be quantified by

LCB = 1000 · B · MRU

M
(10)

where MRU = 28.05 g/mol is the molar mass of the repeating unit and B accessible

according to

g3 =

[

(

1 +
B

7

)0.5

+
4B

9π

]−0.5

(11)

The branching density can further be estimated by the apparent density which is calcu-

lated from molar mass and Rg with

dAPP =
3

4πNA

Mw

R3
g

(12)

giving indications about the global compactness of the molecule in solution. When in-

vestigating the dilute solution state of polymers one has to determine the structural

conformation which is possible by the radii ratios

ρ =
Rg

RH

(13)

and

κ =
Rη

Rg

. (14)

Mean-field models for branched polymers in good solvents

For describing the extension of a branched polymer R, we’re using a Flory-type mean-field

approach.6 In the spirit of the Flory argument the excluded volume of N monomers in

density field of the polymer is balanced by the total elastic contribution of all independent

strands in the structure extended from their Gaussian conformation R0. By further

assuming a characteristic strand length of g monomers representing also the extension

of the molecules without excluded volume R2

0
∼ b2 · g leads to a free energy approach in
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good solvent6

F = u · N
g

·
(

R2

R2

0

)

+ υ · N
2

R3
, (15)

where the prefactor u accounts for the a priori unknown elasticity constant and should

be of order unity and can be adsorbed in the definition of energy and length scale, and

υ denotes the strength of the excluded volume. Minimizing Eq. (15) with respect to R

gives a relation for the equilibrium extension of the molecule6

R2 = a2/5 ·N2/5 · R8/5
0

, (16)

where the factor a =
(

3

2

υ
u

)

accumulates the constants in Eq. (15). A detailed discussion

of this approach can be found in Ref.6 The result allows a prediction of scaling of the

extension of arbitrarily branched molecules based on the reference strand in the ideal

case. As illustrative example, the extension of an ideal chain R2

0
∼ N leads to the

known7,8 excluded volume extension of a real linear chain R2

L ∼ N6/5 with the Flory

exponent ν = 3

5
close to the value of ν ≃ 0.588 for linear chains8. A perfect dendrimer

is characterized by the generation G and spacer length S between the branching points

exhibiting an exponential growth N ∼ S · eG. The characteristic length scale is given by

g = G · S resulting in the logarithmic extension under ideal (not θ-solvent) conditions

R2

0
∼ G ·S ∼ S ln (N), and according to Eq.(16) a mixed logarithmic-power-law behavior

under excluded volume case

R2

DD ∼ N2/5 · (GS)4/5 ∼ N2/5 · [S ln (N/S)]4/5 . (17)

The latter relation has been extensively proven in computer simulations.6,9,10

For a particular type of hyperbranched polymers obtained in a cluster-cluster aggre-

gation mechanism already Zimm and Stockmayer11 have predicted the result R2

0
∼ N1/2.

Using Eq. (16) in previous work6 the relation

R2

ZS ∼ N4/5 (18)
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has been derived and also supported by simulations6,12 and in agreement with hyperscal-

ing theory.13

Furthermore, the intrinsic viscosity [η] can be related to the extension R and degree of

polymerization N by the Flory-Fox equation4,5 and therefore the Kuhn-Mark-Houwink-

Sakurada equation with

[η] ∼ Φ
R3

N
∼ Kη ·Nα (19)

with the Flory parameter Φ, the Mark-Houwink parameter Kη, and the exponent α

related to the fractal dimension of the molecule if applicable. Hence, the mean field

theory predict the relation for excluded volume structures as linear chains [ηL] ∼ N4/5 and

randomly hyperbranched [ηZS] ∼ N1/5, and bell shaped curve for dendrimers14 [ηDD] ∼

N−2/5 · [S ln
(

N
S

)

]6/5.

