Supporting Information

RhCl₃·3H₂O-Catalyzed Ligand-Enabled Highly Regioselective Thiolation of Acrylic Acids

Can Liu,^{†,‡} Yi Fang,^{†,‡} Shun-Yi Wang,^{*,†,‡} and Shun-Jun Ji^{*,†,‡}

[†]Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
[‡]Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, China.

Email: shunyi@suda.edu.cn; shunjun@suda.edu.cn

Table of Contents

General Information		
Experimental Section	S-3	
Optimization of the Rh-catalyzed thiolation of 1a with 2a	S-3	
General procedure for the preparation of alkenyl sulfides	S-7	
Large scale reaction	S-7	
Derivative reaction	S- 8	
Controlled experiment	S-8	
Competitive experiment	S- 9	
Characterization of structurally novel compounds	S-10	
¹ H and ¹³ C NMR Spectra of structurally novel compounds	S-16	
X-ray Structure of 4a	S-43	
References		

General information

Unless otherwise noted, all commercially available compounds were used as provided without further purification. Acrylic acids 1 and $1a-d_2$ were prepared according to the literature procedures.¹ Solvents for chromatography were analytical grade and used without further purification. Anhydrous MeCN, DMF, DMA, DMSO, THF (99.9%, Extra Dry with molecular sieves, Water≤50 ppm, in resealable bottle under Ar) were purchased from Adamas-beta®. Analytical thin-layer chromatography (TLC) was performed on silica gel, visualized by I₂ or irradiation with UV light. For column chromatography, 200-300 mesh silica gel was used. Flash chromatography was performed with SepaBean® machine of Santai Technologies. ¹H-NMR and ¹³C-NMR were recorded on a BRUKER 400 MHz spectrometer. Chemical shifts (δ) were reported referenced to an internal tetramethylsilane standard or the CDCl₃ residual peak (δ 7.26) for ¹H NMR. Chemical shifts of ¹³C NMR were reported relative to $CDCl_3$ (δ 77.16). Data were reported in the following order: chemical shift (δ) in ppm; multiplicities were indicated s (singlet), bs (broad singlet), d (doublet), t (triplet), m (multiplet); coupling constants (J) were in Hertz (Hz). IR spectra were recorded on a BRUKER VERTEX 70 spectrophotometer and were reported in terms of frequency of absorption (cm⁻¹). In situ IR spectroscopy was performed on Mettler-Toledo ReactIR 15 equipped with a diamond ATR probe and a MCT detector. Spectra were acquired using Mettler-Toledo iC IR software version 7.0.297 in the range of 650–2200 cm⁻¹ with a 4 cm⁻¹ resolution. HRMS spectra were obtained by using GCT Premier TOF-MS with CI source or BRUKER microTOF-Q III instrument with ESI source. Standard XPS spectra of Cu is accessable from website of Thermo Scientific (https://xpssimplified.com/elements/copper.php#opennewwindow).

Experimental section

Optimization of the Rh-catalyzed thiolation of 1a with 2a.

	RhCl ₃ ·3H ₂ (Cu(OAc) ₂	D (5 mol %) SPh (5 mol %)
	solvent, 12	20 °C, 12 h
1a (1 equiv)	2a (1 equiv)	4a
Entry	Solvent (1 mL)	LC-yield (%)
1	DMF	10
2	DMA	N.D.
3	NMP	7
4	DMSO	N.D.
5	1,4-dioxane	N.D.
6	THF	trace
7	MeCN	7
8	DCE	N.D.
9	Toluene	N.D.
10	PhCF ₃	N.D.
11	HFIP	trace
12	EtOH	N.D.
13	t-AmOH	N.D.
14	AcOH	N.D.

Table S1. Optimization of solvents.

Table S2. Optimization of amount of Cu(OAc)	2.
---	----

RhCl ₃ •3H ₂ C + Ph <mark>SS</mark> Ph <u>Cu(O</u> DMF, 120	0 (5 mol %) Ac) ₂ °C, 12 h
2a (1 equiv)	4a
Cu(OAc) ₂	LC-yield (%)
-	N.D.
10 mol%	17
15 mol%	17
20 mol%	27
25 mol%	32
50 mol%	40
75 mol%	40
	+ PhSSPh ← PhSSPh 2a (1 equiv) Cu(OAc) ₂ - 10 mol% 15 mol% 20 mol% 25 mol% 50 mol% 75 mol%

8	1 equiv	49
9	1.5 equiv	38

Table S3. Optimization of sort of Cu salts.

