Double Thiol-Chiral Brønsted Base Catalysis: Asymmetric Cross
Rauhut-Currier Reaction and Sequential [4 + 2] Annulation forAssembly of Different Activated Olefins
Zhi Zhou, ${ }^{\dagger, \S}$ Qing He, ${ }^{\dagger, \S}$ Ying Jiang, ${ }^{\dagger}$ Qin Ouyang, ${ }^{\dagger}$ Wei Du, ${ }^{* \dagger}$ and Ying-Chun Chen* ${ }^{\dagger}, \dagger$
${ }^{\dagger}$ Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China *College of Pharmacy, Third Military Medical University, Chongqing 400038, China
e-mail: duweiyb@scu.edu.cn; ycchen@scu.edu.cn
${ }^{\S}$ Z. Z. and Q. H. contributed equally to this work.
Supporting Information

1. General methods S2
2. More screening conditions for the cross RC reaction of enone 1a with isatin-derivedalkylidene malononitrile 2a.S2
3. Screening conditions for the three-component domino $[2+2+2]$ annulation andsubstrate scope.S44. More screening conditions for the cross RC reaction of 2 -cyclohexenone with $\mathbf{2 a}$ and one-pot $[4+2]$ annulation.S6
4. General procedure for the cross RC reactions of enones 1 with isatin-derived alkylidenemalononitriles 2 and annulationsS7
5. More screening conditions for the cross RC reaction of enone 1 a with α-cyano chalcone11a and annulationS21
6. General procedure for the cross RC reactions of enone 1a with α-cyano chalcones 11 andannulations.S22
7. Reaction at a 1.0 mmol scale S29
8. Procedure for the cross RC reaction-initiated [4+2] annulation S30
9. More attempts for the cross $R C$ reaction-initiated $[4+2]$ annulations S30
10. Synthetic transfomations of the annulation products 5 a and 12a S31
11. Crystal data and structure refinement for enantiopure 5 g and 12 f S35
12. DFT calculations of the key intermediates for the asymmetric cross Rauhut-Currierreaction and proposed catalytic mechanismS38
13. NMR spectra and HPLC chromatograms S57

1. General methods

NMR data were obtained for ${ }^{1} \mathrm{H}$ at 400 MHz or 600 MHz , and for ${ }^{13} \mathrm{C}$ at 100 MHz or 150 MHz . Chemical shifts were reported in ppm from tetramethylsilane with the solvent resonance as the internal standard in CDCl_{3} solution. ESI HRMS was recorded on a Waters SYNAPT G2. In each case, enantiomeric ratio was determined by HPLC analysis on a chiral column in comparison with the authentic racemate, using a Daicel Chiralpak AD-H Column ($250 \times 4.6 \mathrm{~mm}$), Chiralcel OD-H Column ($250 \times 4.6 \mathrm{~mm}$), Chiralpak IB Column $(250 \times 4.6 \mathrm{~mm}$), Chiralpak ID Column (250×4.6 mm) UV detection was monitored at 220 nm or 254 nm . Optical rotation was measured in CHCl_{3} solution at $25^{\circ} \mathrm{C}$ or $20^{\circ} \mathrm{C}$. Column chromatography was performed on silica gel (200-300 mesh) eluting with EtOAc and petroleum ether. TLC was performed on glass-backed silica plates. UV light, I_{2}, and solution of potassium permanganate were used to visualize products or starting materials. All chemicals were used without purification as commercially available unless otherwise noted. Petroleum ether and EtOAc were distilled. THF was freshly distilled from sodium/benzophenone before use. Experiments involving moisture and/or air sensitive components were performed under a positive pressure of argon in oven-dried glassware equipped with a rubber septum inlet. Dried solvents and liquid reagents were transferred by oven-dried syringes. The substrates were synthesized according to the literature procedures. ${ }^{1}$
(1) (a) Peng, J.; Ran, G.-Y.; Du, W.; Chen, Y.-C. Org. Lett. 2015, 17, 4490-4493. (b) Shi, M.-L.; Zhan, G.; Zhou, S.-L.; Du, W.; Chen, Y.-C. Org. Lett. 2016, 18, 6480-6483.

2. More screening conditions for the cross $R C$ reaction of enone 1 a with isatinderived alkylidene malononitrile 2a

As noted in the text, the reaction was performed with 2-mercaptobenzoic acid T1, cinchonidine derived PTC and $\mathrm{K}_{2} \mathrm{CO}_{3}$ in toluene at $25^{\circ} \mathrm{C}$ for 24 h to 48 h , giving the RC adduct with $83: 17 \mathrm{er}, 78 \%$ yield. Then an array of PTCs were investigated, and the cinchonine derived PTC C2 gave the best enantioselectivity and reactivity (92% yield, 93:7 er).

After screening many parameters, we paid our attention to structural modifications of the catalysts. Some bifunctional PTCs were prepared and investigated.

More screening studies on other electrophiles resulted in no success.

N.R.

N.R.

N.R.

N.R.

3. Screening conditions for the three-component domino $[2+2+2]$ annulation

 and substrate scope3.1 Screening conditions for the three-component domino $[2+2+2]$ annulation a

	$+$			4a	$\begin{array}{r} \mathrm{C}_{2} \\ \quad \mathrm{~T} 1 \\ \hline \mathrm{~K}_{2} \mathrm{Cl} \\ \text { tol } \end{array}$	$\begin{aligned} & X \mathrm{~mol} \% \\ & Y \mathrm{~mol} \% \\ & \hline(Z \mathrm{~mol} \\ & \text { ne, tem } \end{aligned}$			
entry	1:2a:4a	X	Y	Z	time (h)	temp (${ }^{\circ} \mathrm{C}$)	yield $(\%)^{b}$	er^{c}	$\mathrm{dr}^{\text {c }}$
1	2:1:1	20	40	60	18	50	62	86.5:13.5	3:1
2	2:1:1	20	40	60	30	35	73	87.5:12.5	3:1
3	1.5:1:1	20	40	60	48	35	1		
4	3:1:1	20	40	60	24	35	71	81:19	2:1
5	3:1:1	20	40	80	15	35	74	82.5:17.5	2:1
6	3:1:1	20	40	120	10	35	68	82:18	1.8:1
7	3:1:1	20	40	80	48	25	71	84:16	3:1

[^0]nitroolefin $4 \mathbf{a}(0.1 \mathrm{mmol})$, PTC C2, thiol $\mathbf{T 1}$ and $\mathrm{K}_{2} \mathrm{CO}_{3}$ in toluene (1.0 mL) for $10-48 \mathrm{~h} .^{b}$ Isolated yield. ${ }^{c}$ Determined by HPLC
analysis on a chiral stationary phase.

It was found that chemoselective assembly of the three different activated alkenes could be conducted under the catalysis of thiol T1 and PTC C2. However, the reaction would quickly become dark after the early addition of nitroolefin $\mathbf{4 a}$, which might probably result from its aggregation promoted by thiol addition. As summarized in the above table, the yield together with stereoselectivity generally decreased significantly compared to those in the sequential one-pot process, even under the optimized conditions.
3.2 Substrate scope of the three-component domino $[2+2+2]$ annulation a

 1a		$+\underset{R^{2}}{F}$ 4	$\begin{array}{r} \mathrm{O}_{2} \begin{array}{c} \mathrm{C}(20 \mathrm{~m} \\ \mathrm{T} 1(40 \mathrm{~m} \\ \hline \end{array} \begin{array}{c} \mathrm{T}_{2} \mathrm{CO}_{3}(60 \\ \text { toluene, } \end{array} \mathrm{z} \end{array}$		
entry	R, R^{1}	R^{2}	yield (\%) ${ }^{\text {b }}$	$\mathrm{er}^{\text {c }}$	$\mathrm{dr}^{\text {c }}$
1	H, Me	Ph	5a, 73	87.5:12.5	3:1
2	H, Bn	Ph	5b, 70	82:18	3.2:1
3	H, allyl	Ph	5c, 63	82:18	4.5:1
4	H, MOM	Ph	5d, 68	80.5:19.5	3.3:1
5	$7-\mathrm{Me}, \mathrm{Me}$	Ph	5f, 62	80:20	2.5:1
6	$5-\mathrm{MeO}, \mathrm{Me}$	Ph	5g, 71	78.5:21.5	2:1
7	5,7-Me, Me	Ph	5h, 72	85.5:14.5	4:1
8	5,7-Me2, Me	$2-\mathrm{BrC}_{6} \mathrm{H}_{4}$	50, 61	85:15	1:1
9	5,7-Me2, Me	2-naphthyl	5r, 62	87.5:12.5	5:1
10	5,7-Me2, Me	2-thienyl	5s, 59	86.5:13.5	3:1

[^1]Some other activated olefins or nitroolefins were applied to the three-component reaction as well, and the corresponding products $\mathbf{5}$ were generally obtained with moderate yields and stereoselectivity. Therefore, better data were obtained by conducting the $\mathrm{RC} /[4+2]$ annulation in a sequential process.

4. More screening conditions for the cross $\mathbf{R C}$ reaction of $\mathbf{2}$-cyclohexenone with

2a and one-pot $[4+2]$ annulation ${ }^{a}$

${ }^{a}$ Unless noted otherwise, reactions were performed with 2-cyclohexenone (0.8 mmol), activated alkene $2(0.1 \mathrm{mmol})$, PTC C2 ($20 \mathrm{~mol} \%$), thiol T ($40 \mathrm{~mol} \%$), base ($60 \mathrm{~mol} \%$) in toluene $\left(0.5 \mathrm{~mL}\right.$) at $30^{\circ} \mathrm{C}$ for $48-72 \mathrm{~h}$. After completion, nitroolefin $4(0.1 \mathrm{mmol})$ was added, and stirred at $50^{\circ} \mathrm{C}$ for $4 \mathrm{~h} .{ }^{b}$ Isolated yield. ${ }^{c}$ Determined by HPLC analysis on a chiral stationary phase; $\mathrm{dr}>19: 1$.

As outlined in the above table, we further screened a number of thiol compounds for the reaction of 2-cyclohexenone, but the results could not be further improved.

5. General procedure for the cross $\mathbf{R C}$ reactions of enones 1 with isatin-derived

alkylidene malononitriles 2 and annulations

A mixture of cyclic enone 1 ($0.2 \mathrm{mmol}, 2.0$ equiv), activated olefin 2 ($0.1 \mathrm{mmol}, 1.0$ equiv), PTC $\mathbf{C 2}(20 \mathrm{~mol} \%)$, thiol $\mathbf{T 1}(40 \mathrm{~mol} \%)$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(60 \mathrm{~mol} \%)$ in toluene $(1.0 \mathrm{~mL})$ was stirred at room temperature for 24 h . After completion, nitroolefin 4 ($0.1 \mathrm{mmol}, 1.0$ equiv) was added and the reaction was stirred at $60^{\circ} \mathrm{C}$ for 4 h . Then the annulation product 5 was obtained by flash chromatography on silica gel $($ EtOAc/petroleum ether $=1 / 8-1 / 5)$.

Most racemates could be obtained by using triethylamine and thiol T1 as the catalysts, but a few reactions failed. So two peaks of these enantiomers were assigned by HPLC analysis on a chiral stationary phase with the mixture of two enantiomers, which were produced by using quinine and quindine as the catalyst, respectively.