More local information on the structures can be provided by scattering experiments,

where the scattering intensity I(q) is related to the static structure factor. By definition

the static structure factor S(~q) obeys the limiting cases for low ~q values S(~q → 0) = N

and high ~q values S(~q → ∞) = 1 and provides information about the internal structure

by using Porod’s law for large wave numbers15

I(q) ≃ S(q) ∼ q−χ ∼ q−1/ν , (20)

where q = |~q| is the magnitude of the scattering wave vector ~q, χ is the Porod’s scaling

exponent (fractal dimension) related to the Flory exponent ν = 1

χ
of the macromolecule.

As the fractal dimension can be related to the size scaling of the molecule R ∼ N1/χ one

expects χL ≃ 5/3 for linear chains and χZS ≃ 5/2 for randomly hyperbranched polymer

both under athermal solvent condition. Note, that the scaling exponents in Porod’s law

can only be observed if the self-similarity of the object holds also for substructures, which

is not applicable for dendrimers and is not quit obvious for randomly hyperbranched struc-

tures, also. For convenience we introduce the form factor by normalizing the scattering

function P (q · R) = 1

N
S(q · R) = I(q)/I0 obtaining a scaling function for comparison of

different degree of polymerization.
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Using these concepts we have shown that hyperbranched polymers which are obtained

by a slow random addition of monomers do not display the randomly hyperbranched be-

havior but can be understood as disordered dendrimers where Eq. (17) instead of Eq. (18)

is obeyed.6 The Table S1 summarizes the limiting cases of different polymer topologies.

Table S1: Expected power laws for different polymer topology in the ideal extension
R0, extension with excluded volume Rg, the intrinsic viscosity [η], and Porod’s scaling
exponent χ.

topology R2

0
R2

g [η] χ

linear N N6/5 N4/5 5

3

randomly hb N1/2 N4/5 N1/5 5

2

dendrimer S lnN N2/5 · [S ln
(

N
S

)

]4/5 N−2/5 · [S ln
(

N
S

)

]6/5 not applicable

Dendritic blob model for chain walking topologies

As discussed in the main text for the case of walking catalysis, the two limiting cases of

linear and dendritic growth have two merge for intermediate values of the walking rate

w. At a characteristic length scale ξ(w) the walker cannot explore the entire structure

anymore. As consequence, the emerging structure can be considered as chain of “dendritic

blobs”. This length scale is related with a typical thread-length of a dendritic blob, which

we call GS, and which corresponds to the average diffusive path the walker takes between

two reaction events:

τ ∼ (GS)2 ∼ w . (21)

Here, the typical time scale between two successive reaction events scales as τ ∼ w.

There is an exponential relation between the number of monomers, ng ∼ SeG, in such

a dendritic blob and the length of the thread, i.e. ng ∼ exp
{

(βw)1/2
}

, where we have

introduced a numerical prefactor β. If the degree of polymerization is much smaller then

ng, the dendritic topology dominates. This behavior can be clearly seen in Fig. S13 for

high w, where the radius of gyration follows the dendritic behavior.

As the degree of polymerization reaches ng, the chain walker cannot cross the full

structure within w − 1 steps. As result a topology is created which is no more bound to
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the existing structure. If we would follow the time in units of τ , each step now corresponds

a possible reaction event (which adds a whole dendritic blob to the existing structure)

and thus a linear structure emerges for times t ≫ τ . In this case the extension of the

structure is that of an linear chain in good solvent which is composed of dendritic blobs

of size ξ instead simple monomers:

R2 ∼ ξ2
(

N

ng

)2ν

∼ N2ν exp

[

−4

5
(βw)1/2

]

· (βw)2/5 . (22)

Thus, the branching density can be expressed using the contraction factor to its linear

analogue R2

L ∼ N2ν at equal molar mass N given by

g =

(

R2

R2

L

)

≃ exp

[

−4

5
(βw)1/2

]

· (βw)2/5 . (23)

The obtained structure for moderate values of w corresponds then to disordered den-

dritic bottle-brushes. However, since the degree of polymerization of the dendritic struc-

ture grows exponentially with w, see Eq. (21), the crossover towards a linear object can

be shifted to extremely high molar masses for high values of w. This is the reason why

we do not observe linear structures for w > 10 in our simulations, see Fig. S13. On the

other hand, very dense dendritic bottle-brushes can be obtained for high values of w if

the reaction goes on for long enough time to produce high molecular weight molecules.

