## Supporting Information

## Three Models to Encapsulate Multi-component Dyes into Nanocrystal Pores: A New Strategy for Generating High Quality White Light

Xiao-Yuan Liu,<sup>†, ‡</sup> Kai Xing,<sup>‡</sup> Yang Li,<sup>§</sup> Chia-Kuang Tsung,<sup>\*, §</sup> and Jing Li<sup>\*, ‡,†</sup>

<sup>†</sup> Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Blvd, Nanshan District, Shenzhen, 518055, P.R. China

<sup>‡</sup>Department of Chemistry and Chemical Biology, Rutgers University, 123 Bevier Road, Piscataway, New Jersey 08854, United States

<sup>§</sup> Department of Chemistry, Merkert Chemistry Center, Boston College, 2609 Beacon Street, Chestnut Hill, Massachusetts 02467, United States

## Chemicals

Cetyltrimethylammonium bromide (CTAB, Beantown Chemical, 98%), 2-methylimidazole (Acros Organics, 99%), zinc nitrate hexahydrate (Zn(NO<sub>3</sub>)<sub>2</sub>·6H<sub>2</sub>O, Alfa Aesar, 99%), rhodamine B (RB, Sigma-Aldrich, 95%), fluorescein (F, Acros Organics, pure) and 7-amino-4-(trifluoromethyl)coumarin (C-151, Alfa Aesar, 99%) were purchased from the mentioned sources and used without further purification.

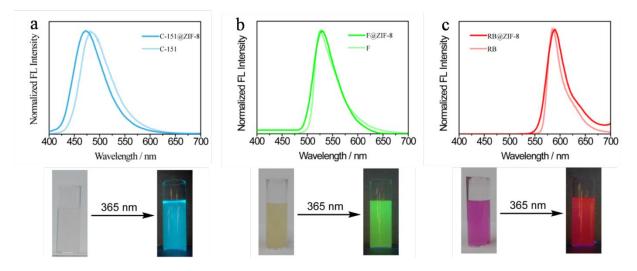



Figure S1. The liquid state fluorescence spectra of (a) C-151@ZIF-8 and C-151, (b) F@ZIF-8 and F and (c) RB@ZIF-8 and RB, and the corresponding photographs of C-151@ZIF-8, F@ZIF-8 and RB@ZIF-8 in methanol solution under daylight (left) and UV light (right).

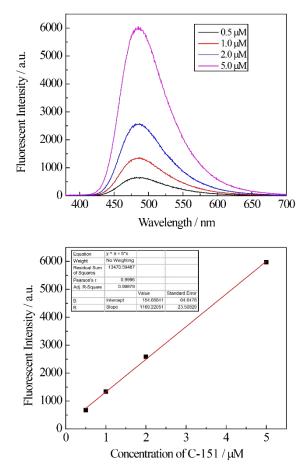



Figure S2. The relationship of concentration and fluorescent intensity of C-151.

The content of C-151 in C-151@ZIF-8<sup>2</sup> was calculated as following:

Different amount of C-151@ZIF-8<sup>2</sup> was dispersed in 2 mL methanol containing 1 drop of diluted HCl. Then the fluorescent intensity was measured and the content was calculated using the concentration-intensity equation as shown in Figure S2 inset.

| C-151 solution (mL)   | 0.10   | 0.37   | 0.5    | 0.75   |  |  |
|-----------------------|--------|--------|--------|--------|--|--|
| Quantity (mg)         | 14.0   | 16.1   | 14.0   | 13.0   |  |  |
| Fluorescent intensity | 1597   | 5789   | 6267   | 7338   |  |  |
| Mass ratio (wt%)      | 0.0040 | 0.0137 | 0.0171 | 0.0217 |  |  |
| Quantum yield         | 0.267  | 0.419  | 0.208  | 0.166  |  |  |

Table S1. The related parameters of C-151 in C-151@ZIF-8<sup>2</sup>.

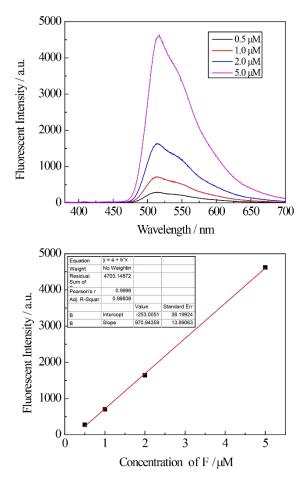



Figure S3. The relationship of concentration and fluorescent intensity of F.

