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SUPPLEMENTARY INFORMATION

During our survey of cores across the EMS which had data which could be used to 

identify an interruption (Ba/Al, TOC or benthic foraminifera), we observed a clear pattern 

of the interruption at 8.2 ka BP in the cores sampled between 500 and 1800m and no 

interruption either above 500m or below 1800m. Specifically of the 18 cores which were 

sampled between 500 and 1800m, 16 showed evidence of the interruption. There was 

one core adjacent to the Libyan coast (562MC) which had Ba/Al data and showed no 

evidence of an interruption at 8.2 ka BP. This core was taken in the southern Ionian Sea 

at a considerable distance from the other cores and possible reasons for their exceptional 

behavior is described in the main text. There were 3 cores, which were used to define the 
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change in the start of S1 with depth (figure 4; MD84627, MD84641 and MD84639) which 

did not have any data which could be used to potentially identify an interruption.

Both shallow cores (AMC99-1 and SL31) showed no evidence of an interruption at 8.2 

ka BP. 

Of the 13 deep cores considered in this study, 10 cores showed no evidence of an 

interruption. Two cores, LC31 (2300m) and LC25 (3129m) had decreases in Ba/Al in the 

middle of the S1 sapropel signal. However, this decrease coincided with depths which 

have been interpreted by the original authors as small slumps, which they use to explain 

the entire changes in geochemical properties including Ba/Al. These decreases in Ba/Al 

are thus not due to re-oxidation so the data was not taken into consideration as cores 

which could be used to represent the 8.2 ka BP interruption.

There remained one core 967D sampled at 2563m which seemed to represent an 

exception to this general rule.1 This core which appears to have an interruption as 

indicated by a drop in Ba/Al at ~8.2 ka BP. However, the Ba/Al decrease in core 967D 

does not have any associated change in RSTM (V, Mo, or U) which typically has been 
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found in others cores showing an increase in oxygen content due to the 8.2 ka 

interruption.2–4 There is no obvious explanation for this anomaly.

How was 14C corrected

For cores MD84641, MD84639, MD84650 and MD84627, it was not mentioned in the 

original paper whether the 14C measurements had been corrected or not.5 It is normal 

practice in papers where a 14C correction has been applied to state this explicitly and to 

note what reservoir age had been applied. We have contacted the authors of this paper 

(Calvert and Fontugne). Calvert replied that he could not remember the 14C 

measurements had been corrected or not. He forwarded to email to Fontugne who has 

not replied. We therefore considered it likely that the ages were not corrected and we 

therefore calibrated them using the Marine13 curve of Calib 7.0.4, applying a reservoir 

age of 400 years.6

S1 Table. Core locations of all the cores summarized in this study.
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Core locations of all the cores summarized in this study indicating whether they have 

evidence or not (Y or N) for an interruption in S1 sapropel at ~8.2 ka BP. The criteria used 

to identify the interruption are the presence/absence of BF (benthic foraminifera), TOC 

(Total Organic carbon), Ba/Al a minimum value showing a decrease of >30% from the 

maximum and an increase in RSTM (redox sensitive trace metals such as V, Mo and/or 

U). Locations marked with N* are locations with a small slump.

Core Latitude N Longitude 
E

Wate
r 
depth

Interruptio
n

BF TOC Ba/Al RSTM Referenc
e

AMC99-1 45°51.013' 14°45.011' 260 N n n n 3

SL31 38°56.000' 25°00.000' 430 N n    7,8

PS009PC 32°07.700' 34°24.400' 552 Y  y y y 9

INVAS12-
10

41°30.004' 17°10.013' 570 Y y  y  y 3

KN3 36°40.600' 27°12.030' 607 Y  y  n y 4

P362/2-33 31°40.500' 29°45.000' 700 Y  y y  10 
SL123 35°45.330' 27°33.340' 728 Y y    7

MP50PC 39°29.000' 18°31.000' 775 Y  y y y 4

MNB-3 39°13.000' 24°58.000' 800 Y y 11

MD9502 34°46.000' 34°28.000' 860 Y   y  12

MD84639 33°39.600' 32°42.000' 870 5

9509 32°01.000' 34°16.000' 884 Y  y y  y 2,13

SL112 32°44.520' 34°39.020' 892 Y y    7

966 33°47.790' 32°42.048' 937 Y n y 14

9501 34°32.000' 33°59.000' 980 Y  y y  2,13

MD90-971 41°18.000' 17°37.000' 1010 Y  y y y 15

ST04-1 41°27.008' 17°31.001' 1085 Y y  y   y 3

SL148 39°45.200' 24°05.800' 1094 Y y    7

Z1 39°15.186' 19°51.995' 1160 Y  y   16

MD84627 32°13.800' 33°45.000' 1184 5
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MD84641 33°01.800' 32°37.800' 1375 5

562MC 32°46.000' 19°11.000' 1390 N   n n 17,18

LC21 35°40.000' 26°35.000' 1522 Y y y y y 8,15 
MD04-2722 33°06.000' 33°30.000' 1780 Y   n y 19

