# **Supporting Information**

## **Receptor-targeting Drug and Drug Carrier for Enhanced Killing**

### Efficacy against Non-muscle-invasive Bladder Cancer

Sneha Sree Mullapudi<sup>a</sup>, Jing Zhang<sup>b</sup>, Shengjie Lu<sup>c</sup>, Juwita Norasmara Rahmat<sup>c</sup>, Ratha

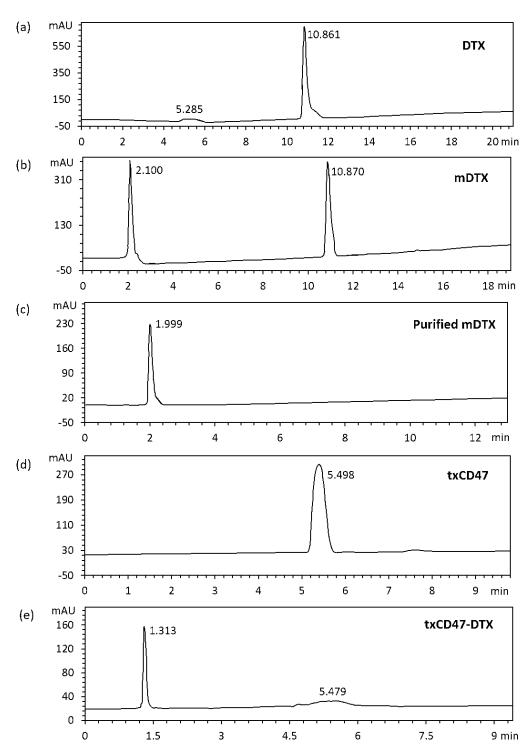
Mahendran<sup>b</sup>, En-Tang Kang<sup>a</sup>, Edmund Chiong<sup>b</sup>, Koon Gee Neoh<sup>a,\*</sup>

<sup>a</sup> Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585

<sup>b</sup> Department of Surgery, National University of Singapore, 1E Kent Ridge Road, Singapore 119228

<sup>c</sup> National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, Singapore 169609

<sup>d</sup> Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583


\* Corresponding author: Tel: +65 65162176; Fax: +65 67791936;

Email: <u>chenkg@nus.edu.sg</u>

#### **Experimental Section**

Uptake of FITC-mBSA or FITC-txCD47-BSA-14 by UMUC3 cells after pretreatment with B6H12 and IgG1 antibodies: Anti-CD47 monoclonal antibody, B6H12 and mouse IgG1 kappa isotype control antibody were purchased from Thermo Fisher Scientific, USA. UMUC3 cells ( $3x10^5$  cells per well) were placed in a 24-well plate and cultured overnight. The culture medium was aspirated and fresh medium containing the antibodies at 0.01 µg/µL per well (as per supplier recommended concentration) was added to the cells and incubated for 1.5 h at 37 °C.<sup>1</sup> After incubation, the cells were gently washed 3 times with 1x PBS and further incubated with FITC-mBSA or FITC-txCD47-BSA-14 at a concentration of 0.12 µM for 2 h at 37 °C. The cells were then trypsinized, washed again with 1x PBS and resuspended in 0.5 mL of 1x PBS supplemented with 2% FBS. The cellular uptake was then analyzed using a flow cytometer (CytoFLEX LX, Beckman Coulter, USA).





