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S1. Approximation of the average pressure of the contact area 
      From the Hertz theory of contact mechanics,1 the average pressure (P) between crossed 
cylinders of radius R is related to the contact radius (a) and the effective combined modulus (E*) 
by the following equation: 

P = 4aE*/3πR 
with 

E* = E/(1 – ν2) 
 

where E is the elastic modulus and ν is the Poisson’s ratio of the surfaces. Assuming an effective 
combined elastic modulus E* of the layered mica-glue-glass composite used in these experiments 
of approximately 10 GPa, an approximate contact radius (a) of 50 µm, and a radius of curvature 
(R) of 2 cm, the approximate average pressure is 11 MPa or 110 atm, and the pressure at the center 
of the contact area is 165 atm.  
 
S2. Approximation of the local pressure at the surface of a confined nanoparticle 
      With one particle of diameter d between the mica surfaces, the mica is distorted over a lateral 
distance X from the particle given by:2 
 

X = [(8dt3E)/(3P(1-ν2))]1/4 
 

where t is the thickness of the mica and E is the elastic modulus of the mica. The elastic modulus 
of the mica rather than the effective modulus of the layered composite is used because the size of 
the particle is small relative to the mica thickness. A lower bound on the local pressure p between 
the particle and the mica is given by: 

p = 4X2P/d2 
 

Taking d = 200 nm, E = 70 GPa,3 ν = 0.25,4 t = 4 µm, and P = 11 MPa  the radius of the distortion 
caused by the nanoparticle is X = 20 µm and the local pressure at the surface of the nanoparticle is 
p = 500 GPa. The expression underestimates the local pressure, because the contact area between 
the particle and the mica will be smaller than the projected area of the particle (πd2/4). Furthermore, 
pressure at asperities on the particle will be higher still than the average pressure on the particle. 
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Figure S1. Schematic of SFA experimental setup used to measure the dissolution of silica and 
alumina nanoparticles trapped between mica surfaces in alkaline solutions. The interference 
fringes show the surface profile for (a) symmetric mica surfaces in air and (b) a silica or alumina 
particle confined between the same mica surfaces in an alkaline solution (0.1 mM NaOH, pH 10). 
The particle diameter (d) is calculated from the shift in wavelength of the interference fringes. 
 
 
 

 
Figure S2. Dissolution of an amorphous silica surface in close proximity to a gold electrode at 
different applied potentials in an alkaline solution (0.1 mM NaOH, pH 10) (black circles, data 
from Figure 1 in the main text) compared to dissolution of an amorphous silica nanoparticle in 
close proximity to mica surfaces at the same solution conditions (red circles, data from Figure 2 in 
the main text). 
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S3. Saturation of the volume around a confined dissolving nanoparticle 
      Following the derivation of Perkin et al.,2 a particle of diameter d between compressed elastic 
sheets distorts the sheets, with distortion extending a radial distance X given by: 
 

X = [(8dt3E)/(3P(1 - ν2))]1/4 
 

The separation between the sheets (y) is given by: 
 

y = (3PX2(1 - ν2)/8Et3)(X2 - x4/X2 + 4r2ln(x/X)) 
 

where x is the radial distance from the particle. Integration yields the volume between the surfaces 
(V) created by the particle: 
 

V = πPX6(1 - ν2)/16Et3 = [(2π2d3t3E)/(27P(1 - ν2))]1/2 
 

Taking d = 200 nm, E = 70 GPa,3 ν = 0.25,4 t = 4 µm, and P = 11 MPa (see section S1) yields V = 
50 µm3. The solubility limit of amorphous silica (SiO2) at pH 10 and T = 25 °C is 310 ppm = 0.31 
g/L. If the silica particle (d = 200 nm) dissolves 10 nm, the dissolved volume is 0.005 µm3, the 
dissolved mass is 1.05×10-5 ng, and the concentration is 2000 g/L, assuming that dissolving species 
remain in the volume around the particle, well above the solubility limit. To roughly account for 
diffusion, Fick’s law gives: 
 

J = -𝒟𝒟(dc/dx) 
 

where J is the flux per unit area, 𝒟𝒟 is the diffusion coefficient of the dissolving species, and c is 
the concentration of the species. Assuming steady state, the rate of material transport of dissolved 
species through the gap of cross-sectional area A, height hgap, and width w between the mica 
surfaces outside the volume created by the particle is approximately: 
 

JA = (-𝒟𝒟Δc/w)(2πXhgap) 
 

      The radius of the contact between the mica surfaces is approximately 50 µm, and the radius of 
the distortion caused by the particle is approximately X = 20 µm, and therefore w = 30 µm. 
Assuming atomic contact between the surfaces due to the high pressure (110 atm) gives hgap = 3 
Å. Assuming a saturated silica solution gives Δc = 0.31 g/L = 310 g/m3. The diffusion coefficient5 
of dissolved silica in bulk water at 25 °C is 1×10-9 m2/s. Since the diffusion coefficients of free 
ions in gaps as narrow as 3 Å have been shown to be within two orders of magnitude of the 
diffusion coefficients of ions in bulk water,6 we take this diffusion coefficient as an approximation 
of the diffusion coefficient for dissolved silica in the gap. These values yield a mass transport rate 
of 2×10-12 g/hr. This rate of mass transport is much less than the rate needed to keep the 
concentration of dissolved silica in the volume around the particle lower than the solubility limit, 
supporting the argument that transport limitations slow dissolution of confined particles. 
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