Synthesis of 5a: 2-Cyclopentenone 1a (16.4 mg, 0.2 mmol), 2-(1-methyl-2-oxoindolin-3-ylidene)malononitrile 2a ($20.9 \mathrm{mg}, 0.1 \mathrm{mmol}$), PTC C2 $(9.3 \mathrm{mg}$, $0.02 \mathrm{mmol})$, 2-mercaptobenzoic acid $\mathbf{T 1}(6.2 \mathrm{mg}, 0.04 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(8.3 \mathrm{mg}$, $0.06 \mathrm{mmol})$ were stirred in distilled toluene $(1.0 \mathrm{~mL})$ at rt for 24 h . Then $(E)-\beta-$ nitrostyrene $\mathbf{4 a}(14.9 \mathrm{mg}, 0.1 \mathrm{mmol})$ was added and the reaction was stirred at $60^{\circ} \mathrm{C}$ for 4 h . After completion, purification by flash chromatography on silica gel (EtOAc/petroleum ether $=1 / 8-1 / 5$) gave product 5a: 38.7 mg , as a white solid, yield $88 \% ;[\alpha]_{\mathrm{D}}{ }^{20}:+52.0\left(c=0.32\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; 93: 7 \mathrm{er}$, determined by HPLC analysis [Daicel Chiralpak AD-H, n-hexane $/ i$-PrOH $=60 / 40,1.0 \mathrm{~mL} \mathrm{~min}^{-1}, \lambda$ $=254 \mathrm{~nm}]: \mathrm{t}($ major $)=8.08 \mathrm{~min}, \mathrm{t}($ minor $)=9.84 \mathrm{~min} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 7.68(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.49(\mathrm{t}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.45-7.43(\mathrm{~m}, 3 \mathrm{H}), 7.27(\mathrm{t}, J=8.6 \mathrm{~Hz}$, $1 \mathrm{H}), 6.96$ (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}$), 5.93 (dd, $J=12.6,7.2 \mathrm{~Hz}, 1 \mathrm{H}$), 5.34 (d, $J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.55-3.52$ (m, 1H), 3.34-3.28 (m, 1H), $3.26(\mathrm{~s}, 3 \mathrm{H}), 2.95-2.90(\mathrm{~m}, 1 \mathrm{H}), 2.50(\mathrm{dd}, J=19.2,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.33-$ $2.26(\mathrm{~m}, 1 \mathrm{H}), 1.82-1.77(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 212.3,172.2,143.4,131.8$, 27.0, 22.6; ESI-HRMS: calcd. for $\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{4}+\mathrm{Na}^{+} 463.1377$, found 463.1375.

Synthesis of 5b: 2-Cyclopentenone 1a (16.4 mg, 0.2 mmol), 2-(1-benzyl-2-oxoindolin-3-ylidene)malononitrile ($28.5 \mathrm{mg}, 0.1 \mathrm{mmol}$), PTC C2 $(9.3 \mathrm{mg}, 0.02$ $\mathrm{mmol})$, 2-mercaptobenzoic acid $\mathbf{T 1}(6.2 \mathrm{mg}, 0.04 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(8.3 \mathrm{mg}, 0.06$ $\mathrm{mmol})$ were stirred in distilled toluene $(1.0 \mathrm{~mL})$ at rt for 24 h . Then $(E)-\beta-$ nitrostyrene $4 \mathbf{~ (1 4 . 9 ~ m g , ~} 0.1 \mathrm{mmol}$) was added and the reaction was stirred at $60^{\circ} \mathrm{C}$ for 4 h . After completion, purification by flash chromatography on silica gel (EtOAc/petroleum ether $=1 / 8-1 / 5$) gave product $\mathbf{5 b}: 41.2 \mathrm{mg}$, as a white solid, yield 80%; $[\alpha]_{\mathrm{D}}{ }^{20}:+38.5\left(c=0.26\right.$ in CHCl_{3}); 90.5:9.5 er, determined by HPLC analysis [Daicel Chiralpak AD-H, n-hexane $/ i-\mathrm{PrOH}=60 / 40,1.0 \mathrm{~mL} \mathrm{~min}^{-1}, \lambda$ $=254 \mathrm{~nm}]: \mathrm{t}($ major $)=6.28 \mathrm{~min}, \mathrm{t}($ minor $)=8.62 \mathrm{~min} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 7.71(\mathrm{~d}$, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.46-7.45(\mathrm{~m}, 3 \mathrm{H}), 7.42-7.38(\mathrm{~m}, 3 \mathrm{H}), 7.30-7.22(\mathrm{~m}, 4 \mathrm{H}), 6.79$ $(\mathrm{d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.95(\mathrm{dd}, J=13.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.41(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{~d}, J=16.2 \mathrm{~Hz}$, $1 \mathrm{H}), 4.88(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.56-3.53(\mathrm{~m}, 1 \mathrm{H}), 3.33(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.95-2.93(\mathrm{~m}, 1 \mathrm{H}), 2.45$ $(\mathrm{dd}, J=19.2,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.32-2.30(\mathrm{~m}, 1 \mathrm{H}), 1.81-1.79(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ (ppm) 212.3, 172.4, 142.7, 134.0, 131.7, 131.2, 130.0, 129.5, 128.8, 127.9, 126.9, 125.0, 124.5, 124.3, 111.6, 110.5, 110.4, 84.1, 52.7, 48.8, 48.3, 44.8, 39.8, 38.5, 38.2, 22.5; ESI-HRMS: calcd. for $\mathrm{C}_{31} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{4}+\mathrm{Na}^{+} 539.1690$, found 539.1692.

Synthesis of 5c: 2-Cyclopentenone $1 \mathbf{1 a}(16.4 \mathrm{mg}, 0.2 \mathrm{mmol})$, 2-(1-allyl-2-oxoindolin-3-ylidene)malononitrile ($20.9 \mathrm{mg}, 0.1 \mathrm{mmol}$), PTC C2 $(9.3 \mathrm{mg}, 0.02$ $\mathrm{mmol})$, 2-mercaptobenzoic acid $\mathbf{T 1}(6.2 \mathrm{mg}, 0.04 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(8.3 \mathrm{mg}, 0.06$ $\mathrm{mmol})$ were stirred in distilled toluene $(1.0 \mathrm{~mL})$ at rt for 24 h . Then $(E)-\beta-$ nitrostyrene $\mathbf{4 a}(14.9 \mathrm{mg}, 0.1 \mathrm{mmol})$ was added and the reaction was stirred at 60 ${ }^{\circ} \mathrm{C}$ for 4 h . After completion, purification by flash chromatography on silica gel (EtOAc/petroleum ether $=1 / 8-1 / 5)$ gave product $5 \mathrm{c}: 40.1 \mathrm{mg}$, as a white solid, yield $86 \% ;[\alpha]_{\mathrm{D}}{ }^{20}:+62.3(c=0.41$ in CHCl_{3}); 90.5:9.5 er, determined by HPLC analysis [Daicel Chiralpak AD-H, n-hexane $/ i$-PrOH $=$ $\left.60 / 40,1.0 \mathrm{~mL} \mathrm{~min}^{-1}, \lambda=254 \mathrm{~nm}\right]: \mathrm{t}($ major $)=5.98 \mathrm{~min}, \mathrm{t}($ minor $)=7.72 \mathrm{~min} ;{ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 7.69(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.56-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.47-7.42(\mathrm{~m}, 4 \mathrm{H}), 7.26-7.25(\mathrm{~m}, 1 \mathrm{H})$,
7.17-7.15 (m, 1H), $6.94(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.94(\mathrm{dd}, J=12.0,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.81-5.79(\mathrm{~m}, 1 \mathrm{H})$, $5.37-5.26(\mathrm{~m}, 3 \mathrm{H}), 4.38-4.36(\mathrm{~m}, 2 \mathrm{H}), 3.55-3.53(\mathrm{~m}, 1 \mathrm{H}), 3.32-3.30(\mathrm{~m}, 1 \mathrm{H}), 2.93-2.91(\mathrm{~m}, 1 \mathrm{H})$, $2.48(\mathrm{dd}, J=19.2,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.33-2.31(\mathrm{~m}, 1 \mathrm{H}), 1.82-1.80(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta(\mathrm{ppm}) 212.1,172.0,142.7,131.8,131.2,130.1,129.9,129.5,125.0,124.5,124.3,118.6,111.6$, $110.4,84.2,52.7,48.7,48.3,43.2,39.8,38.5,38.2,22.6$; ESI-HRMS: calcd. for $\mathrm{C}_{27} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{4}+\mathrm{Na}^{+}$ 489.1533, found 489.1532.

Synthesis of 5d: 2-Cyclopentenone 1a (16.4 mg, 0.2 mmol), 2-(1-(methoxymethyl)-2-oxoindolin-3-ylidene)malononitrile ($23.9 \mathrm{mg}, 0.1 \mathrm{mmol}$), PTC C2 ($9.3 \mathrm{mg}, 0.02 \mathrm{mmol}$), 2-mercaptobenzoic acid T1 ($6.2 \mathrm{mg}, 0.04 \mathrm{mmol}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(8.3 \mathrm{mg}, 0.06 \mathrm{mmol})$ were stirred in distilled toluene $(1.0 \mathrm{~mL})$ at rt for 24 h . Then $(E)-\beta$-nitrostyrene $\mathbf{4 a}(14.9 \mathrm{mg}, 0.1 \mathrm{mmol})$ was added and the reaction was stirred at $60^{\circ} \mathrm{C}$ for 4 h . After completion, purification by flash chromatography on silica gel $($ EtOAc/petroleum ether $=1 / 8-1 / 5)$ gave product $5 \mathbf{d}: 38.5 \mathrm{mg}$, as a white solid, yield $82 \% ;[\alpha]_{\mathrm{D}}{ }^{20}$: +45.6 $\left(c=0.35\right.$ in $\left.\mathrm{CHCl}_{3}\right)$; 89.5:10.5 er, determined by HPLC analysis [Daicel Chiralpak AD-H, $n-$ hexane $\left./ i-\mathrm{PrOH}=60 / 40,1.0 \mathrm{~mL} \mathrm{~min}^{-1}, \lambda=254 \mathrm{~nm}\right]: \mathrm{t}($ major $)=6.16 \mathrm{~min}, \mathrm{t}($ minor $)=7.44 \mathrm{~min} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 7.71(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.49(\mathrm{t}, J=8.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.45-7.43(\mathrm{~m}, 3 \mathrm{H}), 7.29(\mathrm{t}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.95(\mathrm{dd}, J=12.6,7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 5.29(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{dd}, J=20.4,11.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.56-3.54(\mathrm{~m}, 1 \mathrm{H}), 3.36(\mathrm{~s}, 3 \mathrm{H})$, $3.34-3.32(\mathrm{~m}, 1 \mathrm{H}), 2.90-2.88(\mathrm{~m}, 1 \mathrm{H}), 2.47(\mathrm{dd}, J=19.2,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.35-2.33(\mathrm{~m}, 1 \mathrm{H}), 1.82-1.80$ (m, 1H); ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 212.3,173.2,142.0,131.7,131.5,130.1,129.5,124.7$, $124.5,111.5,110.9,110.5,84.2,72.5,56.8,53.6,48.8,48.4,39.9,38.4,38.4,22.6$; ESI-HRMS: calcd. for $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{5}+\mathrm{Na}^{+} 493.1482$, found 493.1485 .

Synthesis of 5e: 2-Cyclopentenone 1a (16.4 mg, 0.2 mmol), 2-(1,5-dimethyl-2-oxoindolin-3-ylidene)malononitrile ($22.3 \mathrm{mg}, 0.1 \mathrm{mmol}$), PTC C2 ($9.3 \mathrm{mg}, 0.02 \mathrm{mmol}$), 2-mercaptobenzoic acid $\mathbf{T} \mathbf{1}(6.2 \mathrm{mg}, 0.04 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(8.3 \mathrm{mg}, 0.06 \mathrm{mmol})$ were stirred in distilled toluene $(1.0 \mathrm{~mL})$ at rt for 24 h . Then (E) - β-nitrostyrene $\mathbf{4 a}(14.9 \mathrm{mg}, 0.1 \mathrm{mmol})$ was added and the reaction was stirred at $60{ }^{\circ} \mathrm{C}$ for 4 h . After completion, purification by flash chromatography on silica gel
$($ EtOAc/petroleum ether $=1 / 8-1 / 5)$ gave product $5 \mathrm{e}: 36.3 \mathrm{mg}$, as a white solid, yield $80 \% ;[\alpha]_{\mathrm{D}}{ }^{20}$: $+73.4\left(c=0.52\right.$ in $\left.\mathrm{CHCl}_{3}\right)$; 91:9 er, determined by HPLC analysis [Daicel Chiralpak AD-H, $n-$ hexane $\left./ i-\mathrm{PrOH}=60 / 40,1.0 \mathrm{~mL} \mathrm{~min}^{-1}, \lambda=254 \mathrm{~nm}\right]: \mathrm{t}($ major $)=6.44 \mathrm{~min}, \mathrm{t}($ minor $)=8.13 \mathrm{~min} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 7.56-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.47(\mathrm{~s}, 1 \mathrm{H}), 7.45-7.42(\mathrm{~m}, 3 \mathrm{H}), 7.28(\mathrm{~d}, J=$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.93(\mathrm{dd}, J=12.6,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.36(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.53-$ $3.51(\mathrm{~m}, 1 \mathrm{H}), 3.29(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.23(\mathrm{~s}, 3 \mathrm{H}), 2.94-2.92(\mathrm{~m}, 1 \mathrm{H}), 2.50(\mathrm{dd}, J=19.2,9.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 2.31-2.29(\mathrm{~m}, 1 \mathrm{H}), 1.81-1.79(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})$ $212.3,172.0,141.0,134.0,131.9,131.7,130.6,129.5,125.2,125.0,111.6,110.4,109.1,84.3,53.1$, 48.5, 48.4, 39.7, 38.5, 38.3, 27.0, 22.6, 21.4; ESI-HRMS: calcd. for $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{4}+\mathrm{Na}^{+}$477.1533, found 477.1532.