Соон	RhCl ₃ ·3H ₂ C + Ph <mark>SS</mark> Ph [Cu] (1 DMF, 120	o (5 mol %) equiv) °C, 12 h
1a (1 equiv)	2a (1 equiv)	4a
Entry	[Cu]	LC-yield (%)
1	CuCl ₂	Trace
2	Cu(OTf) ₂	17
3	CuO	22
4	$CuSO_4$	16
5	Cu(TFA) ₂	34
6	Cu(NO ₃) ₂	Trace
7	CuCl	19
8	Cu(acac) ₂	32
9	CuI	23
10	CuBr	29

Table S4. Optimization of sort of Ag salts.

COOH + PhS		RhCl ₃ ·3H ₂ C Cu(OAc) ₂ [Ag] (20 	0 (5 mol %) (1 equiv) mol %) °C, 12 h
	1a (1 equiv)	2a (1 equiv)	4a
	Entry	[Ag]	LC-yield (%)
	1	AgSbF ₆	30
	2	$AgBF_4$	45
	3	AgOTf	28
	4	AgOTs	39
	5	AgTFA	46
	6	AgOAc	45
	7	Ag ₂ O	49
	8	Ag ₂ CO ₃	45

Table S5. Optimization of sort of ligands.

S5

^aPhSSPh: 2 equiv, 6 h.

Ĺ	Соон	+ Ph <mark>SS</mark> Ph	RhCl ₃ •3H ₂ O Cu(OAc) ₂ (L36 DMF, 120 ^C	(5 mol %) 1 equiv) 5 2C, 12 h	SPh
	1a (1 equiv)	2a (1 equiv	<i>'</i>)		4a
Entry		Amour	nt of L36	Isolate	ed yield (%)
	1	5 mol %			54
	2	10 mol %			64

3	15 mol %	69
4	20 mol %	66
5	25 mol %	65
6	30 mol %	68

Table S7. Optimization of amount of PhSSPh.

Соон	+ Ph <mark>SS</mark> Ph	RhCl ₃ ·3H ₂ O (5 Cu(OAc) ₂ (1 L36 (15 m DMF, 120 °6	5 mol %) equiv) ol %) C, 12 h
1a (1 equiv)	2a		4a
Entry	Amount of PhSSPh		Isolated yield (%)
1	50 mol %		34
2	1 equiv		66
3	1.25 equiv		70
4	1.5 equiv		67
5	2 equiv		75

General procedure for the preparation of alkenyl sulfides

An oven-dried screw-capped 8-mL vial equipped with a magnetic stir bar was charged with **1** (0.3 mmol), **2** (0.6 mmol), RhCl₃·3H₂O (5 mol %, 3.9 mg), Cu(OAc)₂ (1 equiv, 54 mg), L37 (15 mol %, 19.9 mg). DMF (3 mL) was added via syringe and the mixture was stirred at 120 °C for 6 h. The crude reaction mixture was filtered to remove the PhSCu(0, I) powder. The filtrate was diluted with ethyl acetate (50 mL) and washed with water (20 mL \times 3). The organic layer was dried over Na₂SO₄, filtered, and concentrated. The residue was purified by column chromatography with EtOAc and DCM or PE.

Large scale reaction

An oven-dried round-bottomed 25-mL flask equipped with a magnetic stir bar was charged with Atropic acid **1a** (6 mmol, 0.8890 g), PhSSPh **2a** (12 mmol, 2.6200 g), RhCl₃·3H₂O (5 mol %, 80 mg), Cu(OAc)₂ (1 equiv, 1.0898 g), L37 (15 mol %, 398 mg). DMF (10 mL) was added via syringe and the mixture was stirred at 120 °C for 24 h. The crude reaction mixture was filtered to remove the PhSCu(0, I) powder. The filtrate was diluted with ethyl acetate (150 mL) and washed with water (50 mL \times 3). The

organic layer was dried over Na_2SO_4 , filtered, and concentrated. The residue was purified by auto flash chromatography with EtOAc and PE (EA : PE = 1 : 10). Isolated yield: 60%, 0.9260 g.

Derivative reaction

The procedure was adapted from the literature.²An oven-dried screw-capped 8-mL vial equipped with a magnetic stir bar was charged with **4a** (0.2 mmol, 51.3 mmg), TfOH (0.5 mL) was added via syringe and the mixture was stirred at 120 °C for 3 h. The reaction was quenched by H₂O and diluted with DCM (10 mL×3). The organic layer was dried over Na₂SO₄, filtered, and concentrated. The residue was purified by column chromatography with EtOAc and PE (EA : PE = 1 : 20).