Scattering Intensity

Results presented in this study are mainly obtained by static light scattering (SLS) and

small angle neutron scattering (SANS). For both techniques, scattering is an outcome

of the interaction between an incident beam (electromagnetic wave or particles) and a

probing matter, resulting in an elastically emitted secondary beam. The interference

of scattered radiation leads to amplification or extinction of the intensity and shows

an angular dependence directly related to the structure of the sample. The scattering
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intensity at a given angle θ is expressend by the excess Rayleigh ratio

Rθ =
I(q)

I0
r2 , (24)

where r is the distance between the scattering object and the detector, I(q) is the scat-

tering intensity at angle θ and I0 is the intensity of the incident beam. The wavevector

change q is related to the scattering angle and is given by

q =

(

4πn0

λ

)

sin
θ

2
(25)

It expresses the magnitude of the scattering vector and is often called the momentum

transfer in SANS. λ is the wavelength of beam of light or neutrons and n0 is the refractive

index of solvent used in experiment, which in SANS is unity. The fundamental equation

for scattered light of a macromolecule in dilute solution of concentration c is given by

K · c
R(θ)

=
1

P (θ)

(

1

Mw

+ 2A2c+ 3A3c
2 + ...

)

, (26)

where Mw is the weight-average molar mass and A2, A3,···are virial coefficients which define

the interactions between the macromolecule and solvent. The particle form factor P (q)

gives the angular dependence of the scattered light and K is the contrast factor which

differs in SLS and SANS. In light scattering K is expressed by

KSLS =
4π2

λ4NA

(

n0

δn

δc

)2

, (27)

where δn/δc is the refractive index increment and NA is Avogadro´s number. In SANS the

contrast is calculated by the difference in scattering length densities and is given by

KSANS =
(ρb1 − ρb0)

2

c2
v̄1
NA

(28)

with

ρb =

∑

ρibi
∑

(mi1.66× 10−24)
. (29)
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Experimental data

Molecular properties of CWPE at various conditions

Table S2: Molecular properties of CWPE.

RT-SEC in THF at T=25°Ca HT-SEC-D4 in TCB at T=150°Cb SANS in d-THF at T=25°Cc

Sample Mn [kg/mol] Mw [kg/mol] Mn/Mw Rg [nm] Mn [kg/mol] Mz [kg/mol] RSANS
g [nm] χ ν A2 [mol·l/g2]

CWPE1 133.4± 3.9 162.9± 1.2 1.22 17.8± 0.2 164.2± 6.7 177.9± 3.7 18.6 1.38 0.73 2.40E-5
CWPE2 43.1± 1.3 51.3± 0.8 1.19 10.6± 0.3 50.7± 0.7 57.6± 0.9 11.3 1.50 0.67 1.52E-5
CWPE3 16.5± 0.1 18.8± 0.1 1.14 9.5± 0.1 22.0± 0.7 25.0± 0.3 6.1 1.58 0.63 1.08E-5
CWPE4 245.7± 10.6 331.9± 3.7 1.35 29.1± 0.1 343.1± 9.8 410.5± 7.2 18.3 1.64 0.61 3.63E-5
CWPE5 48.9± 2.2 58.3± 1.1 1.17 8.9± 1.4 66.3± 1.9 71.2± 1.9 7.4 2.09 0.48 3.57E-6
CWPE6 95.3± 3.0 130.0± 1.4 1.37 11.3± 0.7 156.6± 2.3 174.7± 0.7 13.9 1.96 0.51 2.99E-6
CWPE7 214.8± 14.9 229.4± 4.6 1.39 18.5± 0.1 326.0± 3.2 414.8± 3.4 17.8 2.05 0.49 3.38E-6
CWPE8 116.9± 8.5 171.4± 2.5 1.47 14.1± 0.3 169.1± 2.0 297.0± 3.2 12.0 2.22 0.45 2.71E-6
CWPE9 111.4± 3.7 139.2± 1.5 1.25 9.9± 0.3 152.1± 1.6 159.7± 1.5 11.8 2.14 0.47 2.03E-6
CWPEx 173.7± 6.1 219.7± 2.9 1.26 15.9± 1.3 141.1± 5.5 165.7± 1.7 12.9 2.28 0.44 1.57E-6

