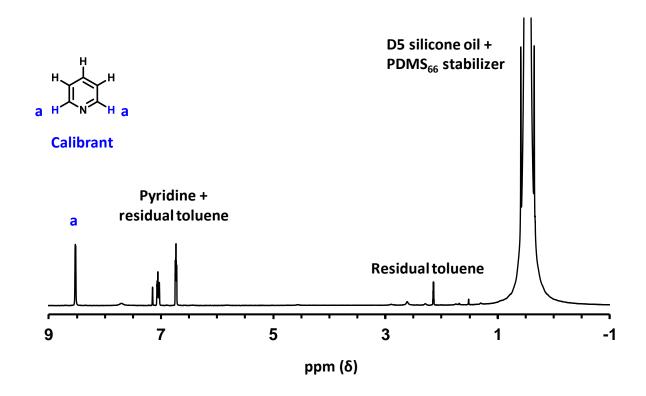
Supporting information for:

Effect of Core Crosslinking on the Physical Properties of Polydimethylsiloxane-based Diblock Copolymer Worms Prepared in Silicone Oil

Matthew J. Rymaruk,^{a,*} Cate T. O'Brien,^a Steven L. Brown,^b Clive N. Williams,^b and Steven P. Armes^{a,*}


a. Dainton Building, Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire, S3 7HF, UK.

b. Scott Bader Company Ltd, Wollaston, Wellingborough, Northamptonshire, NN297RL, UK.

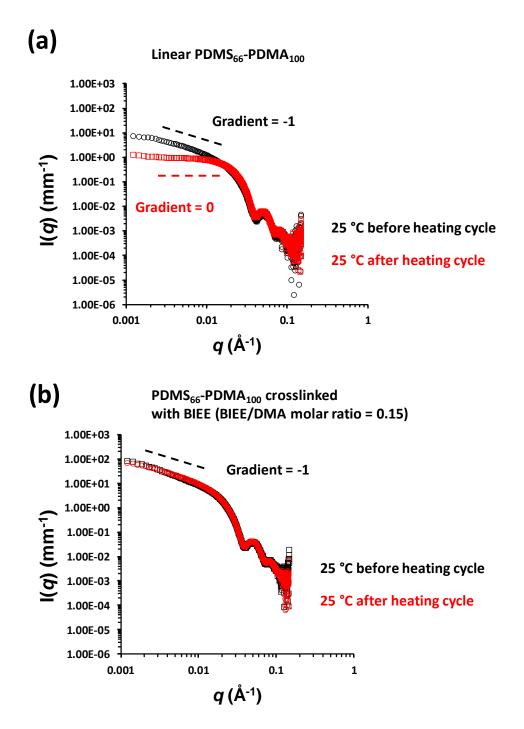
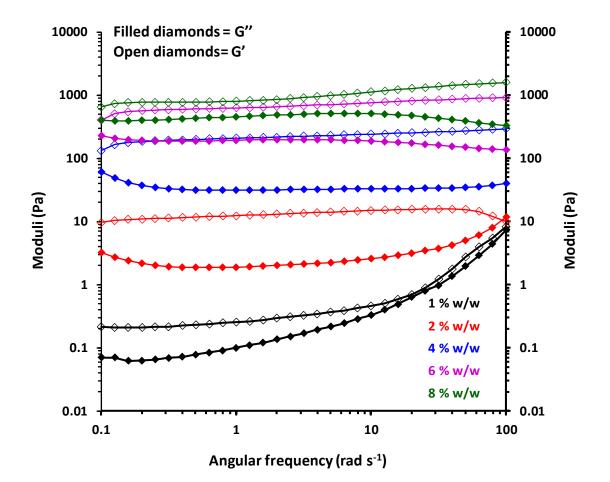

*Authors to whom correspondence should be addressed (<u>s.p.armes@sheffield.ac.uk</u>, m.rymaruk@sheffield.ac.uk).