BP18 33°10.000' 20°16.700' 1850 N n n 18

SL125 33°39.400' 24°33.000' 1946 N   n n 18

BP10 33°22.200' 20°16.700' 2108 N  n n  18

971C 33°42.800' 24°42.100' 2152 N   n n 18

969 33°50.320' 24°53.000' 2210 N n n 14

MC12 33°23.700' 25°01.300' 2211 N   n n n 12,20

LC31 34°59.760' 31°09.810' 2300 N* -   -  8

MD84650 33°40.200' 31°27.000' 2360 5

T87-26B 34°44.000' 16°48.000' 2415 N   n  12

967D 34°04.253' 32°43.531' 2563 ?   n y n 1

MC07 34°19.200' 20°02.700' 2703 N   n n n 12,20

MC7S 34°19.200' 20°02.700' 2703 N   n n n 12,20

LC25 32°36.000' 27°23.000' 3129 N*   -  12

SL114 35°17.200' 21°24.500' 3390 N n n n  7,21

964 36°15.630' 17°45.000' 3670 N n n 14

S2 Table. Details of sediment cores from SE Levantine used to show the evolution of the 

OMZ.

Core Latitude N Longitude 
E

Water 
depth

Dated 
by

S1 (ka 
BP)

S1 identified 
by

Referenc
e

PS009P
C

32°07.700' 34°24.400' 552 14C, 
210Pb

6.5-10.1 Ti/Al, Ba/Al, 
V/Al ratios, 
TOC

22

SL123 35°45.330' 27°33.340' 728 tephr
a 
layer, 
14C

7.2-10.1 sediment 
color, diversity 
index

23,24

MD8463
9

33°39.600' 32°42.000' 870 14C 8.1-9.7 sediment 
color, TOC

5

9509 32°01.000' 34°16.000' 884 δ18O 7.4-9.5 increased 
TOC

25
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SL112 32°44.520' 34°39.020' 892 14C 6.5-9.6 sediment 
color, diversity 
index

26

9501 34°32.000' 33°59.000' 980 14C, 
δ18O

8.2-9.5 increased 
TOC

25

MD8462
7

32°13.800' 33°45.000' 1184 14C 6.4-9.2 sediment 
color, TOC

5

MD8464
1

33°01.800' 32°37.800' 1375 14C 7.2-8.9 sediment 
color, TOC

5

Estimate of residence time for SIW during S1a

It is possible to carry out a rough calculation of the residence time of water in the 

Levantine basin during S1a by assuming that SIW was formed in the central Aegean Sea 

at a similar location to the location where CDW was formed in the 1980’s/1990’s and 

where Cretan Intermediate water was formed.27 At steady state during S1a, the average 

dissolved oxygen content based on the benthic foraminifera fauna was 40 mmoles/m3 at 

SL123 location.24,28 If the descending water was at 100% oxygen saturation at modern 

salinity and temperature values (38 ppt, 15C) and since the water descends during the 

winter phytoplankton bloom (30 mgC/m3), the net oxygen supplied to the intermediate 

water would be 225 mmolesO2/m3. The water thus lost 185 mmolesO2/m3 in transit from 

its source in the central Aegean Sea to SL123, which is a distance of ~250km (250 x 103 

m). Considered that the total volume of water being fluxed was 500m deep by 100km in 
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cross sectional area (5 X 107m3). Finally, it is assumed that the loss of oxygen rate (OUR) 

is similar to that calculated for the present day intermediate/deep water of 0.7 

mmoles/m3/y.27

OUR  =  J * (Cinit – CSL123)/V

Where OUR is the oxygen removal rate at 1500m modified for the shallower depth (500-

1800m) considered here, J is the water flux, Cinit is the net oxygen content of the 

descended water and CSL123 is the oxygen content at SL123 estimated from benthic 

foraminifera fauna, and V is the total volume of water being transferred across the Aegean 

Sea and fluxing into the Levantine basin at the straits of between Rhodes and Crete.27

Rearranging J = OUR x V /(Cinit – CSL123)

J  = 0.7 x 250 X 103 x 500 x 100 x 103/ 185 m3/y

J  = 0.11 x 1012 m3/yr
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The area of the Levantine basin is 320000 X 103 m2

Assume that 80% is below 500m, then the total volume of the SIW is 

3.2 x 1011 m2 x 0.8 x 1300m 

= 333 x 1012 m3

The residence time of water during the peak of S1a is thus: Volume of SIW in the 

Levantine basin/flux of water flowing in from the Aegean

Or 333 x 1012 m3/0.11 x 1012 m3/y

Residence time for S1a is ~3000 years and is ~2400 years for S1b where the estimated 

dissolved oxygen at SL123 was ~80 mmoles/m3.

There are many assumptions in this calculation which makes the result only a rough 

estimate. However, this value compares with the modern LDW residence time of 100-150 

years which has an oxygen saturation value of ~60%.27 It does suggest that at the peak 
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of anoxicity during S1 the flow of water into the Levantine basin (and presumably also 

into the Adriatic) was much slower than at present but not the zero flow into the deep 

water which resulted in anoxicity/euxinia.29  
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