a,bAll values and averages determined from triple determination. cDetermined by
Zimm-approach.

Conformation and Topology of CWPE from Multidetector-SEC.

Note that systems that theoretically exceed the lower resolution limits of LS (PE4, PE9)

were found to be significantly smaller using SANS data. However, for PE5 the difference

of Rg is quite severe with 18.3 nm and 30.4 nm for SANS and LS, respectively. In addi-

tion, LS experiment in THF supports the higher Rg value, whereby the size discrepancy

cannot be legitimated by the solution state. Furthermore, comparing PE5 to its dendritic

counterpart at low pressure (PE6) suggests that the true Rg is significantly larger than

17.3 nm. For other analyte pairs, the size difference of CWPEs synthesized at different

pressure varies between 3.9 − 6.8 nm depending on the polymerization time. Moreover,

the synthesis temperature of 10°C was found to be an optimum for the catalytic activity

that results in comparatively high radii and molar mass. Rg ∼ 30nm as determined

by SEC-MALLS is therefore quite convincing. We believe that the underestimate of

Rg(PE5) origins from an insufficient q range at the lower limit.

Theoretical linear models for calculation of contraction factors:

[ηL] = 5.3 · 10−4M0.7
w (30)

RL = 2.3 · 10−2M0.58
w (31)
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Figure S2: Conformation plots of CWPE obtained from HT-SEC-D4.

Table S3: Scaling exponents of CWPEs from conformation and KMHS plots determined
by HT-SEC in 1,2,4-TCB. Two values stand for different molar mass regimes.

Sample α ν [Rg] ν [RH ] ν [Rη] gw g′w ε λ

CWPE1 0.7 0.52 0.67 0.57 0.42± 6E-3 0.45± 9E-4 0.91± 2E-2 3.36± 0.09
CWPE2 0.71 0.78 - 0.57 0.48± 7E-3 0.42± 9E-4 1.18± 2E-2 12.77± 0.10
CWPE3 0.73 - - 0.58 - 0.41± 1E-3 3.70± 1.20 30.80± 0.23
CWPE4 0.72/0.46 0.31/0.67 0.53 0.57 0.44± 5E-3 0.40± 5E-3 1.09± 2E-2 2.02± 0.03
CWPE5 0.49 - - 0.51 0.26± 4E-2 0.21± 1E-2 1.19± 2E-1 64.25± 2.46
CWPE6 0.62 0.41 0.61 0.54 0.20± 6E-3 0.17± 5E-4 1.11± 2E-2 33.58± 0.23
CWPE7 0.66 0.45 0.59 0.56 0.17± 4E-3 0.14± 5E-4 1.12± 2E-2 22.65± 0.10
CWPE8 0.86/0.25 0.64/0.42 0.74/0.41 0.60/0.42 0.15± 8E-4 0.12± 5E-4 1.10± 3E-3 50.91± 0.79
CWPE9 0.6 0.31 0.16 0.52 0.16± 2E-3 0.13± 8E-4 1.13± 6E-3 67.71± 0.82
CWPEx 0.61 0.58 0.63 0.54 0.17± 3E-3 0.14± 4E-4 1.14± 1E-2 59.64± 1.08

Total number of branching per 1000 C atoms was calculated using

NBr =
2(ICH3

)

3(ICH3
+ ICH2

+ ICH)
× 1000 (32)

by integrating methyl proton signals with respect to signals of all protons in the

1H-NMR spectrum.
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Figure S3: Kuhn-Mark-Houwink plot of CWPE obtained from HT-SEC-D4.
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Table S4: Branching analysis from 1H and 13C NMR spectroscopy of CWPE.