Table S1. Summary of GPC data and TEM morphology assignment for the $PDMS_{66}$ - $PDMA_{105}$ and $PDMS_{66}$ - $PDMA_{190}$ diblock copolymers examined in this study.


Target Block	DMA	Actual block	M _n	M _w /M _n	TEM
composition	conversion	composition			Morphology
PDMS ₆₆ -PDMA ₁₀₅	95	PDMS ₆₆ -PDMA ₁₀₀	20,900	1.21	Worms
PDMS ₆₆ -PDMA ₁₉₀	93	PDMS ₆₆ -PDMA ₁₇₆	35,500	1.24	Vesicles

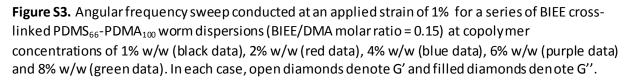
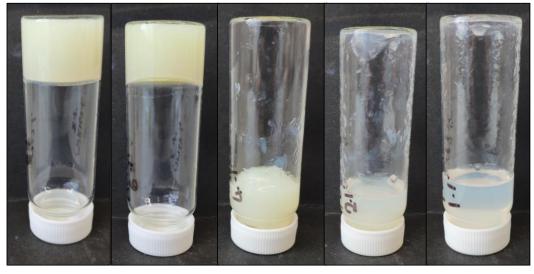


Figure S1. ¹H NMR spectrum recorded at 20 °C (after heating to 100 °C) for a 5.0 % w/w dispersion of PDMS₆₆-PDMA₁₀₀ diblock copolymer worms in D5 The NMR tube was equipped with a coaxial inner tube containing toluene-d₈ as a lock solvent and 0.1 M pyridine as an external standard. The lack of PDMA core-forming signals in this spectrum confirms that the increase in solvation of the core-forming PDMA block observed above 40 °C is fully reversible.

Figure S2. Small-angle X-ray scattering patterns recorded for: (a) a 1.0 % w/w dispersion of PDMS₆₆-PDMA₁₀₀ linear worms at 25 °C, prior to heating (black open circles). The same sample was then heated to 110 °C, equilibrated for 20 min, cooled to 25 °C and equilibrated for a further 20 min before being reanalyzed (open red squares). The change in the low *q* gradient from approximately -1 to approximately 0 indicates a worm-to-sphere transition. Dashed lines representing gradients of –1 (black dashed line) and 0 (red dashed line) are included as a guide to the eye. (b) A 1.0 % w/w dispersion of BIEE cross-linked PDMS₆₆-PDMA₁₀₀ worms (BIEE/DMA molar ratio = 0.15) at 25 °C (open black squares). The same dispersion was then heated to 110 °C, equilibrated for 20 min, cooled to 25 °C and reanalyzed (open red circles). The almost perfect overlap for these two SAXS patterns confirms that these cross-linked worms do not undergo a worm-to-sphere transition at 110 °C.

PDMS₆₆-PDMA₁₀₀ diblock copolymer worms at various concentrations in D5 silicone oil