The procedure was adapted from the literature.³ An oven-dried round bottom tube equipped with a magnetic stir bar was charged with LiAlH₄ in THF (1 mol/L, 1.5 mL, 1.5 mmol) and cooled to 0 °C. **4a** (128.2 mg, 0.5 mmol) was carefully added in portions at this temperature then the mixture was warmed up to room temperature and refluxed for 1 h. At this point, the mixture was cooled to 0 °C and reaction was quenched by slow addition of Sat. Rochelle's salt (5 mL) was added and the aqueous layer was extracted using EtOAc (3 x 10 mL). The combined organic layers were dried over Na₂SO₄, filtered and concentrated. The residue was purified by column chromatography with EtOAc and PE (EA : PE = 1 : 5).

Controlled experiment

An oven-dried screw-capped 8-mL vial equipped with a magnetic stir bar was charged with **1a'** (0.3 mmol), **2a** (0.6 mmol), RhCl₃·3H₂O (5 mol %, 3.9 mg), Cu(OAc)₂ (1 equiv, 54 mg), L37 (15 mol %, 19.9 mg). DMF (3 mL) was added via syringe and the mixture was stirred at 120 °C for 6 h. Corresponding product **4a'** was not detected.

Competitive experiment

An oven-dried screw-capped 8-mL vial equipped with a magnetic stir bar was charged with **1a** (29.6 mg, 0.2 mmol), **1a**- d_2 (99% D, 30.0 mg, 0.2 mmol), **2c** (111.4 mg, 0.4 mmol), RhCl₃·3H₂O (5 mol %, 2.6 mg), Cu(OAc)₂ (1 equiv, 36 mg), L37 (15 mol %, 13.4 mg). DMF (2 mL) was added via syringe and the mixture was stirred at 120 °C for 1.5 h. The crude reaction mixture was filtered to remove the PhSCu(0, I) powder. The filtrate was diluted with ethyl acetate (50 mL) and washed with water (20 mL × 3). The organic layer was dried over Na₂SO₄, filtered, and concentrated. The residue was purified by column chromatography with EtOAc and DCM (EA: DCM = 1 : 5). The ratio was identified by ¹HNMR to give the KIE value of 3.0.

Characterization of structurally novel compounds

(Z)-2-(o-tolyl)-3-(p-tolylthio)acrylic acid 3a

Following general procedure, **3a** was obtained as a yellow solid (50.2 mg, 59%). ¹H NMR (400 MHz, CDCl₃): δ 10.92 (s, 1H), 7.37 (d, *J* = 7.9 Hz, 2H), 7.31 (s, 1H), 7.22 – 7.12 (m, 6H), 2.33 (s, 3H), 2.30 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 152.67, 138.69, 137.26, 137.22, 133.05, 131.44, 130.30, 130.22, 130.10, 128.26, 125.85, 125.81, 21.24, 20.20.; FT-IR (ATR): 2924, 1660, 1536, 1486, 1419, 1318, 1234 cm⁻¹. HRMS (ESI, m/z): calcd for C₁₇H₁₆O₂S [M+Na]⁺: 307.0769, found: 307.0765. Mp: 167.3-168.3

°C.

(Z)-2-(m-tolyl)-3-(p-tolylthio)acrylic acid 3b

Following general procedure, **3b** was obtained as a yellow solid (67.3 mg, 56%). ¹H NMR (400 MHz, CDCl₃): δ 10.95 (s, 1H), 7.52 – 7.37 (m, 3H), 7.19 (dd, *J* = 7.6, 14.8 Hz, 5H), 7.10 (d, *J* = 7.3 Hz, 1H), 2.35 (s, 3H), 2.34 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 138.73, 137.84, 133.27, 131.52, 130.32, 130.26, 129.72, 128.44, 128.12, 126.14, 21.53, 21.26; FT-IR (ATR): 2923, 1656, 1532, 1232, 1239 cm⁻¹. HRMS (ESI, m/z): calcd for C₁₇H₁₆O₂S [M+Na]⁺: 307.0769, found: 307.0767. Mp: 151.3-152.2 °C.

Following general procedure, **3c** was obtained as a yellow solid (65.4 mg, 76%). ¹H NMR (400 MHz, CDCl₃): δ 7.43 – 7.36 (m, 3H), 7.30 (d, J = 8.4 Hz, 2H), 7.17 (d, J = 7.8 Hz, 2H), 6.89 – 6.82 (m, 2H), 3.79 (s, 3H), 2.34 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 159.11, 151.45, 138.60, 133.25, 131.38, 130.17, 130.12, 130.03, 113.57, 55.35, 21.18; FT-IR (ATR):

2956, 1670, 1508, 1286, 1241, 1182 cm⁻¹. HRMS (ESI, m/z):

calcd for C₁₇H₁₆O₃S [M+Na]⁺:323.0718, found: 323.0722.