The content of F in F@ZIF-8<sup>2</sup> was calculated using the same method as C-151.

| racie 52. The felated parameters of f in f (62.11 ° ). |        |        |        |        |  |  |
|--------------------------------------------------------|--------|--------|--------|--------|--|--|
| F solution (mL)                                        | 0.10   | 0.25   | 0.75   | 1.00   |  |  |
| Quantity (mg)                                          | 13.3   | 12.9   | 13.4   | 13.8   |  |  |
| Fluorescent intensity                                  | 340    | 1101   | 2600   | 3386   |  |  |
| Mass ratio (wt%)                                       | 0.0030 | 0.0072 | 0.0146 | 0.0180 |  |  |
| Quantum yield                                          | 0.595  | 0.626  | 0.459  | 0.428  |  |  |

Table S2. The related parameters of F in F@ZIF-8<sup>2</sup>.

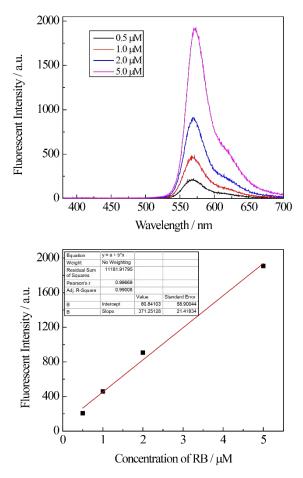



Figure S4. The relationship of concentration and fluorescent intensity of RB.

The content of RB in RB@ZIF-8<sup>2</sup> was calculated using the same method as C-151.

| RB solution (mL)      | 0.10   | 0.25   | 0.50   | 0.75   |  |  |
|-----------------------|--------|--------|--------|--------|--|--|
| Quantity (mg)         | 13.5   | 14.0   | 12.1   | 13.4   |  |  |
| Fluorescent intensity | 775    | 2104   | 3361   | 4253   |  |  |
| Mass ratio (wt%)      | 0.0132 | 0.0372 | 0.0705 | 0.0803 |  |  |
| Quantum yield         | 0.492  | 0.601  | 0.369  | 0.232  |  |  |

Table S3. The related parameters of RB in RB@ZIF-8<sup>2</sup>.

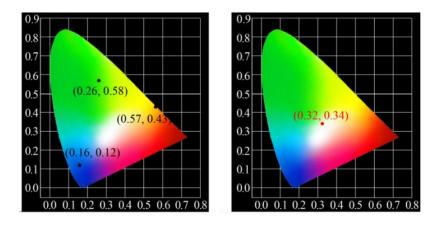



Figure S5. The CIE chromaticity coordinates of C-151@ZIF-8<sup>2</sup>, F@ZIF-8<sup>2</sup> and RB@ZIF-8<sup>2</sup> (left) and the corresponding CIE chromaticity coordinates of white light emission (a grinding mixture of 0.0137 wt% C-151@ZIF-8<sup>2</sup>, 0.0146 wt% F@ZIF-8<sup>2</sup> and 0.0372wt% RB@ZIF-8<sup>2</sup> with mass ratio 2:1:3) (right).

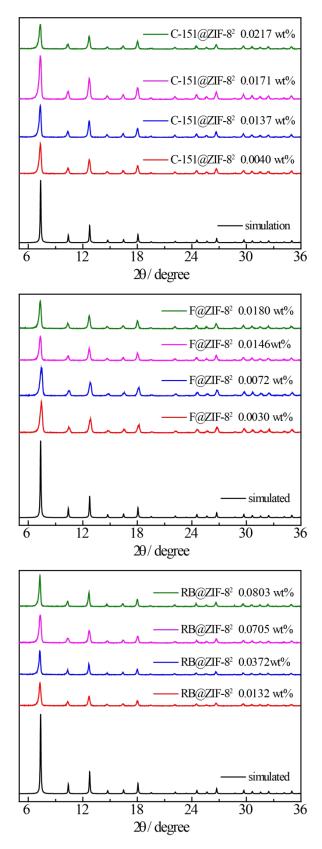



Figure S6. The PXRD patterns of C-151@ZIF-8<sup>2</sup> (top), F@ZIF-8<sup>2</sup> (middle) and RB@ZIF-8<sup>2</sup> (below) with different dye concentrations.