**Figure S1.** HPLC chromatograms of (a) DTX, (b) mDTX, (c) purified mDTX, (d) txCD47 and (e) txCD47-DTX

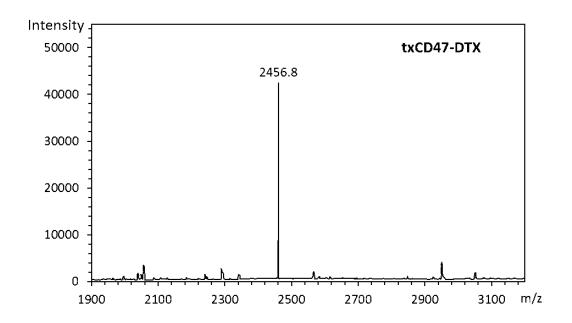
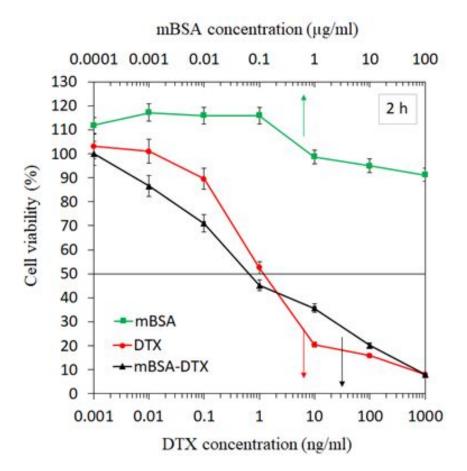
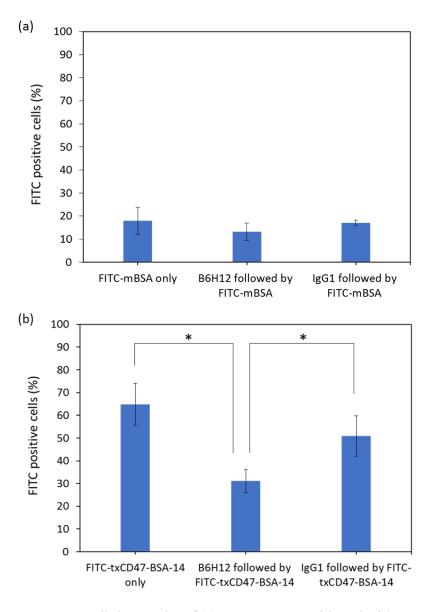





Figure S2. Mass spectrum of txCD47-DTX



**Figure S3.** In vitro viability of UMUC3 cells after incubation with mBSA, free DTX and mBSA-DTX, for 2 h followed by 72 h in fresh medium. Control experiments were carried out without carrier or DTX.



**Figure S4.** Cellular uptake of (a) FITC-mBSA with and without pretreatment with B6H12 or IgG1 antibodies, and (b) FITC-txCD47-BSA-14 with and without pretreatment with B6H12 or IgG1 antibodies. \* Significant difference (p < 0.05) between samples indicated.

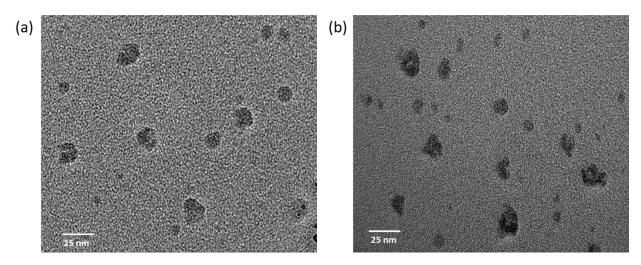



Figure S5. TEM images of (a) txCD47-BSA-14 and (b) txCD47-BSA-DTX-14.

### Tables

**Table S1.** Fluorescence-positive cells (%) and mean fluorescence intensity of UMUC3 cells after incubation with APC x hu EGFR, FITC x hu CD47, and APC x hu FGFR3

|                | UMUC3 cells                     |                             |
|----------------|---------------------------------|-----------------------------|
|                | Fluorescence-positive cells (%) | Mean fluorescence intensity |
| APC x hu EGFR  | 84.6 ± 4.6                      | 3015 ± 556                  |
| FITC x hu CD47 | 80.2 ± 12.8                     | 376 ± 172                   |
| APC x hu FGFR3 | 31.6 ± 15.2                     | 1511 ± 881                  |

**Table S2.** FITC-positive cells (%) and mean fluorescence intensity of UMUC3 cells after incubation with ~0.12  $\mu$ M of FITC-mBSA, FITC-txCD47-BSA-4, FITC-txCD47-BSA-8, and FITC-txCD47-BSA-14 for 2 h

|                    | UMUC3 cells             |                             |
|--------------------|-------------------------|-----------------------------|
| -                  | FITC-positive cells (%) | Mean fluorescence intensity |
| FITC-mBSA          | 29.1 ± 1.7              | 20.4 ± 1.9                  |
| FITC-txCD47-BSA-4  | 37.3 ± 1.3              | 20.8 ± 2.3                  |
| FITC-txCD47-BSA-8  | 52.1 ± 2.5              | 41.3 ± 9.4                  |
| FITC-txCD47-BSA-14 | 73.1 ± 5.7              | 149.1 ± 11.8                |

### Reference

 Kamerkar, S.; LeBleu, V.S.; Sugimoto, H.; Yang, S.; Ruivo, C.F.; Melo, S.A.; Lee, J.J.; Kalluri, R. Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer. *Nature* 2017, 546, 498.