Synthesis of 5f: 2-Cyclopentenone $\mathbf{1 a}(16.4 \mathrm{mg}, 0.2 \mathrm{mmol}$), 2-(1,7-dimethyl-2-oxoindolin-3-ylidene)malononitrile ($22.3 \mathrm{mg}, 0.1 \mathrm{mmol}$), PTC C2 $(9.3 \mathrm{mg}, 0.02$ $\mathrm{mmol})$, 2-mercaptobenzoic acid T1 $(6.2 \mathrm{mg}, 0.04 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(8.3 \mathrm{mg}, 0.06$ mmol) were stirred in distilled toluene $(1.0 \mathrm{~mL})$ at rt for 24 h . Then $(E)-\beta-$ nitrostyrene $\mathbf{4 a}(14.9 \mathrm{mg}, 0.1 \mathrm{mmol})$ was added and the reaction was stirred at 60 ${ }^{\circ} \mathrm{C}$ for 4 h . After completion, purification by flash chromatography on silica gel (EtOAc/petroleum ether $=1 / 8-1 / 5)$ gave product 5f: 38.6 mg , as a white solid, yield $85 \% ;[\alpha]_{\mathrm{D}}{ }^{20}:+61.7(c=0.45$ in CHCl_{3}); 92:8 er, determined by HPLC analysis [Daicel Chiralpak AD-H, n-hexane $/ i-\mathrm{PrOH}=60 / 40$, $\left.1.0 \mathrm{~mL} \mathrm{~min}^{-1}, \lambda=254 \mathrm{~nm}\right]: \mathrm{t}$ (major) $=8.04 \mathrm{~min}, \mathrm{t}($ minor $)=9.47 \mathrm{~min} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):$ $\delta(\mathrm{ppm}) 7.54-7.50(\mathrm{~m}, 3 \mathrm{H}), 7.44-7.40(\mathrm{~m}, 3 \mathrm{H}), 7.20(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $5.93(\mathrm{dd}, J=12.6,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.36(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.54-3.49(\mathrm{~m}, 4 \mathrm{H}), 3.29-3.26(\mathrm{~m}, 1 \mathrm{H})$, 2.95-2.93 (m, 1H), $2.59(\mathrm{~s}, 3 \mathrm{H}), 2.50(\mathrm{dd}, J=19.2,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.31-2.28(\mathrm{~m}, 1 \mathrm{H}), 1.81-1.78(\mathrm{~m}$, 1 H); ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 212.4,172.9,141.2,135.2,131.8,130.0,129.5,125.6$, 124.0, 122.3, 121.0, 111.6, 110.5, 84.2, 52.6, 48.7, 48.5, 39.8, 38.5, 38.3, 30.5, 22.6, 19.1; ESI-HRMS: calcd. for $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{4}+\mathrm{Na}^{+}$477.1533, found 477.1534.

Synthesis of 5g: 2-Cyclopentenone $\mathbf{1 a}(16.4 \mathrm{mg}, 0.2 \mathrm{mmol})$, 2-(1-methyl-2-oxoindolin-3-ylidene)malononitrile ($23.9 \mathrm{mg}, 0.1 \mathrm{mmol}$), PTC C2 $(9.3$ $\mathrm{mg}, 0.02 \mathrm{mmol})$, 2-mercaptobenzoic acid $\mathbf{T 1}(6.2 \mathrm{mg}, 0.04 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(8.3 \mathrm{mg}, 0.06 \mathrm{mmol})$ were stirred in distilled toluene $(1.0 \mathrm{~mL})$ at rt for 24 h . Then $(E)-\beta$-nitrostyrene $4 \mathbf{a}(14.9 \mathrm{mg}, 0.1 \mathrm{mmol})$ was added and the reaction was stirred at $60^{\circ} \mathrm{C}$ for 4 h . After completion, purification by flash chromatography on silica gel ($\mathrm{EtOAc} /$ petroleum ether $=1 / 8-1 / 5)$ gave product $5 \mathrm{~g}: 38.5 \mathrm{mg}$, as a white solid, yield $82 \% ;[\alpha]_{\mathrm{D}}{ }^{20}:+87.2(c=0.48$ in CHCl_{3}); 96:4 er, determined by HPLC analysis [Daicel Chiralpak AD-H, n-hexane $/ i-\mathrm{PrOH}=60 / 40$, $\left.1.0 \mathrm{~mL} \mathrm{~min}^{-1}, \lambda=254 \mathrm{~nm}\right]: \mathrm{t}($ major $)=11.23 \mathrm{~min}, \mathrm{t}($ minor $)=12.74 \mathrm{~min} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):$ $\delta(\mathrm{ppm}) 7.55-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.47-7.43(\mathrm{~m}, 3 \mathrm{H}), 7.28(\mathrm{~s}, 1 \mathrm{H}), 7.00(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=6.6$ $\mathrm{Hz}, 1 \mathrm{H}), 5.93(\mathrm{dd}, J=12.6,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.37(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.57-3.55(\mathrm{~m}, 1 \mathrm{H})$, 3.29-3.27 (m, 1H), $3.24(\mathrm{~s}, 3 \mathrm{H}), 2.95-2.93(\mathrm{~m}, 1 \mathrm{H}), 2.52(\mathrm{dd}, J=19.2,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.32-2.30(\mathrm{~m}$, $1 \mathrm{H}), 1.83-1.80(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 212.2,171.7,156.9,136.6,131.8$, $130.0,129.5,126.2,115.5,111.9,111.5,110.3,109.9,84.2,55.8,53.3,48.5,48.4,39.7,38.4,38.3$, 27.1, 22.6; ESI-HRMS: calcd. for $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{5}+\mathrm{Na}^{+} 493.1482$, found 493.1485.

Synthesis of 5h: 2-Cyclopentenone 1a ($16.4 \mathrm{mg}, 0.2 \mathrm{mmol}$), 2-(1,5,7-trimethyl-2-oxoindolin-3-ylidene)malononitrile ($23.7 \mathrm{mg}, 0.1 \mathrm{mmol}$), PTC C2 ($9.3 \mathrm{mg}, 0.02 \mathrm{mmol}$), 2-mercaptobenzoic acid $\mathbf{T} \mathbf{1}(6.2 \mathrm{mg}, 0.04 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(8.3 \mathrm{mg}, 0.06 \mathrm{mmol})$ were stirred in distilled toluene $(1.0 \mathrm{~mL})$ at rt for 24 h . Then (E)- β-nitrostyrene $\mathbf{4 a}(14.9 \mathrm{mg}, 0.1 \mathrm{mmol})$ was added and the reaction was stirred at $60^{\circ} \mathrm{C}$ for 4 h . After completion, purification by flash chromatography on silica gel ($\mathrm{EtOAc} /$ petroleum ether $=1 / 8-1 / 5$) gave product $\mathbf{5 h}: 38.8 \mathrm{mg}$, as a white solid, yield 83%; $[\alpha]_{\mathrm{D}}{ }^{20}:+72.8\left(c=0.36\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; 95.5: 4.5$ er, determined by HPLC analysis [Daicel Chiralpak ADH, n-hexane $\left./ i-\mathrm{PrOH}=60 / 40,1.0 \mathrm{~mL} \mathrm{~min}^{-1}, \lambda=254 \mathrm{~nm}\right]: \mathrm{t}($ major $)=6.04 \mathrm{~min}, \mathrm{t}($ minor $)=8.03 \mathrm{~min}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 7.56-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.42(\mathrm{~m}, 3 \mathrm{H}), 7.30(\mathrm{~s}, 1 \mathrm{H}), 7.00(\mathrm{~s}$, $1 \mathrm{H}), 5.92(\mathrm{dd}, J=12.4,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.37(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.55-3.48(\mathrm{~m}, 4 \mathrm{H}), 3.27-3.24(\mathrm{~m}$, $1 \mathrm{H}), 2.94-2.92(\mathrm{~m}, 1 \mathrm{H}), 2.59(\mathrm{~s}, 3 \mathrm{H}), 2.50-2.48(\mathrm{~m}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 2.33-2.23(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.77$ $(\mathrm{m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 212.4,172.8,138.8,135.7,133.6,131.9,130.0,129.4$, $125.6,122.9,120.6,111.5,110.5,84.3,52.6,48.8,48.5,39.8,38.4,38.3,30.3,22.6,21.1,18.9$; ESI-

HRMS: calcd. for $\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{4}+\mathrm{Na}^{+} 491.1690$, found 491.1692.

Synthesis of 5i: 2-Cyclopentenone 1a ($16.4 \mathrm{mg}, 0.2 \mathrm{mmol}$), 2-(5-fluoro-1-methyl-2-oxoindolin-3-ylidene)malononitrile ($22.7 \mathrm{mg}, 0.1 \mathrm{mmol}$), PTC C2 ($9.3 \mathrm{mg}, 0.02 \mathrm{mmol}$), 2-mercaptobenzoic acid $\mathbf{T 1}(6.2 \mathrm{mg}, 0.04 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(8.3 \mathrm{mg}, 0.06 \mathrm{mmol})$ were stirred in distilled toluene $(1.0 \mathrm{~mL})$ at rt for 24 h . Then (E) - β-nitrostyrene $\mathbf{4 a}(14.9 \mathrm{mg}, 0.1 \mathrm{mmol})$ was added and the reaction was stirred at 60 ${ }^{\circ} \mathrm{C}$ for 4 h . After completion, purification by flash chromatography on silica gel (EtOAc/petroleum ether $=1 / 8-1 / 5)$ gave product $5 \mathbf{5 i}: 39.4 \mathrm{mg}$, as a white solid, yield $86 \% ;[\alpha]_{D^{20}}:+31.5(c=0.27$ in CHCl_{3}); 83:17 er, determined by HPLC analysis [Daicel Chiralpak AD-H, n-hexane $/ i-\mathrm{PrOH}=60 / 40$, $\left.1.0 \mathrm{~mL} \mathrm{~min}^{-1}, \lambda=254 \mathrm{~nm}\right]: \mathrm{t}$ (major) $=7.81 \mathrm{~min}, \mathrm{t}($ minor $)=8.34 \mathrm{~min} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta(\mathrm{ppm}) 7.55-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.46-7.43(\mathrm{~m}, 4 \mathrm{H}), 7.20(\mathrm{t}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $5.92(\mathrm{dd}, J=12.6,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.35(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.55-3.53(\mathrm{~m}, 1 \mathrm{H}), 3.25-3.23(\mathrm{~m}, 4 \mathrm{H})$, 2.94-2.92 (m, 1H), $2.50(\mathrm{dd}, J=19.2,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.33-2.31(\mathrm{~m}, 1 \mathrm{H}), 1.82-1.80(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 212.1,171.9,159.8\left(\mathrm{~d},{ }^{1} J_{\mathrm{FC}}=240.7 \mathrm{~Hz}\right), 139.5,131.7\left(\mathrm{~d},{ }^{3} J_{\mathrm{FC}}=7.8 \mathrm{~Hz}\right)$, $130.2,129.6,129.5,126.7,126.6,118.0\left(\mathrm{~d},{ }^{2} J_{\mathrm{FC}}=23.4 \mathrm{~Hz}\right), 113.1\left(\mathrm{~d},{ }^{3} J_{\mathrm{FC}}=7.8 \mathrm{~Hz}\right), 111.5,110.3$, 110.2, 84.1, 53.3, 48.5, 48.2, 39.7, 38.4, 38.3, 27.2, 22.7; ESI-HRMS: calcd. for $\mathrm{C}_{25} \mathrm{H}_{19} \mathrm{FN}_{4} \mathrm{O}_{4}+\mathrm{Na}^{+}$ 481.1283, found 481.1285.