Figure S7. The photographs of methanol solution of C-151@ZIF-8<sup>2</sup> (top), F@ZIF-8<sup>2</sup> (middle) and RB@ZIF-8<sup>2</sup> (below) with different dye concentration under daylight (left) and UV light (right).

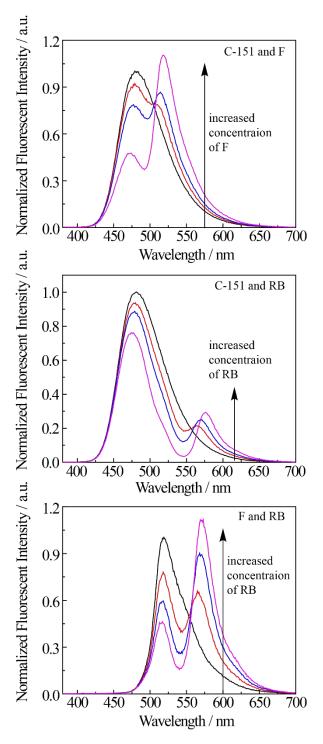



Figure S8. The Fluorescence Resonance Energy Transfer (FRET) measurements between C-151 and F (top), C-151 and RB (middle) and F and RB (below).

As shown in Figure S8, in the case of C-151 and F, the fluorescent intensity of C-151 (donor) exhibits a significant decrease with increase concentration of F (acceptor). Therefore, it is clear that there exist strong energy transfer between C-151 and F in methanol solution. The similar results were also observed between C-151 and RB, F and RB.

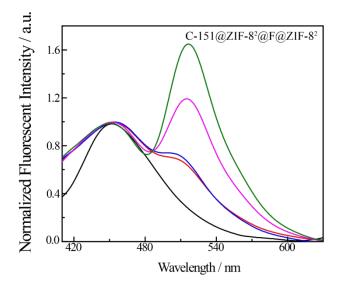



Figure S9. The fluorescence spectra of C-151@ZIF-8<sup>2</sup>@F@ZIF-8<sup>2</sup> with increased concentrations of F.

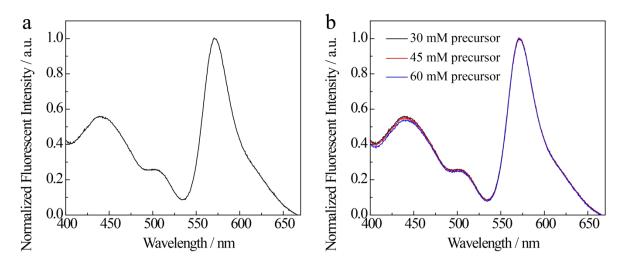



Figure S10. (a) The fluorescence spectrum of RB@ZIF-8<sup>2</sup>@F@ZIF-8<sup>2</sup>@C-151@ZIF-8<sup>2</sup> with a CIE chromaticity coordinates of (0.35, 0.33). (b) The fluorescence spectra of RB@ZIF-8<sup>2</sup>@F@ZIF-8<sup>2</sup>@C-151@ZIF-8<sup>2</sup> with increasing out-shell thickness of ZIF-8. The corresponding precursor concentrations are 30 mM (black), 45 mM (red) and 60 mM (blue), respectively, for the overgrowth of the out-shell ZIF-8.

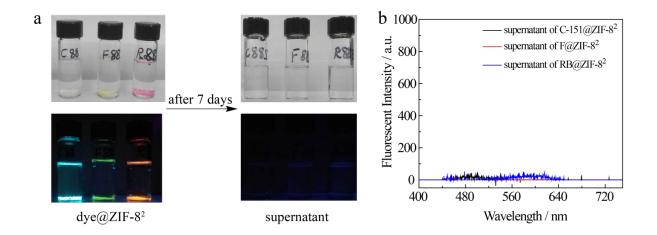



Figure S11. (a, left) The photographs of C-151@ZIF-8<sup>2</sup>, F@ZIF-8<sup>2</sup> and RB@ZIF-8<sup>2</sup> soaked methanol solution under daylight (top) and UV light (bottom); (a, right) the photographs of supernatants of C-151@ZIF-8<sup>2</sup>, F@ZIF-8<sup>2</sup> and RB@ZIF-8<sup>2</sup> soaked methanol solution after 7 days under daylight (top) and UV light (bottom); (b) the fluorescence spectra of supernatants of C-151@ZIF-8<sup>2</sup>, F@ZIF-8<sup>2</sup> and RB@ZIF-8<sup>2</sup> soaked methanol solution after 7 days.