NH
Br NC

Br C1 C2 C3 C4 C5 C6+ ΣC4-C6+ sec-C4 [%]
CWPE1 98.1 100.1 34.1 16.4 4.5 9.1 3.2 22.0 36.5 9.7
CWPE2 114.3 104.7 34.9 16.3 4.1 6.7 3.2 25.6 35.5 9.5
CWPE3 107.0 110.1 35.3 16.7 3.8 7.0 3.1 26.0 43.8 11.1
CWPE4 101.0 90.4 33.5 15.2 2.8 7.1 2.6 24.3 33.9 10.0
CWPE5 126.5 110.1 28.5 17.4 1.7 7.5 1.6 31.5 40.6 14.5
CWPE6 100.9 85.0 27.2 16.2 14.7 3.7 1.0 30.9 35.5 12.6
CWPE7 104.9 111.0 28.2 18.0 1.7 7.4 1.6 32.0 41.0 15.5
CWPE8 100.6 93.7 29.4 15.8 13.0 3.4 1.7 30.1 35.2 15.4
CWPE9 98.9 108.6 27.9 17.9 1.7 7.6 1.5 32.1 41.2 13.7
CWPEx 105.6 122.0 26.4 16.7 10.0 3.0 1.5 28.7 33.2 13.8
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Figure S7: Long-chain branching as a function of molar mass of CWPE obtained by
HT-SEC-D4.

Figure S8: Synthesis-temperature dependence of long-chain branches in CWPE obtained
from HT-SEC-D4.
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Results from SANS Measurements
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Figure S9: Normalized scattering intensity I(q)/I0 vs. momentum transfer q of CWPE
samples synthesized with varying pressure (A), temperature (B), time (C), and catalyst
concentration (D). Most symbols are omitted for clarity.
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Figure S10: Kratky presentation of CWPE obtained from different reaction pressure at
(A), temperature (B), time (C), and catalyst concentration (D).
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Figure S11: Casassa-Holtzer presentation of CWPE obtained from different reaction
pressure at (A), temperature (B), time (C), and catalyst concentration (D).
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Simulation Results

Simulation Method

We use the Bond Fluctuation Model16,17 (BFM) to model the the chain walking catalyst

mechanism under different walking/reaction probabilities p and to simulate the resulting

flexible polymeric structures in good solvent conditions. In this coarse-grained Monte

Carlo method polymers are modeled as connected cubes on a simple cubic lattice. One

Monte Carlo sweep is implemented by moving a randomly chosen monomer in a randomly

chosen move direction along the principal lattice axis. The bond vector set and the

excluded volume condition are defined in a way to preserve the local and global topology

and assure cut-avoidance. The move for a monomer is accepted if the new lattice positions

are empty and all bond vectors connecting the structures are in the allowed set, otherwise

the move is rejected. For the present case a set of 108 bonds with length 2,
√
5,
√
6, 3,

and
√
10 is allowed and throughout this paper we set the length of one lattice site to

unity. One Monte Carlo step (MCS) is defined as one attempted Monte Carlo move per

monomer in average (sweep over all monomers) to be the time unit.

First, the CW structures with N = 24; 32; . . . ; 2k; 3

2
2k; . . . ; 4096; 6144 monomers for

different chain walking rates w (reaction probabilities p = 1/w) are created in a cubic

L = 512 simulation box as follows: we start with an initial configuration of n = 2 con-

nected monomers. The metallocene catalysts is modeled as “walker” attribute on one

particular monomer and placed randomly on the initial structure. The attachment and

creation of a new monomer in the spirit of CW reaction is given as follows: First, the

monomer with the walker attribute is tested if the functionality of the monomer is smaller

than three rendering the chemical process only for trifunctional branching points. Sec-

ond, as the CW structure is grown under excluded volume condition an additional test

is necessary to ensure that the attachment and creation of a new monomer is possible

within the BFM. Therefore, the vicinity of the walker monomer is tested for placement of

a monomer in a shell of all permutations and sign combinations of the vector P± (2, 0, 0).