(Z)-2-(4-methoxyphenyl)-3-(p-tolylthio)acrylic acid 3c

Mp: 148.9-149.9 °C.

(Z)-2-(4-chlorophenyl)-3-(p-tolylthio)acrylic acid 3d

Following general procedure, **3d** was obtained as a light yellow solid (69.0 mg, 72%). ¹H NMR (**400 MHz, DMSO-***d*₆): δ 13.03 (s, 1H), 7.46 (d, *J* = 7.7 Hz, 2H), 7.42 – 7.32 (m, 4H), 7.21 (d, *J* = 7.7 Hz, 2H), 2.29 (s, 3H); ¹³C NMR (**100 MHz, DMSO-***d*₆): δ 166.85, 146.62, 137.74, 136.62, 132.74, 131.83, 130.40, 130.28, 130.11, 127.85, 126.48, 20.61; FT-IR (ATR): 2926, 1651, 1522, 1487, 1422, 1315, 1236 cm⁻¹. HRMS (ESI, m/z): calcd for C₁₆H₁₃ClO₂S [M+H]⁺: 305.0403, found: 305.0406. Mp:

177.1-178.2 °C.

(Z)-2-(4-fluorophenyl)-3-(p-tolylthio)acrylic acid 3e

Following general procedure, **3e** was obtained as a light yellow solid (63.9 mg, 78%). ¹H NMR (400 MHz, CDCl₃): δ 10.48 (s, 1H), 7.43 (s, 1H), 7.40 (d, *J* = 7.9 Hz, 2H), 7.33 (dd, *J* = 5.4, 8.5 Hz, 2H), 7.18 (d, *J* = 7.9 Hz, 2H), 7.01 (t, *J* = 8.5 Hz, 2H), 2.35 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 171.60, 162.55(d, *J* c-F= 245.0 Hz),153.01, 138.85, 133.48(d, *J* c-F= 3.0 Hz), 132.94, 131.46, 130.66(d, *J* c-F= 3.0 Hz),130.25, 115.14, 114.93, 21.17; ¹⁹F NMR (**376** MHz, CDCl₃): δ -114.57. FT-IR (ATR): 2919,

1662, 1492, 1219 cm⁻¹. **HRMS (ESI, m/z):** calcd for C₁₆H₁₃FO₂S [M+Na]⁺: 311.0518, found: 311.0517. **Mp**: 150.7-151.8 °C.

(Z)-2-benzyl-3-(p-tolylthio)acrylic acid 3f

Following general procedure, **3f** was obtained as a light yellow solid (51.6 mg, 76%). ¹H NMR (400 MHz, CDCl₃): δ 7.29 (dd, J = 7.7, 18.0 Hz, 4H), 7.23 – 7.18 (m, 3H), 7.17 – 7.10 (m, 3H), 3.67 (s, 2H), 2.34 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 172.32, 149.92, 139.34, 138.43, 133.39, 131.15, 130.21, 128.82, 128.59, 126.49, 123.80, 38.83, 21.25; FT-IR (ATR): 2909, 1664, 1557, 1430, 1249 cm⁻¹. HRMS (ESI, m/z): calcd for C₁₇H₁₆O₂S

[M+Na]⁺: 307.0769, found: 307.0763. **Mp**: 138.3-139.2 °C.

(Z)-2-((p-tolylthio)methylene)octanoic acid 3g

Following general procedure, **3g** was obtained as a white solid (62.1 mg, 52%). ¹H NMR (**400** MHz, CDCl₃): δ 7.38 (d, *J* = 7.8 Hz, 2H), 7.18 (d, *J* = 7.7 Hz, 2H), 7.07 (s, 1H), 2.34 (d, *J* = 15.8 Hz, 5H), 1.49 (p, *J* = 7.0, 7.5 Hz, 2H), 1.29 (d, *J* = 9.1 Hz, 6H), 0.87 (t, *J* = 6.5 Hz, 3H); ¹³C NMR (**100** MHz, CDCl₃): δ 172.49, 147.82, 138.40, 133.74, 131.48, 130.19, 125.13, 33.37, 31.75, 29.55, 29.02, 22.76, 21.26,

14.21; **FT-IR (ATR):** 2919, 2851, 1665, 1556, 1251, 941 cm⁻¹. **HRMS (ESI, m/z):** calcd for C₁₆H₂₂O₂S [M+H]⁺: 279.1419, found: 279.1414. **Mp**: 58.9-59.8 °C.

