Supporting Information

Defect Induced Performance Enhancement of Monolayer MoS₂ for Li- and Na-Ion Batteries

Gayatree Barik¹ and Sourav Pal^{1,2*}

¹Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India ²Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, 741246, West Bengal, India Email: s.pal@iiserkol.ac.in

Figure S1: Optimized geometry of Li adsorbed at defective sites of monolayer MoS_2 with various types of defects. (a) Pristine MoS_2 , (b) Mono sulphur vacancy, (c) di sulphur vacancy, (d) Mo vacancy, (e) MoS_3 vacancy, (f) MoS_6 vacancy (g) Mo_{S2} vacancy and (h) $S2_{Mo}$ vacancy. The purple, yellow and red balls represent Molybdenum, Sulphur and Lithium atoms respectively. The top layer of S atoms is in golden yellow colour and bottom layer are in light yellow colour.

Figure S2: Optimized geometry of Na adsorbed at defective sites of monolayer MoS_2 with various types of defects (a) Pristine MoS_2 , (b) Mono sulphur vacancy, (c) di sulphur vacancy, (d) Mo vacancy, (e) MoS_3 vacancy, (f) MoS_6 vacancy, (g) Mo_{S2} vacancy and (h) $S2_{Mo}$ vacancy. The purple, yellow and red balls represent Molybdenum, Sulphur and sodium atoms respectively. The top layer of S atoms is in golden yellow colour and bottom layer are in light yellow colour.

Figure S3: Charge density difference isosurface plots for Li (left) and Na (right) adsorption on monolayer MoS_2 with various types of defects. (a) Pristine MoS_2 , (b) Mono sulphur vacancy, (c) di sulphur vacancy, (d) Mo vacancy, (e) MoS_3 vacancy, (f) MoS_6 vacancy (g) Mo_{S2} vacancy and (h) $S2_{Mo}$ vacancy. yellow S, purple Mo, red Li and black Na. Red and green regions represent electron accumulation and depletion, respectively.

Figure S4: Band structure diagrams of various defects in monolayer MoS_2 . (a) Pristine MoS_2 , (b) Mono sulphur vacancy, (c) di sulphur vacancy, (d) Mo vacancy, (e) MoS_3 vacancy, (f) MoS_6 vacancy (g) $S2_{Mo}$ vacancy and (h) Mo_{S2} vacancy.

Table S1: The calculated vacancy formation energy (eV), Optimized lattice constant (Å), Energy gap (eV) and magnetic moment (μ_B) of various types of defective and pristine MoS₂.

Vacancy	Vacancy	Optimized lattice	Energy gap E _g	Magnetic moment
	formation energy	constant in $a_0(Å)$	(eV)	$(\mu_B/cell)$
	(eV)			
Pristine MoS ₂		3.19	1.67	0.00
V_{1S}	1.95	3.18	1.06	0.02
V_{2S}	3.78	3.15	1.02	0.07
V_{Mo}	5.73	3.17	0.09	0.22
V _{MoS3}	7.9	3.19	0.64	0.04
V _{MoS6}	13.89	3.06	0.03	2.25
Mo _{S2}	6.89	3.16	0.01	2.00
S2 _{Mo}	9.33	3.26	0.48	0.00

Table S2: Effect of magnetism on adsorption energy of Li/Na when adsorption takes place with various types of defective and pristine MoS_2 .

Defects	E _{ad} (Li) in eV		E _{ad} (Na) in eV	
	Without	With magnetism	Without	With magnetism
	magnetism		magnetism	
Pristine MoS ₂	-2.08	-2.08	-1.28	-1.28

V _{1S}	-2.53	-2.57	-1.96	-1.99
V ₂₈	-2.42	-2.44	-1.87	-1.89
V _{Mo}	-3.90	-3.92	-1.80	-1.81
V _{MoS3}	-2.82	-2.83	-2.10	-2.09
V _{MoS6}	-3.37	-3.37	-2.30	-2.28
Mo _{S2}	-2.78	-2.58	-2.19	-1.99
S2 _{Mo}	-3.08	-2.28	-1.39	-1.61