The latter restriction ensures structures non-violating the global topology and enforces
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the relaxation of the local structure. If one of the above criteria is not satisfied, the walker

randomly moves to next connected neighbor and the structure is moved according to the

BFM for 1000 monomer sweeps to relax the polymer and avoid regions with high density.

Then the algorithm repeats to add a monomer as the structure still not contains the

desired number of monomers n 6= N . Checking the functionality and the vicinity of the

monomer is not sufficient for adding a monomer into the structure. To take into account

the reaction/walking probability p, an additional acceptance-rejection conditions18 has

to be applied by dicing a uniformly distributed random number ξ ∈ [0; 1) and compare

to the reaction/walking probability p ∈ [0; 1]. If ξ < p a new monomer is added to the

walker monomer and the counter n is increased, otherwise the trial addition is rejected

and the walker is moving on the structure with 1 − p . After this step, the catalyst is

placed either on the position of the added monomer (addition) or has moved to the next

connected neighbors without preference of creational bias (walking). The structure is

relaxed for 1000 MCS in both cases to equilibrate high density regions. If the number of

monomers in the structure equals the desired number of monomers n ≡ N , the algorithm

terminates, otherwise its repeats for adding a monomer. As stated above, for high p / low

w the creation and attachment of monomer is most likely, whereas the walker movement is

suppressed leading to linear structures (slow walking probability/high reaction probabil-

ity) with the limiting case w = p = 1 as linear chain without branching. For low p / high

w, the attachment of monomers is suppressed, whereas the walker moves along the struc-

ture forming highly branched polymeric structures (fast walking probability/low reaction

probability). Note, that considering a trifunctional monomer as additional barrier for

walking, does not effect the underlying topology, instead the transition region is shifted

to higher molecular mass only. Within the algorithm the excluded volume condition is

satisfied at all time steps leading to conformations suitable within the BFM. After the

creation of the structures, one simulation run is performed to relax the branched polymer

and equilibrate high density regions followed by a simulation run in order of magnitude

109 MCS for sampling the observables. As the algorithm produces only single highly

branched structures (no detachment of the walker is considered), a set of at least 20 runs
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are performed to provide an ensemble average for different N and w = 1/p. Throughout

the paper, sampling the observables involves the ensemble average 〈. . . 〉
E

of the time

average 〈. . . 〉t with the short-hand notation A := 〈A〉 = 〈〈A〉t〉E . For comparison of the

obtained CW structures, additional simulations of linear chains, perfect tri-functional

dendrimers, and Zimm-Stockmayer AB2-distributed hyperbranched polymers6 are per-

formed. The perfect dendrimers are generated for different generation G = 2, ..., 10 with

spacer length S = 1 and S = 2 between the branching units. To emphasize the differ-

ence between the CW structures and Zimm-Stockmayer hyperbranched polymers (rHB),

a cluster-cluster aggregation mechanism is also used as we reported recently6. The BFM

algorithm, simulations and evaluations of the data are performed by the C++ framework

LeMonADE developed in our group19.

Modeling the BFM to the Experiment

As the BFM operates on coarse-grained scales, the intrinsic length scale of one Kuhn

length LK within the BFM is used to match the experimental data. For PE20 the bond

length between -C-C- is given by lPE = 1.54 Å with a bond angle α = 112° providing

a projected bond length dPE = lPE · sin(α
2
) = 1.26 Å. The contour length is given by

L = dPE · n with n as number of C-atoms along the backbone. To represent a equivalent

freely jointed chain with extension R = LK ·N and R2 = C∞nl2PE = NL2

K = LK ·L with

N Kuhn segments under a characteristic ratio C∞ = 7.2 yields LK =
C∞l2

PE

dPE

= 13.4 Å.