(Z)-2-methyl-3-(p-tolylthio)acrylic acid 3h

Following general procedure, **3h** was obtained as a yellow solid (36.7 mg, 48%). ¹H NMR (400 MHz, CDCl₃): δ 11.59 (s, 1H), 7.42 – 7.35 (m, 2H), 7.17 (d, *J* = 7.9 Hz, 2H), 7.10 (s, 1H), 2.36 (s, 3H), 1.99 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 147.96, 138.45, 133.52, 131.54, 130.18, 21.26, 19.23, 19.23; FT-IR (ATR): 2918, 1672, 1540, 1418, 1250 cm⁻¹. HRMS (ESI, m/z): calcd for C₁₁H₁₂O₂S [M+Na]⁺: 231.0456, found: 231.0450. Mp: 134.7-135.8 °C.

2-(p-tolylthio)cyclohex-1-ene-1-carboxylic acid 3i

Following general procedure, **3i** was obtained as a yellow solid (55.2 mg, 39%). ¹H NMR (400 MHz, CDCl₃): δ 11.98 (s, 1H), 7.43 – 7.36 (m, 2H), 7.16 (d, *J* = 7.8 Hz, 2H), 2.43 (td, *J* = 2.9, 6.2 Hz, 2H), 2.37 (s, 3H), 2.00 (td, *J* = 3.0, 5.9 Hz, 2H), 1.63 – 1.49 (m, 4H); ¹³C NMR (100 MHz, CDCl₃): δ 172.72, 154.19, 139.39, 136.09, 129.86, 128.23, 120.52, 32.35, 27.25, 23.14, 21.95, 21.40; FT-IR (ATR): 2926, 1662, 1552, 1414, 1249 cm⁻¹. HRMS (ESI, m/z): calcd for C₁₄H₁₆O₂S

[M+Na]⁺: 271.0769, found: 271.0771. Mp: 191.9-192.6 °C.

2-(p-tolylthio)cyclopent-1-ene-1-carboxylic acid 3j

Following general procedure, **3j** was obtained as a yellow solid (55.2 mg, 35%). ¹H NMR (**400 MHz, CDCl**₃): δ 7.46 – 7.40 (m, 2H), 7.16 (d, J = 7.8 Hz, 2H), 2.72 (tt, J = 2.1, 7.0 Hz, 2H), 2.37 (s, 3H), 2.35 – 2.30 (m, 2H), 1.81 (p, J = 7.6 Hz, 2H); ¹³C NMR (**100 MHz, CDCl**₃): δ 170.50, 160.22, 139.67, 135.45, 129.87, 128.22, 122.78, 39.29, 33.48, 21.99, 21.39; FT-IR (ATR): 2924, 1698, 1639, 1427, 1274 cm⁻¹. HRMS (ESI, m/z): calcd for C₁₃H₁₄O₂S [M+H]⁺: 235.0793, found:

235.0789. Mp: 204.0-205.0 °C.

(Z)-2-methyl-3-(p-tolylthio)but-2-enoic acid 3k

Following general procedure, **3k** was obtained as a yellow solid (55.2 mg, 26%). ¹H NMR (**400 MHz, CDCl**₃): δ 11.96 (s, 1H), 7.40 – 7.34 (m, 2H), 7.16 (d, *J* = 7.8 Hz, 2H), 2.37 (s, 3H), 2.01 (s, 3H), 1.84 (s, 3H); ¹³C NMR (**100 MHz, CDCl**₃): δ 152.21, 139.25, 135.45, 129.97, 129.53, 119.19, 21.60, 21.39, 16.53; FT-IR (ATR): 2922, 2852, 1659, 1540, 1412, 1282, 1196 cm⁻¹. HRMS (ESI, m/z): calcd for C₁₂H₁₄O₂S [M+Na]⁺: 245.0612, found: 245.0611. Mp: 172.2-173.3 °C.

(Z)-2-phenyl-3-(phenylthio)acrylic acid 4a

Following general procedure, **4a** was obtained as a light yellow solid (77.1 mg, 77%). ¹H NMR (**400 MHz, CDCl**₃): δ 11.51 (s, 1H), 7.55 – 7.47 (m, 3H), 7.40 – 7.29 (m, 8H); ¹³C NMR (**100 MHz, CDCl**₃): δ 151.94, 137.50, 136.64, 131.35, 129.58, 129.05, 128.56, 128.27, 127.75, 126.36; **FT-IR** (**ATR**): 2920, 1656, 1534,1419, 1234 cm⁻¹. **HRMS** (**ESI, m/z**): calcd for C15H13O₂S [M+H]⁺:257.0636, found: 257.0638.

Mp: 150.4-151.4 °C.

