Supporting Information

Surface Assistant Charge Separation in PEC Cu₂S-Ni/Cu₂O Cathode

Wan Zhang¹, Ruotian Chen², Zhiguang Yin¹, Xinyu Wang¹, Zenglin Wang¹, Fengtao Fan², Yi Ma^{1*}

¹ Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, Shaanxi, China
2 State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, The Collaborative Innovation Centre of

Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China

*Corresponding author: mayi@snnu.edu.cn

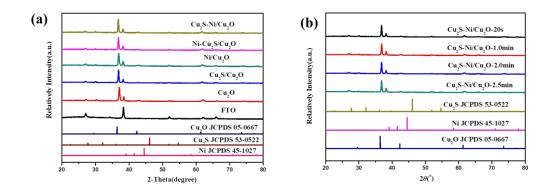


Fig. S1 - XRD patterns of (a) Cu_2O , Cu_2S/Cu_2O , Ni/Cu_2O , $Ni-Cu_2S/Cu_2O$ and Cu_2S-Ni/Cu_2O and (b) Cu_2S-Ni/Cu_2O photoelectrodes with various Ni content.

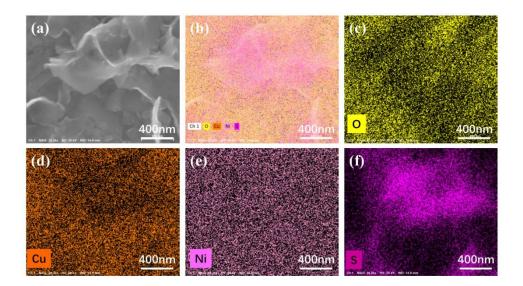


Fig. S2 Enlarged top-view SEM image of Cu_2S -Ni/ Cu_2O (a) and corresponding EDX mapping for all elements (b), O (c), Cu (d), Ni (e) and S (f).

(a)	Element		[%]	Mass Norm. [%]	[%]	abs. error [%] (1 sigma)	(d)	Element	At. I	No.	Mass [%]	Mass Norm. [%]	Atom [%]	abs. error [%] (1 sigma)
	Oxygen Copper		7.32			0.89		Sulfur		16		1.66	2.43	
			85.85	100.00	100.00			Nickel		28		0.53	0.42	
(b)			Mass	Mass Norm.	Atom	abs. error [%]		Oxygen		8	10.15	11.50	33.63	1.48
	Element	At. No.	[%]	[%]	[%]	(1 sigma)		Copper	7	29	76.17	86.31	63.53	2.09
	Oxygen	8	6.27	6.85	22.12	1.01					88.26	100.00	100 00	
	Sulfur	16	2.42	2.64	4.26	0.12					00.20	100.00	100.00	
	Copper	29	82.92	90.51	73.62	2.27					Mass	Mass Norm	Atom	abs. error [%]
			91.62	100.00	100.00			Element	At. No	No.	[%]	[%]	[%]	(1 sigma)
(c)	Element	At. No.	Mass [%]	Mass Norm. [%]	Atom	abs. error [%] (1 sigma)	(e)	Oxygen		8	3.04	3.49	11.52	0.60
	Oxygen	8	7.53					Sulfur		16	8.83	10.15	16.71	0.35
	Copper	29	86.44	91.51	73.96	2.37		Copper		29	75.01	86.23	71.65	2.06
	Nickel	28	0.49	0.52	0.46	0.05		Nickel		28	0.12	0.14	0.13	0.04
			94.46	100.00	100.00			NICKCI		_				0.04
											87.00	100.00	100.00	

Fig. S3 Elements distributions of photoelectrodes analyzed by EDX spectra: (a) Cu₂O, (b) Cu₂S/Cu₂O,

(c) Ni/Cu₂O, (d) Ni-Cu₂S/Cu₂O, (e) Cu₂S-Ni/Cu₂O.

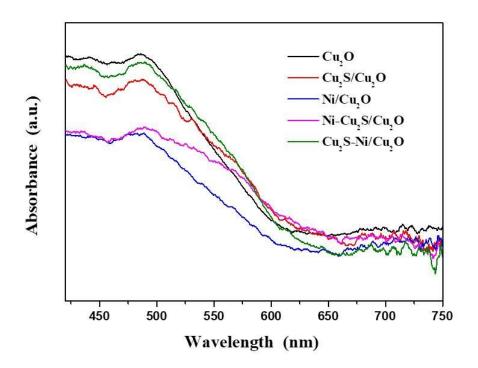
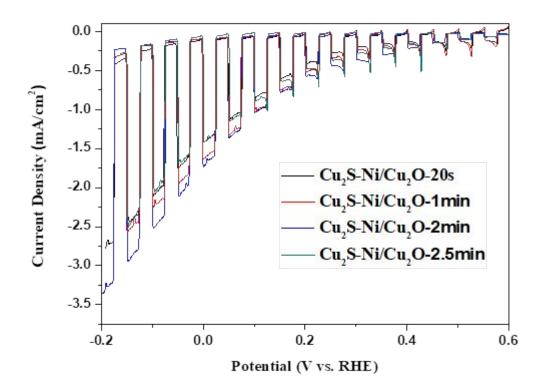
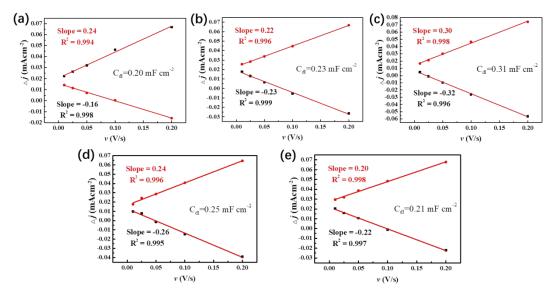




Figure S4. UV-Vis diffuse reflectance spectra of the photoelectrodes.

Fig. S5 The I-V curves of Cu₂S-Ni/Cu₂O photoelectrodes with different content of Ni under chopped light irradiation of a Xe-lamp with AM 1.5 G filter.

Fig. S6 Charging current density differences ploted against scan rate: (a) Cu_2O , (b) Cu_2S/Cu_2O , (c) Ni/Cu_2O , (d) $Ni-Cu_2S/Cu_2O$ and (e) Cu_2S-Ni/Cu_2O . The linear slope is equivalent to the double-layer capacitance C_{dl} , representing the electrochemical surface area.