For PE the number of repeating units of a molecule with molar mass M is given by

N = M
M0

· bPE

LK

taking into account the chemical monomeric segment length bPE = 2dPE

and n = M
M0/2

for PE with molar mass of chemical unit M0 = 28 g/mol. Thus, one BFM

unit corresponds to 5.4 chemical PE monomers with 10.7 carbon atoms, see Tab. S5.
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Table S5: Molar mass Mw of CWPEs determined by RT-SEC in THF and the corre-
sponding Kuhn segments N in the BFM.

Sample Mw [kg/mol] N

CWPE1 162.9± 1.2 1094± 8
CWPE2 51.3± 0.8 345± 5
CWPE3 18.8± 0.1 126± 1
CWPE4 331.9± 3.7 2229± 25
CWPE5 58.3± 1.1 392± 6
CWPE6 130.0± 1.4 873± 9
CWPE7 229.4± 4.6 1541± 31
CWPE8 171.4± 2.5 1151± 17
CWPE9 139.2± 1.5 935± 10
CWPEx 219.7± 2.9 1476± 19

Radius of Gyration of Ideal Structures

The ideal radius of gyration, R2

g0, is generally given by the connectivity matrix of any

polymer structure according to the equation

R2

g0 =
1

N

N
∑

k=2

1

λk

. (33)

Here, λk denotes the k-th eigenvalue of the connectivity matrix (Rouse matrix) and the

sum extents over all non-zero eigenvalues21,22. See Fig. S12.
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Figure S12: (A) Ideal radius of gyration R2

g0 CW-structures, dendrimer, and linear em-
phasizing the ideal chain behavior for high degrees of polymerization N . (B) Same data
rescaled to ideal chain behavior R2

g0 ∼ N .
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Radius of Gyration and Intrinsic Viscosity of Excluded Volume

Structures

The radius of gyration R2

g is calculated by

R2

g =

〈

1

N

N
∑

i =1

(~ri − ~rCOM)2

〉

, (34)

where the position of the i-th monomer is denoted by ~ri, 〈. . . 〉 is the ensemble average of

the time average and ~rCOM = 1

N

∑N
j=1 ~rj is the center of mass. The average bond length

inside the polymeric structure is defined as b2 = 〈(~ri − ~rj)
2〉{i,j} ,where the ensemble-

time average 〈. . . 〉{i,j} is only calculated over all connected next neighbors. In Fig. S13

the data for the CW structures under excluded volume conditions rescaled by linear chain

behavior (R2

g ∼ N2ν) is depicted.
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Figure S13: Radius of gyration R2

g of the CW structure scaled by linear chain behavior
obtained for different walking rate w and various degree of polymerization N . The inset
shows data for randomly hyperbranched (rHB) polymers.

Using the Flory-Fox equation [η] ∼ ΦR3

N
with the mean-field result for R2

g yields

the prediction for randomly hyperbranched [ηrHB] ∼ N1/5 and bell shaped curve for

dendrimers [ηDD] ∼ N−2/5 · [S ln
(

N
S

)

]6/5. In Fig. S14 the predicted behavior for the CW-

structures is depicted.
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Figure S14: Predicted intrinsic viscosity [η] by the Flory-Fox equation for the CW-
structures with excluded volume.