(Z)-2-phenyl-3-(p-tolylthio)acrylic acid 4b

Following general procedure, **4b** was obtained as a light yellow solid (73.0 mg, 77%). ¹H NMR (**400 MHz, CDCl3**): δ 11.82 (s, 1H), 7.46 (s, 1H), 7.43 – 7.25 (m, 7H), 7.16 (d, *J* = 7.8 Hz, 2H), 2.34 (s, 3H); ¹³C NMR (**100 MHz, CDCl3**): δ 152.84, 138.77, 137.56, 133.19, 131.49, 130.27, 129.02, 128.20, 127.63, 126.04, 21.25; FT-IR (ATR): 2875, 1652, 1526, 1488, 1418, 1231 cm⁻¹. HRMS (ESI, m/z): calcd for

C₁₆H₁₄O₂S [M+Na]⁺: 293.0612, found: 293.0608. Mp: 168.6-169.5 °C.

(Z)-3-((4-methoxyphenyl)thio)-2-phenylacrylic acid 4c

Following general procedure, **4c** was obtained as a light yellow solid (76.1 mg, 73%). ¹**H NMR** (**400 MHz**, **CDCl**₃): δ 10.92 (s, 1H), 7.47 – 7.43 (m, 2H), 7.40 (s, 1H), 7.38 – 7.25 (m, 5H), 6.93 – 6.85 (m, 2H), 3.80 (s, 3H); ¹³**C NMR** (**100 MHz**, **CDCl**₃): δ 160.25, 153.84, 137.54, 133.60, 129.00, 128.19, 127.60, 127.35, 125.66, 115.08, 55.53; **FT-IR** (**ATR**): 2832, 1662, 1541, 1490, 1234, 1173 cm⁻¹. **HRMS** (**ESI**, m/z): calcd for C₁₆H₁₄O₃S [M+Na]⁺: 309.0561, found: 309.0561. **Mp**: 134.0-

(Z)-3-((2-fluorophenyl)thio)-2-phenylacrylic acid 4d

Following general procedure, **4d** was obtained as a light yellow solid (68.0 mg, 75%). ¹H NMR (**400 MHz, CDCl**₃): δ 11.76 (s, 1H), 7.53 (td, *J* = 1.8, 7.6 Hz, 1H), 7.33 (tt, *J* = 6.6, 16.4 Hz, 7H), 7.19 – 7.09 (m, 2H); ¹³C NMR (**100 MHz, CDCl**₃): δ 171.90, 161.55 (d, *J* _{C-F} = 246 Hz), 150.77 (d, *J* _{C-F} = 1 Hz), 137.16 (d, *J* _{C-F} = 7 Hz), 134.19, 131.16, 129.03, 128.26, 127.83, 127.03, 125.05 (d, *J* _{C-F} = 4 Hz), 123.27 (d, *J* _C

 $_{\rm F} = 17$ Hz), 116.57 (d, $J_{\rm C-F} = 22$ Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -108.44; FT-IR (ATR): 2929, 1655, 1532, 1473, 1249, 1222 cm⁻¹. HRMS (ESI, m/z): calcd for C₁₅H₁₁FO₂S [M+Na]⁺: 297.0361, found: 297.0358. Mp: 124.0-124.9 °C.

(Z)-3-((4-chlorophenyl)thio)-2-phenylacrylic acid 4e

Following general procedure, **4e** was obtained as a yellow solid (81.3 mg, 73%). ¹H NMR (400 MHz, DMSO-*d*₆): δ 13.09 (s, 1H), 7.74 – 7.18 (m, 10H); ¹³C NMR (100 MHz, DMSO-*d*₆): δ 167.25, 143.67, 137.51, 135.32, 132.70, 131.83, 129.38, 128.83, 128.51, 127.95, 127.24.; FT-IR (ATR): 2824, 1650, 1522, 1476, 1421, 1250, 1093 cm⁻¹. HRMS (ESI, m/z): calcd for C₁₅H₁₁ClO₂S [M+Na]⁺: 313.0066, found: 313.0059. Mp: 164.7-165.5 °C.

(Z)-3-((4-bromophenyl)thio)-2-phenylacrylic acid 4f

Following general procedure, **4f** was obtained as a light brown solid (75.4 mg, 62%). ¹**H NMR (400 MHz, DMSO-***d*₆): δ 13.01 (s, 1H), 7.59 (d, *J* = 8.3 Hz, 2H), 7.53 (d, *J* = 8.6 Hz, 2H), 7.40 (d, *J* = 7.4 Hz, 2H), 7.31 (dt, *J* = 6.8, 12.8 Hz, 4H); ¹³**C NMR (100 MHz, DMSO-***d*₆): δ 143.39, 137.51, 135.82, 132.25, 132.01, 128.47, 127.93, 127.22, 121.13; **FT-IR (ATR):** 2918, 1651, 1471, 1421, 1248 cm⁻¹. **HRMS (ESI, m/z):**

Ph COOH calcd for $C_{15}H_{11}BrO_2S$ [M+H]⁺: 334.9741, found: 334.9745. **Mp**: 192.4-193.3 °C.