Synthesis of 5j: 2-Cyclopentenone 1a (16.4 mg, 0.2 mmol), 2-(5-iodo-1-methyl-2-oxoindolin-3-ylidene)malononitrile ($33.5 \mathrm{mg}, 0.1 \mathrm{mmol}$), PTC C2 ($9.3 \mathrm{mg}, 0.02 \mathrm{mmol}$), 2-mercaptobenzoic acid $\mathbf{T 1}(6.2 \mathrm{mg}, 0.04 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(8.3 \mathrm{mg}, 0.06 \mathrm{mmol})$ were stirred in distilled toluene $(1.0 \mathrm{~mL})$ at rt for 24 h . Then (E) - β-nitrostyrene $\mathbf{4 a}(14.9 \mathrm{mg}, 0.1 \mathrm{mmol})$ was added and the reaction was stirred at 60 ${ }^{\circ} \mathrm{C}$ for 4 h . After completion, purification by flash chromatography on silica gel (EtOAc/petroleum ether $=1 / 8-1 / 5)$ gave product $5 \mathbf{5}: 50.9 \mathrm{mg}$, as a white solid, yield $90 \% ;[\alpha]_{\mathrm{D}}{ }^{20}:+39.3(c=0.34$ in CHCl_{3}); 88:12 er, determined by HPLC analysis [Daicel Chiralpak AD-H, n-hexane $/ i-\mathrm{PrOH}=60 / 40$, $\left.1.0 \mathrm{~mL} \mathrm{~min}^{-1}, \lambda=254 \mathrm{~nm}\right]: \mathrm{t}($ major $)=12.11 \mathrm{~min}, \mathrm{t}($ minor $)=9.03 \mathrm{~min} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta(\mathrm{ppm}) 7.94(\mathrm{~s}, 1 \mathrm{H}), 7.81(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.46-7.43(\mathrm{~m}, 3 \mathrm{H}), 6.73(\mathrm{~d}, J=$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.90(\mathrm{dd}, J=12.6,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.28(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.55-3.53(\mathrm{~m}, 1 \mathrm{H}), 3.31-3.23$
$(\mathrm{m}, 4 \mathrm{H}), 2.89-2.87(\mathrm{~m}, 1 \mathrm{H}), 2.50(\mathrm{dd}, J=19.2,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.33-2.31(\mathrm{~m}, 1 \mathrm{H}), 1.81-1.79(\mathrm{~m}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 212.1,171.7,140.2,133.3,131.6,130.2,129.6,127.4,111.3$, $110.6,84.1,48.3,39.8,38.4,38.3,29.7,27.0,22.8$; ESI-HRMS: calcd. for $\mathrm{C}_{25} \mathrm{H}_{19} \mathrm{IN}_{4} \mathrm{O}_{4}+\mathrm{Na}^{+}$ 589.0343 , found 589.0346 .

Synthesis of 5k: 2-Cyclopentenone 1a ($16.4 \mathrm{mg}, 0.2 \mathrm{mmol}$), 2-(7-fluoro-1-methyl-2-oxoindolin-3-ylidene)malononitrile ($22.7 \mathrm{mg}, 0.1 \mathrm{mmol}$), PTC C2 (9.3 $\mathrm{mg}, 0.02 \mathrm{mmol})$, 2-mercaptobenzoic acid $\mathbf{T 1}(6.2 \mathrm{mg}, 0.04 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(8.3$ $\mathrm{mg}, 0.06 \mathrm{mmol})$ were stirred in distilled toluene $(1.0 \mathrm{~mL})$ at rt for 24 h . Then $(E)-$ β-nitrostyrene $4 \mathbf{4 a}(14.9 \mathrm{mg}, 0.1 \mathrm{mmol})$ was added and the reaction was stirred at $60^{\circ} \mathrm{C}$ for 4 h . After completion, purification by flash chromatography on silica gel (EtOAc/petroleum ether $=1 / 8-1 / 5)$ gave product $\mathbf{5 k}: 39.8 \mathrm{mg}$, as a white solid, yield $87 \% ;[\alpha]_{\mathrm{D}}{ }^{20}:+43.6(c=0.31$ in CHCl_{3}); 89:11 er, determined by HPLC analysis [Daicel Chiralpak AD-H, n-hexane $/ i-\mathrm{PrOH}=60 / 40$, $\left.1.0 \mathrm{~mL} \mathrm{~min}^{-1}, \lambda=254 \mathrm{~nm}\right]: \mathrm{t}($ major $)=6.36 \mathrm{~min}, \mathrm{t}($ minor $)=7.50 \mathrm{~min} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):$ $\delta(\mathrm{ppm}) 7.55-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.49-7.43(\mathrm{~m}, 4 \mathrm{H}), 7.24-7.20(\mathrm{~m}, 2 \mathrm{H}), 5.92(\mathrm{dd}, J=12.0,7.2 \mathrm{~Hz}, 1 \mathrm{H})$, 5.32 (d, $J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.53-3.51(\mathrm{~m}, 1 \mathrm{H}), 3.46(\mathrm{~s}, 3 \mathrm{H}), 3.29-3.27(\mathrm{~m}, 1 \mathrm{H}), 2.93-2.91(\mathrm{~m}, 1 \mathrm{H})$, $2.52(\mathrm{dd}, J=19.2,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.31-2.29(\mathrm{~m}, 1 \mathrm{H}), 1.81-1.79(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta(\mathrm{ppm}) 212.2,171.9,147.8\left(\mathrm{~d},{ }^{1} J_{\mathrm{FC}}=244.8 \mathrm{~Hz}\right), 131.6,130.4\left(\mathrm{~d},{ }^{2} J_{\mathrm{FC}}=9.1 \mathrm{~Hz}\right), 130.2,129.5,127.8$ $\left(\mathrm{d},{ }^{3} J_{\mathrm{FC}}=2.9 \mathrm{~Hz}\right), 124.9,124.8,120.3\left(\mathrm{~d},{ }^{3} J_{\mathrm{FC}}=3.4 \mathrm{~Hz}\right), 119.4\left(\mathrm{~d},{ }^{2} J_{\mathrm{FC}}=18.9 \mathrm{~Hz}\right), 111.4,110.2,84.1$, 53.3, 48.5, 48.3, 39.7, 38.3, 38.3, 29.6, 22.7; ESI-HRMS: calcd. for $\mathrm{C}_{25} \mathrm{H}_{19} \mathrm{FN}_{4} \mathrm{O}_{4}+\mathrm{Na}^{+} 481.1283$, found 481.1286 .

Synthesis of 51: 2-Cyclohexenone 1b (19.2 mg, 0.2 mmol), 2-(1-methyl-2-oxoindolin-3-ylidene)malononitrile 2a ($20.9 \mathrm{mg}, 0.1 \mathrm{mmol}$), PTC C2 (9.3 mg , $0.02 \mathrm{mmol})$, 2-mercaptobenzoic acid $\mathbf{T 1}(6.2 \mathrm{mg}, 0.04 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(8.3$ $\mathrm{mg}, 0.06 \mathrm{mmol})$ were stirred in distilled toluene $(1.0 \mathrm{~mL})$ at rt for 24 h . Then $(E)-$ β-nitrostyrene $\mathbf{4 a}(14.9 \mathrm{mg}, 0.1 \mathrm{mmol})$ was added and the reaction was stirred at $60^{\circ} \mathrm{C}$ for 4 h . After completion, purification by flash chromatography on silica gel (EtOAc/petroleum ether $=1 / 8-1 / 5$) gave product 51: 19.0 mg , as a white solid, yield 42%; $\alpha \alpha]_{\mathrm{D}}{ }^{20}:+25.4\left(c=0.22\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; 68: 32 \mathrm{er}$, determined by HPLC analysis [Daicel Chiralpak AD-H, n-hexane $/$ i-PrOH $=60 / 40,1.0 \mathrm{~mL} \mathrm{~min}^{-1}, \lambda$
$=254 \mathrm{~nm}]: \mathrm{t}($ major $)=9.68 \mathrm{~min}, \mathrm{t}($ minor $)=16.5 \mathrm{~min} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 7.74(\mathrm{~d}$, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.47-7.42(\mathrm{~m}, 4 \mathrm{H}), 7.27(\mathrm{t}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 5.68(\mathrm{dd}, J=12.6,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.45(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.53-3.51(\mathrm{~m}, 1 \mathrm{H}), 3.32(\mathrm{~s}, 3 \mathrm{H}), 3.25-$ $3.23(\mathrm{~m}, 1 \mathrm{H}), 3.04-3.02(\mathrm{~m}, 1 \mathrm{H}), 2.29-2.18(\mathrm{~m}, 3 \mathrm{H}), 1.65-1.63(\mathrm{~m}, 1 \mathrm{H}), 1.35-1.32(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz, CDCl_{3}): $\delta(\mathrm{ppm}) 203.5,172.5,142.4,132.2,131.3,129.9,129.4,125.8,124.2$, 123.3, 111.5, 110.7, 109.3, 85.3, 53.3, 52.9, 49.0, 40.7, 40.4, 38.9, 27.1, 24.0, 20.7; ESI-HRMS: calcd. for $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{4}+\mathrm{Na}^{+} 477.1533$, found 477.1532.

Synthesis of 5m: 2-Cyclopentenone $\mathbf{1 a}(16.4 \mathrm{mg}, 0.2 \mathrm{mmol})$, 2-(1,5,7-trimethyl-2-oxoindolin-3-ylidene)malononitrile ($23.7 \mathrm{mg}, 0.1 \mathrm{mmol}$), PTC C2 ($9.3 \mathrm{mg}, 0.02$ $\mathrm{mmol})$, 2-mercaptobenzoic acid $\mathbf{T 1}(6.2 \mathrm{mg}, 0.04 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(8.3 \mathrm{mg}, 0.06$ $\mathrm{mmol})$ were stirred in distilled toluene $(1.0 \mathrm{~mL})$ at rt for 24 h . Then $(E)-1$-methyl-4-(2-nitrovinyl)benzene ($16.3 \mathrm{mg}, 0.1 \mathrm{mmol}$) was added and the reaction was stirred at $60{ }^{\circ} \mathrm{C}$ for 4 h . After completion, purification by flash chromatography on silica gel $($ EtOAc/petroleum ether $=1 / 8-1 / 5)$ gave product $5 \mathrm{~m}: 39.8 \mathrm{mg}$, as a white solid, yield $82 \% ;[\alpha]_{\mathrm{D}}{ }^{20}$: +83.7 ($c=0.35$ in CHCl_{3}); 93:7 er, determined by HPLC analysis [Daicel Chiralpak AD-H, $n-$ hexane $\left./ i-\mathrm{PrOH}=60 / 40,1.0 \mathrm{~mL} \mathrm{~min}^{-1}, \lambda=254 \mathrm{~nm}\right]: \mathrm{t}($ major $)=6.57 \mathrm{~min}, \mathrm{t}($ minor $)=9.30 \mathrm{~min} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 7.41(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~s}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.0(\mathrm{~s}, 1 \mathrm{H}), 5.90(\mathrm{dd}, J=12.0,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.32(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.53-3.45(\mathrm{~m}, 4 \mathrm{H}), 3.25-3.23$ (m, 1H), 2.95-2.93 (m, 1H), 2.54-2.46 (m, 4H), 2.35-2.25 (m, 7H), 1.77-1.75 (m, 1H); ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 212.5,172.8,140.0,138.8,135.7,133.6,130.1,128.8,125.7,123.0$, 120.6, 111.6, 110.6, 84.4, 52.6, 48.9, 48.5, 39.5, 38.5, 38.3, 30.4, 22.6, 21.2, 21.1, 18.9; ESI-HRMS: calcd. for $\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{4}+\mathrm{Na}^{+} 505.1846$, found 505.1848 .