Degree of Branching for CW-structures

As one particular topological measure the degree of branching DB of an AB2 hyper-

branched polymer is defined by23,24

DB =
D + T

D + T + L
, (35)

where L, T, D denote the linear (two-functional), terminal (mono-functional), and den-

dritic (three-functional) groups of the molecules, respectively. For linear chains (w = 1)

the degree of branching reads DB ≃ 0, randomly hyperbranched polymers DB = 0.5,

and for dendrimers the degree of branching DB = 1

S
is inverse proportional to spacer

length S. Any plateau-like behavior is related to (linear or dendritic) bottle-brush be-

havior providing sufficient dendritic groups (see Fig. S15). Similarly to the experiment,

the branching number NBr for the simulation data is calculated by

NBr =
T

D + T + L
=

T

N
(36)

and converted to experimental units using the previous described mapping.
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Figure S15: (A) Degree of Branching DB obtained for the CW structures as function
of the degree of polymerization N and walking rate w for CW structures. (B) Same
simulation data converted to branching number NBr in experimental units.

Scattering Intensity

For the internal structure, the static scattering function S(~q) of the polymers defined as

S(~q) =

〈

1

N

∑

i,j=1

exp [−i~q (~ri − ~rj)]

〉

(37)

with the scattering wave vector ~q assuming N identical monomers at the position vector

~ri/j. For low polymer concentrations, the scattering intensity is proportional to the static

structure factor25 I(~q) ≃ S(~q) as we neglect inter-particle interference in the computer

simulations considering scattering only by one molecule. For convenience we introduce

the form factor by normalizing the scattering function P (q · R) = 1

N
S(q · R) = I(q)/I0

obtaining a scaling function for comparison of different degree of polymerization.

S29



✤

✤

✤ ✤
✤ ✤

✤

✤

✤

✤

✤

❖

❖ ❖
❖

❖ ❖
❖

❖

❖

❖

❖

❉

❉ ❉
❉

❉ ❉
❉

❉

❉

❉

❉

★
★

★
★

★ ★
★

★

★

★

★

✖
✖

✖
✖ ✖ ✖

✖

✖

✖

✖

✖

✖

⊗
⊗

⊗ ⊗ ⊗ ⊗
⊗

⊗

⊗

⊗

⊗

⊗

10
-1

10
0

10
1

10
2

10
3

10
4

qRg

0.01

0.1

1

10

100
(q

R
g)1/

ν ·P
(q

R
g)

N32
N48
N64✤ ✤
N128❖ ❖
N192❉ ❉
N256★ ★
N384
N512
N768
N1024
N1536✖ ✖
N2048⊗ ⊗
N3072
L N1024

rHB 

A

✤

✤
✤

✤ ✤ ✤
✤

✤

✤

✤

✤

✤

✦

✦
✦

✦ ✦
✦

✦

✦

✦

✦

✦

✦

❖
❖

❖

❖
❖

❖
❖

❖

❖

❖

❖

❖

❉ ❉

❉ ❉ ❉
❉

❉

❉

❉

❉

❉

❉

★

★

★

★ ★
★

★

★

★

★

★

★

10
-1

10
0

10
1

10
2

10
3

10
4

qRg

0.01

0.1

1

10

100

(q
R

g)1/
ν ·P

(q
R

g) dendrimer f3 S2

N19 G2
N43 G3
N91 G4
N187 G5✤ ✤
N367 G6✦ ✦
N763 G7❖ ❖
N1531 G8❉ ❉
N3067 G9★ ★
N6139 G10
L N1024

B

Figure S16: Scattering plot in the modified Kratky-representation for (A) randomly
hyperbranched molecules and (B) perfect trifunctional dendrimers with S = 2. The black
solid line indicates the expected slope for a linear chain P (q ·Rg) ∼ q−1/ν and simulation
data for N = 1024, whereas the gray stroked line corresponds to the mean-field prediction
P (q) ∼ q−5/2 for rHB. Most of the symbols are omitted for clarity.
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Figure S17: Scattering plot in the modified Kratky-representation for CW structures
with walking rate w = 2 (A), 5 (B), 10 (C), and w = 100 (D) in comparison to randomly
hyperbranched and linear chain scaling. The black solid line indicates the expected slope
for a linear chain P (q) ∼ q−1/ν , whereas the gray stroked line corresponds to the mean-
field prediction P (q) ∼ q−5/2 for rHB. Most of the symbols are omitted for clarity.
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