8 % w/w


6 % w/w

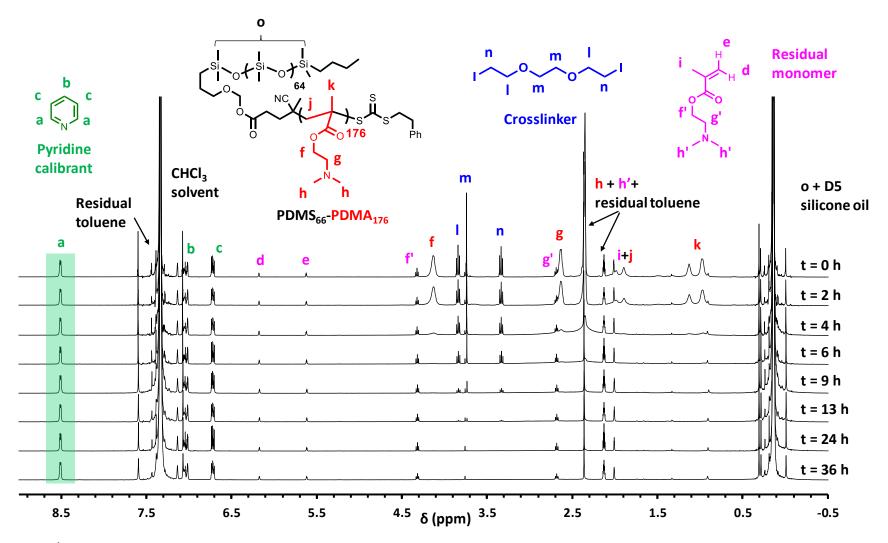
4 % w/w

2 % w/w

1% w/w

BIEE (BIEE/DMA molar ratio = 0.15) 5 days 20 °C

8 % w/w


6 % w/w

2 % w/w

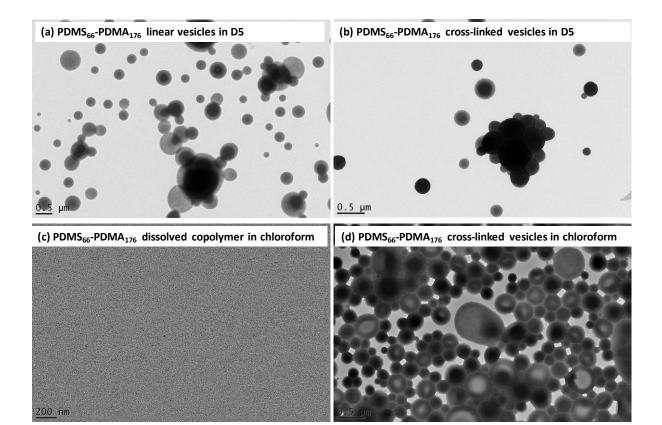

1% w/w

Figure S4. Digital photographs recorded for a series of PDMS₆₆-PDMA₁₀₀ worm dispersions over a range of copolymer concentrations in D5 silicone oil. BIEE (BIEE/DMA molar ratio = 0.15) was added to each of these dispersions and quaternization was allowed to occur over 5 days at 20 °C.

4 % w/w

Figure S5. Assigned ¹H NMR spectra recorded during the reaction of 25% w/w PDMS₆₆-PDMA₁₇₆ vesicles at in D5 silicone oil with BIEE cross-linker at 20 °C (15 mol % BIEE relative to the DMA residues). Aliquots were removed from the reaction mixture at regular intervals and diluted ten-fold in chloroform before being analyzed. Each NMR tube was equipped with a coaxial inner tube containing toluene-d₈ as a lock solvent and 0.1 M pyridine as an external standard. The attenuation of the oxymethylene protons assigned to the PDMA block (labeled **f**), and the protons assigned to the BIEE (**I**, **m** and **n**) were monitored relative to the pyridine external standard (labeled **a**).

Figure S6. TEM images recorded at a copolymer concentration of 0.25 % w/w for (a) Linear PDMS₆₆-PDMA₁₇₆ vesicles in D5 silicone oil. (b) PDMS₆₆-PDMA₁₇₆ vesicles cross-linked with BIEE (DMA/BIEE molar ratio = 0.15) in D5 silicone oil. (c) Linear PDMS₆₆-PDMA₁₇₆ vesicles in chloroform. Chloroform is a good solvent for both the PDMS and the PDMA blocks, therefore, molecular dissolution takes place to yield diblock copolymer chains. (d) PDMS₆₆-PDMA₁₇₆ vesicles cross-linked with BIEE (DMA/BIEE molar ratio = 0.15) in chloroform. The covalent stabilization afforded by the BIEE ensures the vesicles remain intact in chloroform.