Synthesis of 5n: 2-Cyclopentenone $\mathbf{1 a}(16.4 \mathrm{mg}, 0.2 \mathrm{mmol})$, 2-(1,5,7-trimethyl-2-oxoindolin-3-ylidene)malononitrile ($23.7 \mathrm{mg}, 0.1 \mathrm{mmol}$), PTC C2 $(9.3 \mathrm{mg}$, $0.02 \mathrm{mmol})$, 2-mercaptobenzoic acid $\mathbf{T 1}(6.2 \mathrm{mg}, 0.04 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(8.3$ $\mathrm{mg}, 0.06 \mathrm{mmol})$ were stirred in distilled toluene $(1.0 \mathrm{~mL})$ at rt for 24 h . Then (E) -1-methoxy-3-(2-nitrovinyl)benzene ($17.9 \mathrm{mg}, 0.1 \mathrm{mmol}$) was added and the reaction was stirred at $60^{\circ} \mathrm{C}$ for 4 h . After completion, purification by flash chromatography on silica
gel $($ EtOAc/petroleum ether $=1 / 8-1 / 5)$ gave product $5 \mathrm{n}: 40.8 \mathrm{mg}$, as a white solid, yield $82 \% ;[\alpha]_{\mathrm{D}}{ }^{20}$: $+76.2\left(c=0.28\right.$ in $\left.\mathrm{CHCl}_{3}\right)$; 94:6 er, determined by HPLC analysis [Daicel Chiralpak AD-H, $n-$ hexane $\left./ i-\mathrm{PrOH}=60 / 40,1.0 \mathrm{~mL} \mathrm{~min}^{-1}, \lambda=254 \mathrm{~nm}\right]: \mathrm{t}($ major $)=6.16 \mathrm{~min}, \mathrm{t}($ minor $)=20.20 \mathrm{~min} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 7.37-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.16-7.13(\mathrm{~m}, 1 \mathrm{H}), 7.05-7.03(\mathrm{~m}, 2 \mathrm{H}), 6.97-$ $6.95(\mathrm{~m}, 1 \mathrm{H}), 5.90(\mathrm{dd}, J=11.4,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.35(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.55-3.50(\mathrm{~m}$, $4 \mathrm{H}), 3.27-3.25(\mathrm{~m}, 1 \mathrm{H}), 2.96-2.94(\mathrm{~m}, 1 \mathrm{H}), 2.58(\mathrm{~s}, 3 \mathrm{H}), 2.55(\mathrm{dd}, J=18.6,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{~s}$, $3 \mathrm{H}), 2.32-2.30(\mathrm{~m}, 1 \mathrm{H}), 1.81-1.79(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 212.5,172.8$, $140.1,138.8,135.8,133.4,130.5,125.7,123.0,120.6,115.6,84.4,55.3,52.7,48.6,39.8,38.5,38.3$, 30.4, 22.6, 21.1, 18.9; ESI-HRMS: calcd. for $\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{5}+\mathrm{Na}^{+} 521.1795$, found 521.1796.

Synthesis of 50: 2-Cyclopentenone $\mathbf{1 a}(16.4 \mathrm{mg}, 0.2 \mathrm{mmol})$, 2-(1,5,7-trimethyl-2-oxoindolin-3-ylidene)malononitrile ($23.7 \mathrm{mg}, 0.1 \mathrm{mmol}$), PTC C2 ($9.3 \mathrm{mg}, 0.02$ $\mathrm{mmol})$, 2-mercaptobenzoic acid $\mathbf{T 1}(6.2 \mathrm{mg}, 0.04 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(8.3 \mathrm{mg}, 0.06$ $\mathrm{mmol})$ were stirred in distilled toluene $(1.0 \mathrm{~mL})$ at rt for 24 h . Then (E)-1-bromo-2-(2-nitrovinyl)benzene ($22.7 \mathrm{mg}, 0.1 \mathrm{mmol}$) was added and the reaction was stirred at $60{ }^{\circ} \mathrm{C}$ for 4 h . After completion, purification by flash chromatography on silica gel $($ EtOAc/petroleum ether $=1 / 8-1 / 5)$ gave product $50: 40.9 \mathrm{mg}$, as a white solid, yield $75 \% ;[\alpha]_{\mathrm{D}}{ }^{20}$: $+85.3\left(c=0.42\right.$ in $\left.\mathrm{CHCl}_{3}\right)$; 92.5:7.5 er, determined by HPLC analysis [Daicel Chiralpak AD-H, $n-$ hexane $\left./ i-\mathrm{PrOH}=60 / 40,1.0 \mathrm{~mL} \mathrm{~min}^{-1}, \lambda=254 \mathrm{~nm}\right]: \mathrm{t}($ major $)=6.15 \mathrm{~min}, \mathrm{t}($ minor $)=8.19 \mathrm{~min} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 7.74(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{t}, J=8.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.32-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.03(\mathrm{~s}, 1 \mathrm{H}), 6.28(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.88(\mathrm{dd}, J=12.6,7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $3.59-3.54(\mathrm{~m}, 1 \mathrm{H}), 3.52(\mathrm{~s}, 3 \mathrm{H}), 3.30-3.28(\mathrm{~m}, 1 \mathrm{H}), 3.06-3.04(\mathrm{~m}, 1 \mathrm{H}), 2.61-2.51(\mathrm{~m}, 4 \mathrm{H}), 2.37-2.30$ $(\mathrm{m}, 4 \mathrm{H}), 1.84-1.82(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 212.6,172.3,139.0,135.8,134.7$, $133.5,131.8,131.1,128.3,127.9,126.8,125.5,122.9,120.6,111.6,109.8,84.9,52.8,48.4,47.9$, 38.6, 38.3, 37.6, 30.4, 22.7, 21.1, 18.9; ESI-HRMS: calcd. for $\mathrm{C}_{27} \mathrm{H}_{23} \mathrm{Br}^{79} \mathrm{~N}_{4} \mathrm{O}_{4}+\mathrm{Na}^{+} 569.0795$, found 569.0798, calcd. for $\mathrm{C}_{27} \mathrm{H}_{23} \mathrm{Br}^{81} \mathrm{~N}_{4} \mathrm{O}_{4}+\mathrm{Na}^{+}$571.0774, found 571.0776.

Synthesis of 5p: 2-Cyclopentenone $\mathbf{1 a}$ ($16.4 \mathrm{mg}, 0.2 \mathrm{mmol}$), 2-(1,5,7-trimethyl-2-oxoindolin-3-ylidene)malononitrile ($23.7 \mathrm{mg}, 0.1 \mathrm{mmol}$), PTC C2 (9.3 mg , 0.02 mmol), 2-mercaptobenzoic acid $\mathbf{T 1}(6.2 \mathrm{mg}, 0.04 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(8.3$ $\mathrm{mg}, 0.06 \mathrm{mmol})$ were stirred in distilled toluene $(1.0 \mathrm{~mL})$ at rt for 24 h . Then (E)-1-bromo-3-(2-nitrovinyl)benzene ($22.7 \mathrm{mg}, 0.1 \mathrm{mmol}$) was added and the reaction was stirred at $60^{\circ} \mathrm{C}$ for 4 h . After completion, purification by flash chromatography on silica gel (EtOAc/petroleum ether $=1 / 8-1 / 5$) gave product $\mathbf{5 p}: 41.5 \mathrm{mg}$, as a white solid, yield $76 \% ;[\alpha]_{\mathrm{D}}{ }^{20}:+70.0\left(c=0.34\right.$ in $\left.\mathrm{CHCl}_{3}\right)$; 94:6 er, determined by HPLC analysis [Daicel Chiralpak AD-H, n-hexane $/ i-\mathrm{PrOH}=60 / 40,1.0 \mathrm{~mL} \mathrm{~min}^{-1}, \lambda=254 \mathrm{~nm}$]: t (major) $=5.60 \mathrm{~min}$, $\mathrm{t}($ minor $)=8.60 \mathrm{~min} ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 7.69(\mathrm{~s}, 1 \mathrm{H}), 7.59-7.57(\mathrm{~m}, 1 \mathrm{H}), 7.52-$ $7.50(\mathrm{~m}, 1 \mathrm{H}), 7.35-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.04(\mathrm{~s}, 1 \mathrm{H}), 5.86(\mathrm{dd}, J=12.6,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.39(\mathrm{~d}, J=12.6 \mathrm{~Hz}$, $1 \mathrm{H}), 3.56-3.53(\mathrm{~m}, 4 \mathrm{H}), 3.27-3.25(\mathrm{~m}, 1 \mathrm{H}), 2.93-2.91(\mathrm{~m}, 1 \mathrm{H}), 2.58(\mathrm{~s}, 3 \mathrm{H}), 2.52(\mathrm{dd}, J=19.2,9.0$ $\mathrm{Hz}, 1 \mathrm{H}), 2.40-2.38(\mathrm{~s}, 3 \mathrm{H}), 2.37-2.27(\mathrm{~m}, 1 \mathrm{H}), 1.81-1.79(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ (ppm) 212.2, 172.7, 138.6, 135.9, 134.3, 133.7, 133.3, 130.9, 125.5, 123.5, 122.9, 120.7, 111.3, 110.3, 84.2, 52.5, 48.5, 48.5, 39.4, 38.4, 38.3, 30.4, 22.6, 21.1, 18.9; ESI-HRMS: calcd. for $\mathrm{C}_{27} \mathrm{H}_{23} \mathrm{Br}^{79} \mathrm{~N}_{4} \mathrm{O}_{4}+\mathrm{Na}^{+} 569.0795$, found 569.0796, calcd. for $\mathrm{C}_{27} \mathrm{H}_{23} \mathrm{Br}^{81} \mathrm{~N}_{4} \mathrm{O}_{4}+\mathrm{Na}^{+} 571.0774$, found 571.0773.

Synthesis of 5q: 2-Cyclopentenone $\mathbf{1 a}$ ($16.4 \mathrm{mg}, 0.2 \mathrm{mmol}$), 2-(1,5,7-trimethyl-2-oxoindolin-3-ylidene)malononitrile ($23.7 \mathrm{mg}, 0.1 \mathrm{mmol}$), PTC C2 (9.3 mg , $0.02 \mathrm{mmol})$, 2-mercaptobenzoic acid $\mathbf{T 1}(6.2 \mathrm{mg}, 0.04 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(8.3$ $\mathrm{mg}, 0.06 \mathrm{mmol})$ were stirred in distilled toluene $(1.0 \mathrm{~mL})$ at rt for 24 h . Then (E)-1-bromo-4-(2-nitrovinyl)benzene ($22.7 \mathrm{mg}, 0.1 \mathrm{mmol}$) was added and the reaction was stirred at $60^{\circ} \mathrm{C}$ for 4 h . After completion, purification by flash chromatography on silica gel (EtOAc/petroleum ether $=1 / 8-1 / 5$) gave product $\mathbf{5 q}: 42.6 \mathrm{mg}$, as a white solid, yield $78 \% ;[\alpha]_{\mathrm{D}}{ }^{20}:+75.8\left(c=0.37\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; 93.5: 6.5$ er, determined by HPLC analysis [Daicel Chiralpak AD-H, n-hexane $\left./ i-\mathrm{PrOH}=60 / 40,1.0 \mathrm{~mL} \min ^{-1}, \lambda=254 \mathrm{~nm}\right]: \mathrm{t}$ (major) $=15.87$ $\min , \mathrm{t}($ minor $)=17.88 \mathrm{~min} ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 7.58(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~s}, 1 \mathrm{H}), 7.01(\mathrm{~s}, 1 \mathrm{H}), 5.85(\mathrm{dd}, J=12.0,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.36(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.56-3.45(\mathrm{~m}, 4 \mathrm{H}), 3.25-3.23(\mathrm{~m}, 1 \mathrm{H}), 2.93-2.91(\mathrm{~m}, 1 \mathrm{H}), 2.59-2.46(\mathrm{~m}, 4 \mathrm{H}), 2.35-2.23(\mathrm{~m}, 4 \mathrm{H})$,
1.80-1.78 (m, 1H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 212.2,172.7,138.7,135.8,133.7,132.7$, $131.0,125.5,124.4,122.9,120.7,111.4,110.4,84.2,52.5,48.5,48.4,39.4,38.3,38.2,30.3,22.5$, 21.1, 18.9; ESI-HRMS: calcd. for $\mathrm{C}_{27} \mathrm{H}_{23} \mathrm{Br}^{79} \mathrm{~N}_{4} \mathrm{O}_{4}+\mathrm{Na}^{+}$569.0795, found 569.0797, calcd. for $\mathrm{C}_{27} \mathrm{H}_{23} \mathrm{Br}^{81} \mathrm{~N}_{4} \mathrm{O}_{4}+\mathrm{Na}^{+}$571.0774, found 571.0775.