(Z)-3-(butylthio)-2-phenylacrylic acid 4g

соон

Following general procedure, 4g was obtained as a light brown solid (61.6 mg, 22%). ¹**H NMR** (400 MHz, CDCl₃): δ 10.28 (d, J = 919.5 Hz, 1H), 7.37 – 7.26 (m, 6H), 2.79 (t, J = 7.4 Hz, 2H), 1.68 (p, J = 7.6 Hz, 2H), 1.45 (dq, J = 7.4, 14.8 Hz, 2H), 0.93 (t, J = 7.3 Hz, 3H); ¹³C NMR (**100 MHz, CDCl**₃): δ 171.75, 152.57, 138.03, 128.88, 128.09, 127.37, 36.44, 32.40, 21.68, 13.64; FT-IR (ATR): 2957, 2927, 2855, 1724, 1666, 1418, 1250,1217 cm⁻¹. **HRMS (ESI, m/z):** calcd for C₁₃H₁₆O₂S [M+Na]⁺: 259.0769, found: 259.0765. Mp: 66.7-67.6 °C.

(Z)-3-(cyclohexylthio)-2-phenylacrylic acid 4h

Following general procedure, 4h was obtained as an orange solid (61.4 mg, 52%). ¹H NMR (400 MHz, CDCl₃): δ 11.00 (s, 1H), 7.42 – 7.25 (m, 6H), 2.84 (tt, J = 3.8, 10.8 Hz, 1H), 2.04 (dd, J = 4.1, 13.2 Hz, 2H), 1.80 (dd, J = 4.1, 9.0 Hz, 2H), 1.67 - 1.59 (m, 1H), 1.53 - 1.41 (m, 2H),1.41 - 1.18 (m, 4H); ¹³C NMR (100 MHz, CDCl₃): δ 150.62, 138.27, 128.93, 128.07, 127.32, 48.30, 33.64, 25.93, 25.41; FT-IR (ATR): 2919, 2850, 1655, 1531, 1426, 1328, 1238, 1206 cm⁻¹. HRMS (ESI, m/z): calcd for

(Z)-3-(isopropylthio)-2-phenylacrylic acid 4i

C₁₅H₁₈O₂S [M+Na]⁺: 285.0925, found: 285.0920. Mp: 155.5-156.5 °C.

Following general procedure, 4i was obtained as a yellow solid (61.4 mg, 36%). ¹H NMR (400 MHz, CDCl₃): δ 10.77 (s, 1H), 7.38 (s, 1H), 7.36 - 7.25 (m, 5H), 3.12 (hept, J = 6.8 Hz, 1H), 1.38 (d, J = 6.8 Hz, Ph' COOH 6H); ¹³C NMR (100 MHz, CDCl₃): δ 171.81, 150.41, 138.26, 128.98, 128.16, 127.44, 39.80, 23.61; FT-IR (ATR): 2963, 1657, 1526, 1419, 1325,1233 cm⁻ ¹. **HRMS (ESI, m/z):** calcd for C₁₂H₁₄O₂S [M+Na]⁺: 245.0612, found: 245.0617. Mp: 106.9-107.8 °C.

(Z)-3-(tert-butylthio)-2-phenylacrylic acid 4j

Following general procedure, 4j was obtained as a yellow solid (42.6 mg, 31%). ¹H NMR (400 MHz, CDCl₃): δ 11.80 (s, 1H), 7.45 (s, 1H), 7.37 - 7.29 (m, 5H), 1.42 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 171.69, 147.96, 138.55, 129.03, 128.23, 127.45, 125.69, 44.75, 30.87; **FT-IR (ATR):** 2960, 2927, 1655, 1524, 1419, 1325, 1248, 1149 cm⁻¹.

HRMS (ESI, m/z): calcd for 245.0612 [M+Na]⁺: 259.0769, found: 259.0763. Mp: 151.7-152.9 °C.