Synthesis of 5r: 2-Cyclopentenone $\mathbf{1 a}$ ($16.4 \mathrm{mg}, 0.2 \mathrm{mmol}$), 2-(1,5,7-trimethyl-2-oxoindolin-3-ylidene)malononitrile ($23.7 \mathrm{mg}, 0.1 \mathrm{mmol}$), PTC C2 $(9.3 \mathrm{mg}$, $0.02 \mathrm{mmol})$, 2-mercaptobenzoic acid $\mathbf{T 1}(6.2 \mathrm{mg}, 0.04 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(8.3$ $\mathrm{mg}, 0.06 \mathrm{mmol})$ were stirred in distilled toluene $(1.0 \mathrm{~mL})$ at rt for 24 h . Then (E)-2-(2-nitrovinyl)naphthalene ($19.9 \mathrm{mg}, 0.1 \mathrm{mmol}$) was added and the reaction was stirred at $60^{\circ} \mathrm{C}$ for 4 h . After completion, purification by flash chromatography on silica gel (EtOAc/petroleum ether $=1 / 8-1 / 5$) gave product $\mathbf{5 r}: 36.7 \mathrm{mg}$, as a white solid, yield $71 \% ;[\alpha]_{\mathrm{D}}{ }^{20}:+68.5\left(c=0.29\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; 94: 6$ er, determined by HPLC analysis [Daicel Chiralpak AD-H, n-hexane $/ i$ - $\left.\mathrm{PrOH}=60 / 40,1.0 \mathrm{~mL} \mathrm{~min}^{-1}, \lambda=254 \mathrm{~nm}\right]: \mathrm{t}$ (major) $=8.00 \mathrm{~min}, \mathrm{t}$ (minor) $=17.7 \mathrm{~min} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 8.06(\mathrm{~s}, 1 \mathrm{H}), 7.92-7.90(\mathrm{~m}, 2 \mathrm{H}), 7.87-7.85(\mathrm{~m}$, $1 \mathrm{H}), 7.64-7.62(\mathrm{~m}, 1 \mathrm{H}), 7.56-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.35(\mathrm{~s}, 1 \mathrm{H}), 7.03(\mathrm{~s}, 1 \mathrm{H}), 6.08(\mathrm{dd}, J=12.0,7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 5.58(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.58-3.56(\mathrm{~m}, 1 \mathrm{H}), 3.53(\mathrm{~s}, 3 \mathrm{H}), 3.33-3.31(\mathrm{~m}, 1 \mathrm{H}), 3.03-3.01(\mathrm{~m}$, $1 \mathrm{H}), 2.56-2.51(\mathrm{~m}, 4 \mathrm{H}), 2.38-2.30(\mathrm{~m}, 4 \mathrm{H}), 1.83-1.81(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ (ppm) 212.4, 172.9, 138.9, 135.8, 133.8, 133.7, 133.2, 129.5, 128.4, 127.7, 127.2, 126.8, 125.7, 123.0, 120.7, 111.7, 110.6, 84.6, 52.8, 48.8, 48.6, 39.9, 38.6, 38.4, 30.4, 22.7, 21.1, 18.9; ESI-HRMS: calcd. for $\mathrm{C}_{31} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{4}+\mathrm{Na}^{+} 541.1846$, found 541.1845.

Synthesis of 5s: 2-Cyclopentenone 1a (16.4 mg, 0.2 mmol), 2-(1,5,7-trimethyl-2-oxoindolin-3-ylidene)malononitrile ($23.7 \mathrm{mg}, 0.1 \mathrm{mmol}$), PTC C2 $(9.3 \mathrm{mg}, 0.02 \mathrm{mmol})$, 2-mercaptobenzoic acid $\mathbf{T 1}(6.2 \mathrm{mg}, 0.04 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($8.3 \mathrm{mg}, 0.06 \mathrm{mmol}$) were stirred in distilled toluene (1.0 mL) at rt for 24 h . Then (E)-2-(2-nitrovinyl)thiophene ($15.5 \mathrm{mg}, 0.1 \mathrm{mmol}$) was added and the reaction was stirred at $60^{\circ} \mathrm{C}$ for 4 h . After completion, purification by flash chromatography on silica gel $($ EtOAc/petroleum ether $=1 / 8-1 / 5)$ gave product 5 s : 35.1 mg , as a white solid, yield 74%; $[\alpha]_{\mathrm{D}}{ }^{20}:+72.2\left(c=0.31\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; 92: 8$ er, determined by HPLC analysis [Daicel Chiralpak AD-H,
n-hexane $\left./ i-\operatorname{PrOH}=60 / 40,1.0 \mathrm{~mL} \mathrm{~min}^{-1}, \lambda=254 \mathrm{~nm}\right]: \mathrm{t}($ major $)=6.20 \mathrm{~min}, \mathrm{t}($ minor $)=8.33 \mathrm{~min} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 7.39-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.31(\mathrm{~s}, 1 \mathrm{H}), 7.06(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{~s}$, $1 \mathrm{H}), 5.77(\mathrm{dd}, J=12.0,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.67(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.56-3.44(\mathrm{~m}, 4 \mathrm{H}), 3.26-3.24(\mathrm{~m}$, $1 \mathrm{H}), 2.90(\mathrm{~s}, 1 \mathrm{H}), 2.54-2.44(\mathrm{~m}, 4 \mathrm{H}), 2.35-2.22(\mathrm{~m}, 4 \mathrm{H}), 1.78-1.76(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 212.2,172.7,138.8,135.8,133.8,133.7,128.7,127.5,127.4,125.6,122.9,120.7$, 111.7, 110.6, 86.1, 52.6, 49.4, 48.4, 38.5, 38.2, 36.6, 30.4, 22.7, 21.1, 18.9; ESI-HRMS: calcd. for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}+\mathrm{Na}^{+} 497.1254$, found 497.1255.

Synthesis of 5t: 2-Cyclopentenone 1a ($16.4 \mathrm{mg}, 0.2 \mathrm{mmol}$), 2-(1,5,7-trimethyl-2-oxoindolin-3-ylidene)malononitrile ($23.7 \mathrm{mg}, 0.1 \mathrm{mmol}$), PTC C2 ($9.3 \mathrm{mg}, 0.02$ $\mathrm{mmol})$, 2-mercaptobenzoic acid $\mathbf{T 1}(6.2 \mathrm{mg}, 0.04 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(8.3 \mathrm{mg}, 0.06$ $\mathrm{mmol})$ were stirred in distilled toluene $(1.0 \mathrm{~mL})$ at rt for 24 h . Then $(E)-(2-$ nitrovinyl)cyclohexane ($15.5 \mathrm{mg}, 0.1 \mathrm{mmol}$) was added and the reaction was stirred at $60{ }^{\circ} \mathrm{C}$ for 4 h . After completion, purification by flash chromatography on silica gel $($ EtOAc/petroleum ether $=1 / 8-1 / 5)$ gave product $5 \mathbf{5 t}: 34.1 \mathrm{mg}$, as a white solid, yield $72 \% ;[\alpha]_{\mathrm{D}}{ }^{20}$: $+83.4\left(c=0.43\right.$ in CHCl_{3}); 92.5:7.5 er, determined by HPLC analysis [Daicel Chiralpak AD-H, $n-$ hexane $\left./ i-\mathrm{PrOH}=60 / 40,1.0 \mathrm{~mL} \mathrm{~min}^{-1}, \lambda=254 \mathrm{~nm}\right]: \mathrm{t}($ major $)=4.70 \mathrm{~min}, \mathrm{t}($ minor $)=5.94 \mathrm{~min} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 7.27(\mathrm{~s}, 1 \mathrm{H}), 7.01(\mathrm{~s}, 1 \mathrm{H}), 5.40(\mathrm{dd}, J=11.4,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{~d}$, $J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{~s}, 3 \mathrm{H}), 3.31-3.29(\mathrm{~m}, 1 \mathrm{H}), 3.09-3.07(\mathrm{~m}, 1 \mathrm{H}), 2.81-2.79(\mathrm{~m}, 1 \mathrm{H}), 2.59(\mathrm{~s}$, $3 H), 2.43-2.35(\mathrm{~m}, 4 \mathrm{H}), 2.23-2.21(\mathrm{~m}, 1 \mathrm{H}), 1.99-1.92(\mathrm{~m}, 2 \mathrm{H}), 1.83-1.55(\mathrm{~m}, 6 \mathrm{H}), 1.31-1.14(\mathrm{~m}$, $4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 212.5,172.5,139.0,135.7,133.5,125.8,122.8,120.5$, $112.2,111.8,83.9,52.2,48.3,47.3,41.8,38.4,38.0,33.0,30.3,28.6,26.9,25.7,23.0,21.1,19.0$; ESI-HRMS: calcd. for $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{O}_{4}+\mathrm{Na}^{+} 497.2159$, found 497.2158.

Synthesis of 7: (E)-5-benzylidenecyclopent-2-en-1-one 6 (20.4 mg, 0.12 mmol), 2-(1-methyl-2-oxoindolin-3-ylidene)malononitrile 2a ($20.9 \mathrm{mg}, 0.1$ $\mathrm{mmol})$, PTC C2 ($9.3 \mathrm{mg}, 0.02 \mathrm{mmol}$), 2-mercaptobenzoic acid $\mathbf{T 1}(6.2 \mathrm{mg}$, $0.04 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(8.3 \mathrm{mg}, 0.06 \mathrm{mmol})$ were dissolved in distilled toluene (1.0 mL). The mixture was stirred at $25^{\circ} \mathrm{C}$ for 12 h . Then (E)-(2-nitrovinyl)benzene $\mathbf{4 a}$ (14.9 $\mathrm{mg}, 0.1 \mathrm{mmol}$) was added and the reaction was moved to $50^{\circ} \mathrm{C}$ for 4 h . After completion, purification
by flash chromatography on silica gel ($\mathrm{EtOAc} /$ petroleum ether $=1 / 8-1 / 5$) gave product 7: 48.6 mg , as a white solid, yield $92 \% ;[\alpha]_{\mathrm{D}}{ }^{20}:+25.6\left(c=0.27\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; 72: 28$ er, determined by HPLC analysis [Daicel Chiralpak AD-H, n-hexane $/ i-\mathrm{PrOH}=60 / 40,1.0 \mathrm{~mL} \mathrm{~min}^{-1}, \lambda=254 \mathrm{~nm}$]: t (major) $=7.42 \mathrm{~min}$, $\mathrm{t}($ minor $)=8.78 \mathrm{~min} ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 7.78(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.60-7.58(\mathrm{~m}$, 2H), 7.53-7.39 (m, 10H), $7.31(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.98(\mathrm{dd}, J=12.0,7.2$ $\mathrm{Hz}, 1 \mathrm{H}), 5.60(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.84-3.82(\mathrm{~m}, 1 \mathrm{H}), 3.55-3.53(\mathrm{~m}, 1 \mathrm{H}), 3.45-3.43(\mathrm{~m}, 1 \mathrm{H}), 3.19$ (s, 3H), 2.80 (dd, $J=19.2,9.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 199.6,171.5,143.4$, $136.9,134.2,132.8,131.8,131.4,131.1,130.6,130.2,129.6,129.0,124.8,124.6,124.4,111.7,110.6$, 109.4, 84.0, 53.2, 49.1, 48.2, 39.9, 36.5, 29.6, 27.0; ESI-HRMS: calcd. for $\mathrm{C}_{32} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{4}+\mathrm{Na}^{+}$551.1690, found 551.1693.

Synthesis of 8: 2-Cyclopentenone 1a (16.4 mg, 0.2 mmol), 2-(1,5,7-trimethyl-2-oxoindolin-3-ylidene)malononitrile ($23.7 \mathrm{mg}, 0.1 \mathrm{mmol}$), PTC C2 $(9.3 \mathrm{mg}$, $0.02 \mathrm{mmol})$, 2-mercaptobenzoic acid $\mathbf{T 1}(6.2 \mathrm{mg}, 0.04 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(8.3$ $\mathrm{mg}, 0.06 \mathrm{mmol})$ were stirred in distilled toluene $(1.0 \mathrm{~mL})$ at rt for 24 h . Then ethyl (E)-4-oxo-4-phenylbut-2-enoate ($20.4 \mathrm{mg}, 0.1 \mathrm{mmol}$) was added and the reaction was stirred at $60^{\circ} \mathrm{C}$ for 4 h . After completion, purification by flash chromatography on silica gel (EtOAc/petroleum ether $=1 / 8-1 / 5)$ gave product 8: 40.8 mg , as a white solid, yield $78 \% ;[\alpha]_{\mathrm{D}}{ }^{20}:+88.5(c=0.46$ in CHCl_{3}); 94:6 er, determined by HPLC analysis [Daicel Chiralpak AD-H, n-hexane $/ i-\mathrm{PrOH}=60 / 40$, $\left.1.0 \mathrm{~mL} \mathrm{~min}^{-1}, \lambda=254 \mathrm{~nm}\right]: \mathrm{t}($ major $)=8.55 \mathrm{~min}, \mathrm{t}($ minor $)=13.81 \mathrm{~min} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta(\mathrm{ppm}) 8.06(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.68-7.66(\mathrm{~m}, 1 \mathrm{H}), 7.56(\mathrm{t}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{~s}, 1 \mathrm{H}), 7.02(\mathrm{~s}$, $1 \mathrm{H}), 4.89-4.87(\mathrm{~m}, 1 \mathrm{H}), 4.70-4.68(\mathrm{~m}, 1 \mathrm{H}), 4.29-4.27(\mathrm{~m}, 2 \mathrm{H}), 3.46(\mathrm{~s}, 3 \mathrm{H}), 3.11-3.09(\mathrm{~m}, 2 \mathrm{H})$, 2.60-2.51 (m, 4H), 2.37 ($\mathrm{s}, 3 \mathrm{H}$), 2.31-2.29 (m, 1H), 2.04-2.02 (m, 1H), 1.45-1.43 (m, 1H), $1.27(\mathrm{t}$, $J=12 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 213.9,197.6,172.7,169.1,139.0,135.6,135.5$, $133.9,133.4,129.1,128.2,126.1,123.1,120.4,111.3,110.9,62.6,52.3,48.2,44.5,44.1,40.1,38.6$, 36.7, 30.3, 23.0, 21.1, 18.9, 13.9; ESI-HRMS: calcd. for $\mathrm{C}_{31} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{5}+\mathrm{Na}^{+} 546.1999$, found 546.1998.

Synthesis of 9: 2-Cyclopentenone 1a (16.4 mg, 0.2 mmol$)$, 2-(1,5,7-trimethyl-2-oxoindolin-3-ylidene)malononitrile ($23.7 \mathrm{mg}, 0.1 \mathrm{mmol}$), PTC $\mathbf{C} 2(9.3 \mathrm{mg}, 0.02 \mathrm{mmol})$, 2-mercaptobenzoic acid $\mathbf{T 1}(6.2 \mathrm{mg}, 0.04 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(8.3 \mathrm{mg}, 0.06 \mathrm{mmol})$ were stirred in distilled toluene $(1.0 \mathrm{~mL})$ at rt for 24 h . Then (E)-4,4,4-trifluoro-1-phenylbut-2-en-1-one ($20.0 \mathrm{mg}, 0.1$ mmol) was added and the reaction was stirred at $60^{\circ} \mathrm{C}$ for 4 h . After completion, purification by flash chromatography on silica gel (EtOAc/petroleum ether $=1 / 8-1 / 5$) gave product 9:31.6 mg, as a white solid, yield $61 \% ;[\alpha]_{\mathrm{D}}{ }^{20}:+81.2\left(c=0.38\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; 93: 7$ er, determined by HPLC analysis [Daicel Chiralpak AD-H, n-hexane $/ i$ - $\left.\mathrm{PrOH}=60 / 40,1.0 \mathrm{~mL} \mathrm{~min}^{-1}, \lambda=254 \mathrm{~nm}\right]: \mathrm{t}$ (major) $=6.06 \mathrm{~min}, \mathrm{t}$ (minor) $=7.46 \mathrm{~min} ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 8.06(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.70-7.68(\mathrm{~m}, 1 \mathrm{H}), 7.58$ $(\mathrm{t}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{~s}, 1 \mathrm{H}), 7.04(\mathrm{~s}, 1 \mathrm{H}), 5.23-5.21(\mathrm{~m}, 1 \mathrm{H}), 4.61-4.59(\mathrm{~m}, 1 \mathrm{H}), 3.47(\mathrm{~s}, 3 \mathrm{H})$, 3.16-3.14 (m, 1H), 3.05-3.03(m, 1H), 2.67-2.65 (m, 1H), $2.56(\mathrm{~s}, 3 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 2.31-2.29(\mathrm{~m}$, $1 \mathrm{H}), 2.07-2.05(\mathrm{~m}, 1 \mathrm{H}), 1.46-1.44(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 212.7,194.3$, $172.3,139.2,135.9,135.2,134.3,133.6,129.3,129.2,128.6,124.5\left(\mathrm{q}, J_{\mathrm{CF}}=279.2 \mathrm{~Hz}\right), 122.9,111.5$, $110.5,53.4,52.1,47.8,41.7\left(\mathrm{q}, J_{\mathrm{CF}}=28.6 \mathrm{~Hz}\right), 38.2,35.9,30.3,29.7,24.3,21.1,19.0$; ESI-HRMS: calcd. for $\mathrm{C}_{29} \mathrm{H}_{24} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{3}+\mathrm{Na}^{+} 542.1662$, found 542.1665.

Synthesis of 10: 2-Cyclopentenone 1a $(16.4 \mathrm{mg}, 0.2 \mathrm{mmol})$, 2-(1,5,7-trimethyl-2-oxoindolin-3-ylidene)malononitrile ($23.7 \mathrm{mg}, 0.1 \mathrm{mmol}$), PTC C2 $(9.3 \mathrm{mg}, 0.02 \mathrm{mmol}), 2$-mercaptobenzoic acid $\mathbf{T 1}(6.2 \mathrm{mg}, 0.04 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(8.3 \mathrm{mg}, 0.06 \mathrm{mmol})$ were stirred in distilled toluene $(1.0 \mathrm{~mL})$ at rt for 24 h . Then 2-benzylidenemalononitrile ($15.4 \mathrm{mg}, 0.1 \mathrm{mmol}$) was added and the reaction was stirred at $60^{\circ} \mathrm{C}$ for 4 h . After completion, purification by flash chromatography on silica gel (EtOAc/petroleum ether $=1 / 8-1 / 5$) gave product 10: 30.7 mg , as a white solid, yield $65 \% ;[\alpha]_{\mathrm{D}}{ }^{20}:+93.4\left(c=0.52\right.$ in $\left.\mathrm{CHCl}_{3}\right)$; 94:6 er, determined by HPLC analysis [Daicel Chiralpak AD-H, n-hexane $/ i$ - $\left.\operatorname{PrOH}=60 / 40,1.0 \mathrm{~mL} \mathrm{~min}^{-1}, \lambda=254 \mathrm{~nm}\right]: \mathrm{t}$ (major) $=5.35 \mathrm{~min}, \mathrm{t}($ minor $)=6.45$ min; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 7.91-7.88(\mathrm{~m}, 2 \mathrm{H}), 7.58-7.55(\mathrm{~m}, 3 \mathrm{H}), 7.33(\mathrm{~s}, 1 \mathrm{H}), 7.03$ $(\mathrm{s}, 1 \mathrm{H}), 4.75(\mathrm{~s}, 1 \mathrm{H}), 3.96-3.94(\mathrm{~m}, 1 \mathrm{H}), 3.52(\mathrm{~s}, 3 \mathrm{H}), 3.19(\mathrm{~d}, J=18,1 \mathrm{H}), 2.60-2.54(\mathrm{~m}, 5 \mathrm{H})$, $2.37-2.29(\mathrm{~m}, 4 \mathrm{H}), 2.19-2.17(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 205.2,172.5,135.7$, $133.5,131.3,130.2,129.9,129.8,123.5,123.2,120.8,112.2,111.9,110.8,110.3,51.3,49.9,47.2$,
46.3, 42.0, 41.9, 35.6, 30.3, 22.7, 20.9, 19.0; ESI-HRMS: calcd. for $\mathrm{C}_{29} \mathrm{H}_{23} \mathrm{~N}_{5} \mathrm{O}_{2}+\mathrm{Na}^{+}$496.1744, found 496.1745 .
6. More screening conditions for the cross RC reaction of enone 1a with α-cyano chalcone 11a and annulation ${ }^{a}$

C2

C29 R = OMe
C30 R = H

entry	\mathbf{C}	\mathbf{T}	solvent	yield $(\%)^{b}$	er $(\%)^{c}$
1^{d}	$\mathbf{C 1}$	$\mathbf{T 1}$	toluene	47	$55.5: 44.5$
2^{d}	$\mathbf{C} 2$	$\mathbf{T 1}$	toluene	45	$58: 42$
3^{d}	$\mathbf{C 3}$	$\mathbf{T 1}$	toluene	41	$57: 43$
4	$\mathbf{C 6}$	$\mathbf{T 1}$	toluene	52	$85.5: 14.5$
5	$\mathbf{C 2 8}$	$\mathbf{T 1}$	toluene	36	$62.5: 37.5$
6	$\mathbf{C 2 9}$	$\mathbf{T 1}$	toluene	42	$63: 36$
7	$\mathbf{C 3 0}$	$\mathbf{T 1}$	toluene	47	$54.5: 45.5$
8	$\mathbf{C 6}$	$\mathbf{T 1}$	o-xylene	79	$89: 11$
9	$\mathbf{C 6}$	$\mathbf{T 1}$	m-xylene	80	$88: 12$
10	$\mathbf{C 6}$	$\mathbf{T 1}$	PhCF3	69	$83.5: 16.5$
11	$\mathbf{C 6}$	$\mathbf{T 1}$	mesitylene	75	$88: 12$
12	$\mathbf{C 6}$	$\mathbf{T 1}$	CHCl $_{3}$	62	$78.5: 21.5$
13	$\mathbf{C 6}$	$\mathbf{T 2}$	o-xylene	72	$85.5: 14.5$
14	$\mathbf{C 6}$	$\mathbf{T 3}$	o-xylene	74	$84.5: 15.5$

15	C6	T4	o-xylene	64	$74: 26$
16	C6	T5	o-xylene	42	$57: 43$
17	C6	T6	o-xylene	<10	$/$
18^{e}	C6	T7	o-xylene	51	$51.5: 48.5$
19^{d}	C6	T1	o-xylene	80	$90.5: 9.5$
$20^{f g}$	C6	T1	o-xylene	82	$91.5: 8.5$
$21^{f, g, h}$	C6	T1	o-xylene	82	$91.5: 8.5$
$22^{f, g, h, i}$	C6	T1	o-xylene	77	$89: 11$

${ }^{a}$ Unless noted otherwise, reactions were performed with 2-cyclopentenone $\mathbf{1 a}(8.6 \mathrm{mg}, 0.1 \mathrm{mmol})$, 11a (11.7 mg, 0.05 mmol$), \mathbf{C}(6.4 \mathrm{mg}, 20 \mathrm{~mol} \%)$, and thiol $\mathbf{T}(3.1 \mathrm{mg}, 20 \mathrm{~mol} \%)$ in solvent $(0.5$ mL) at $50{ }^{\circ} \mathrm{C}$ for $48-72 \mathrm{~h}$. After completion, the intermediate was obtained by flash chromatography on silica gel. After that, the activated alkene 4a (1.0 equiv), DIPEA (1.0 equiv) and o-xylene $(0.5 \mathrm{~mL})$ was added and the reaction was stirred at $50^{\circ} \mathrm{C}$ for $48 \mathrm{~h} .{ }^{b}$ Isolated yield for two steps. ${ }^{c}$ Determined by HPLC analysis on a chiral stationary phase; $\mathrm{dr}>19: 1 .{ }^{d}$ Thiol $\mathbf{T}(6.4 \mathrm{mg}$, $40 \mathrm{~mol} \%)$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(8.3 \mathrm{mg}, 60 \mathrm{~mol} \%)$ were added. ${ }^{e} \mathrm{Dr}=4: 1 .{ }^{f}$ At $30{ }^{\circ} \mathrm{C}$ for $72 \mathrm{~h} .{ }^{g}$ With 10 mol \% T1. ${ }^{h}$ At a 0.1 mmol scale. ${ }^{i}$ The reaction was performed in one-pot.