(Z)-2-phenyl-3-(phenylselanyl)acrylic acid 4k

Following general procedure, 4k was obtained as an orange solid (45.2 mg, 22%). ¹H NMR (400 MHz, CDCl₃): δ 7.94 (s, 1H), 7.63 (dd, J =2.9, 6.5 Hz, 2H), 7.42 – 7.26 (m, 8H); ¹³C NMR (100 MHz, CDCl₃): δ 172.05, 152.28, 137.74, 133.39, 133.16, 129.49, 128.79, 128.45, 128.17, 127.70; 77Se NMR (76 MHz, CDCl₃) δ 508.96; FT-IR (ATR): 2922,

2851, 1656, 1421, 1307, 1324, 1217 cm⁻¹. HRMS (ESI, m/z): calcd for C₁₅H₁₂O₂Se [M+Na]⁺: 326.9900, found: 326.9902. Mp: 158.0-159.0 °C.

3-phenyl-4H-thiochromen-4-one der1

Following general procedure, **der1** was obtained as a light yellow solid (45.2 mg, 88%). ¹H NMR (400 MHz, CDCl₃): δ 8.62 (dt, J = 1.2, 7.9 Hz, 1H), 7.85 (s, 1H), 7.61 – 7.57 (m, 2H), 7.56 – 7.49 (m, 3H), 7.44 – 7.38 (m, 2H), 7.38 – 7.32 (m, 1H); ¹³C NMR (100 MHz,

CDCl₃): δ 178.27, 137.51, 136.85, 136.78, 135.61, 132.80, 131.28, 129.50, 129.00, 128.31, 128.08, 127.81, 126.57; **FT-IR** (**ATR**): 1609, 1589, 1531,1437, 1355 cm⁻¹. **HRMS (ESI, m/z):** calcd for C₁₅H₁₀OS [M+Na]⁺: 261.0350, found: 261.0353. **Mp**: 167.3-168.3 °C.

2-phenyl-3-(phenylthio)propan-1-ol der2

Following general procedure, **der2** was obtained as a colorless oil (45.2 mg, 50%). ¹H NMR (400 MHz, CDCl₃): δ 7.38 – 7.14 (m, 10H), 3.97 – 3.85 (m, 2H), 3.33 (dd, *J* = 7.7, 13.0 Hz, 1H), 3.22 (dd, *J* = 6.9, 13.0 Hz, 1H), 3.06 (p, *J* = 6.5 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 141.08, 136.37, 129.51, 129.10, 128.94, 128.07, 127.44, 126.27, 66.23, 47.61, 36.41; FT-IR (ATR): 3559, 2923, 2873, 1582, 1479, 1438, 1053, 1024 cm⁻¹. HRMS (ESI, m/z): calcd for C₁₅H₁₆OS [M+Na]⁺: 267.0820, found: 267.0818.

¹H and ¹³C NMR Spectra of structurally novel compounds

S28

X-ray Structure of 4a

Crystal Number: CCDC 1935976 Empirical formula: $C_{17}H_{14}O_2S$ Formula weight: 256.319 Unit cell parameters: a = 20.5001(11) Å, b = 9.8972(5) Å, c = 14.0168(8) Å, $\alpha = 90.00$, $\beta = 114.293(2)$, $\gamma = 90.00$ Temperature: 150 K Wavelength: 0.71073 Å Crystal system: Monoclinic Volume: 2592.1 (2) Å³ F (000): 1072.0 h, k, l max: 26, 12, 18

Reference

 (1) (a) Feng, C., Loh., T.-P. Directing-Group-Assisted Copper-Catalyzed Olefinic Trifluoromethylation of Electron-Deficient Alkenes. *Angew. Chem. Int. Ed.* 2013, *52*, 12414–12417. (b) Sun, S., Yu, J.-T., Jiang, Y., Cheng, J. Cs₂CO₃-Promoted Carboxylation of N-Tosylhydrazones with Carbon Dioxide toward α-Arylacrylic Acids. *J. Org. Chem.* 2015, *80*, 2855–2860.

(2) Anup, M.; Suman, D.; Harekrishna, S.; Gowri, S. G.; Mahiuddin, B. Ruthenium(II)-Catalyzed ortho-C–H Chalcogenation of Benzoic Acids via Weak O-Coordination: Synthesis of Chalcogenoxanthones. *Org. Lett.* **2017**, *19*, 2430–2433.

(3) (a) Xu, Y., Hong, Y.-J., Dean, J. T., M. Kevin, B. Intramolecular Chirality Transfer [2+2] Cycloadditions of Allenoates and Alkenes. *Org. Lett.* **2017**, *19*, 3703-3706. (b) Lei, Y., Xing, J.-J., Xu, Q., Shi, M. Synthesis of 5,6-Dihydropyrazolo[5,1-a]isoquinoline and Ethyl (Z)-3-Acetoxy-3-tosylpent-4-enoate through Tertiary-Amine-Catalyzed [3+2] Annulation. *Eur. J. Org. Chem.* **2016**, 3486–3490.