7. General procedure for the cross RC reactions of enone 1a with α-cyano

 chalcones 11 and annulations

A solution of 2-cyclopentenone $\mathbf{1 a}(0.2 \mathrm{mmol}, 2.0$ equiv), α-cyano chalcone $\mathbf{1 1}(0.1 \mathrm{mmol}, 1.0$ equiv), quinine C6 ($20 \mathrm{~mol} \%$), thiol $\mathbf{T 1}(10 \mathrm{~mol} \%)$ in o-xylene $(1.0 \mathrm{~mL})$ was stirred at $30^{\circ} \mathrm{C}$ for 48-72 h . The reaction was monitored by TLC. After completion, the intermediate was obtained by flash chromatography on silica gel ($\mathrm{EtOAc} /$ petroleum ether $=1 / 12-1 / 9$). Then, the activated alkene $4 \mathbf{a}(0.1 \mathrm{mmol}, 1.0$ equiv), N, N-Diisopropylenthylamine (DIPEA, $0.1 \mathrm{mmol}, 1.0$ equiv) and o-xylene $(1.0 \mathrm{~mL})$ were added and the reaction was stirred at $50^{\circ} \mathrm{C}$ for 48 h (monitored by TLC). After completion, the product 12 was obtained by flash chromatography on silica gel (EtOAc/petroleum
ether $=1 / 9-1 / 7$).
The racemates could not be obtained by using DABCO as the catalyst. So two peaks of these enantiomers were assigned by HPLC analysis on a chiral stationary phase with the mixture of two enantiomers, which were produced by using quinine and cinchonine as the catalyst, respectively.

Synthesis of 12a: A solution of 2-cyclopentenone $\mathbf{1 a}$ ($16.4 \mathrm{mg}, 0.2 \mathrm{mmol}$), (E)-2-benzoyl-3-phenylacrylonitrile 11a ($23.3 \mathrm{mg}, 0.1 \mathrm{mmol}$), quinine $\mathbf{C 6}(6.4 \mathrm{mg}$, $0.02 \mathrm{mmol})$, thiol $\mathbf{T} 1(1.5 \mathrm{mg}, 0.01 \mathrm{mmol})$ in o-xylene $(1.0 \mathrm{~mL})$ was stirred at $30^{\circ} \mathrm{C}$ for 72 h . The reaction was monitored by TLC. After completion, the intermediate was obtained by flash chromatography on silica gel $($ EtOAc/petroleum ether $=1 / 12-1 / 9)$. After that, the activated alkene $\mathbf{4 a}(14.9 \mathrm{mg}, 0.1 \mathrm{mmol})$, DIPEA $(12.9 \mathrm{mg}, 0.1 \mathrm{mmol})$ and o-xylene $(1.0 \mathrm{~mL})$ was added and the reaction were stirred at $50^{\circ} \mathrm{C}$ for 48 h. After completion, purification by flash chromatography on silica gel (EtOAc/petroleum ether $=$ $1 / 9-1 / 7)$ gave product 12a: 39.0 mg , as a white solid, yield 84%; $[\alpha]_{\mathrm{D}}{ }^{25}=+58.8\left(c=0.32\right.$ in $\left.\mathrm{CHCl}_{3}\right)$; 91.5:8.5 er, determined by HPLC analysis [Daicel chiralcel OD-H, n-hexane $/ i-\mathrm{PrOH}=60 / 40,1.0 \mathrm{~mL}$ $\left.\min ^{-1}, \lambda=254 \mathrm{~nm}\right]: \mathrm{t}($ minor $)=13.77 \mathrm{~min}, \mathrm{t}($ major $\left.)=26.67 \mathrm{~min}\right] ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ (ppm) 7.43-7.42 (m, 2H), 7.33-7.26 (m, 8H), 7.20 (t, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.97-6.94$ (m, 2H), 6.31 (d, J $=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.92(\mathrm{dd}, J=12.8,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.75-3.72(\mathrm{~m}, 1 \mathrm{H}), 3.45-3.37$ (m, 2H), 2.69-2.51 (m, 2H), 2.41-2.32 (m, 1H), 2.03-1.96 (m, 1H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ (ppm) 211.6, 196.4, 137.0, 133.2, 132.7, 132.1, 129.3, 129.2, 129.0, 128.9, 127.5, 126.6, 118.0, 85.4, 62.0, 49.5, 47.4, 46.9, 39.5, 36.4, 21.1; ESI-HRMS: calcd. for $\mathrm{C}_{29} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{4}+\mathrm{Na}^{+} 487.1628$, found 487.1630 .

Synthesis of 12b: A solution of 2-cyclopentenone 1a ($16.4 \mathrm{mg}, 0.2 \mathrm{mmol}$), (E)-2-benzoyl-3-(p-tolyl)acrylonitrile ($24.7 \mathrm{mg}, 0.1 \mathrm{mmol}$), quinine C6 (6.4 mg , $0.02 \mathrm{mmol})$, thiol $\mathbf{T 1}(1.5 \mathrm{mg}, 0.01 \mathrm{mmol})$ was stirred at $30^{\circ} \mathrm{C}$ for 72 h . The reaction was monitored by TLC. After completion, the intermediate was obtained by flash chromatography on silica gel (EtOAc/petroleum ether $=1 / 12-$ $1 / 9)$. After that, the activated alkene $\mathbf{4 a}(14.9 \mathrm{mg}, 0.1 \mathrm{mmol})$, DIPEA ($12.9 \mathrm{mg}, 0.1 \mathrm{mmol}$) and o xylene (1.0 mL) were added and the reaction was stirred at $50^{\circ} \mathrm{C}$ for 48 h . After completion,
purification by flash chromatography on silica gel ($\mathrm{EtOAc} /$ petroleum ether $=1 / 9-1 / 7$) gave product 12b: 37.3 mg , as a white solid, yield $78 \% ;[\alpha]_{\mathrm{D}}{ }^{25}=+90.0\left(c=0.24\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; 90.5: 9.5$ er, determined by HPLC analysis [Daicel chiralcel OD-H, n-hexane $/ i-\operatorname{PrOH}=60 / 40,1.0 \mathrm{~mL} \mathrm{~min}^{-1}, \lambda=254 \mathrm{~nm}$]: t $($ minor $)=14.23 \mathrm{~min}, \mathrm{t}($ major $)=40.04 \mathrm{~min}] ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 7.42-7.41(\mathrm{~m}$, 2H), 7.31-7.18 (m, 6H), 7.10-7.08 (m, 2H), 6.98-6.94 (m, 2H), 6.33 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 5.92 (dd, J $=12.4,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.72-3.69(\mathrm{~m}, 1 \mathrm{H}), 3.42-3.34(\mathrm{~m}, 2 \mathrm{H}), 2.68-2.50(\mathrm{~m}$, $2 \mathrm{H}), 2.39-2.30(\mathrm{~m}, 1 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}), 2.01-1.94(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})$ 211.6, 196.4, 138.7, 137.0, 132.7, 132.0, 130.1, 129.6, 129.3, 129.2, 127.5, 126.6, 118.1, 85.5, 62.1, 49.6, 47.4, 46.5, 39.6, 36.3, 21.1, 21.0; ESI-HRMS: calcd. for $\mathrm{C}_{30} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{4}+\mathrm{Na}^{+} 501.1785$, found 501.1786.

Synthesis of 12c: A solution of 2-cyclopentenone 1a ($16.4 \mathrm{mg}, 0.2 \mathrm{mmol}$), (E)-2-benzoyl-3-(4-chlorophenyl)acrylonitrile ($26.7 \mathrm{mg}, 0.1 \mathrm{mmol}$), quinine C6 $(6.4 \mathrm{mg}, 0.02 \mathrm{mmol})$, thiol $\mathbf{T} 1(1.5 \mathrm{mg}, 0.01 \mathrm{mmol})$ in o-xylene $(1.0 \mathrm{~mL})$ was stirred at $30^{\circ} \mathrm{C}$ for 72 h . The reaction was monitored by TLC. After completion, the intermediate was obtained by flash chromatography on silica gel $($ EtOAc/petroleum ether $=1 / 12-1 / 9)$. After that, the activated alkene $\mathbf{4 a}(14.9 \mathrm{mg}, 0.1 \mathrm{mmol})$, DIPEA $(12.9 \mathrm{mg}, 0.1 \mathrm{mmol})$ and o-xylene $(1.0 \mathrm{~mL})$ were added and the reaction was stirred at $50^{\circ} \mathrm{C}$ for 48 h. After completion, purification by flash chromatography on silica gel $(\mathrm{EtOAc} /$ petroleum ether $=$ $1 / 9-1 / 7)$ gave product 12c: 38.8 mg , as a white solid, yield $78 \% ;[\alpha]_{\mathrm{D}}{ }^{25}=+72.8\left(c=0.5\right.$ in $\left.\mathrm{CHCl}_{3}\right)$; 90:10 er, determined by HPLC analysis [Daicel chiralcel OD-H, n-hexane $/ i$ - $\mathrm{PrOH}=60 / 40,1.0 \mathrm{~mL}$ $\left.\min ^{-1}, \lambda=254 \mathrm{~nm}\right]: \mathrm{t}($ minor $)=13.39 \mathrm{~min}, \mathrm{t}($ major $\left.)=39.98 \mathrm{~min}\right] ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ (ppm) 7.42-7.40 (m, 2H), 7.33-7.23(m, 8H), $7.01(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.41(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.91$ (dd, $J=12.8,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.74-3.71(\mathrm{~m}, 1 \mathrm{H}), 3.45-3.32(\mathrm{~m}, 2 \mathrm{H}), 2.69-2.48$ $(\mathrm{m}, 2 \mathrm{H}), 2.42-2.32(\mathrm{~m}, 1 \mathrm{H}), 2.03-1.98(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 211.5,196.0$, 136.7, 135.0, 132.6, 132.5, 131.8, 131.0, 129.4, 129.1, 129.0, 127.7, 127.7, 126.8, 117.9, 85.3, 61.7, 49.4, 47.4, 46.2, 39.5, 36.4, 21.1; ESI-HRMS: calcd. for $\mathrm{C}_{29} \mathrm{H}_{23}{ }^{35} \mathrm{ClN}_{2} \mathrm{O}_{4}+\mathrm{Na}^{+} 521.1239$, found 521.1240, $\mathrm{C}_{29} \mathrm{H}_{23}{ }^{37} \mathrm{ClN}_{2} \mathrm{O}_{4}+\mathrm{Na}^{+} 523.1215$, found 523.1217.

Synthesis of 12d: A solution of 2-cyclopentenone 1a ($16.4 \mathrm{mg}, 0.2 \mathrm{mmol}$), (E)-2-benzoyl-3-(2-bromophenyl)acrylonitrile ($31.0 \mathrm{mg}, 0.1 \mathrm{mmol}$), quinine C6 $(6.4 \mathrm{mg}, 0.02 \mathrm{mmol})$, thiol $\mathbf{T 1}(1.5 \mathrm{mg}, 0.01 \mathrm{mmol})$ in o-xylene $(1.0 \mathrm{~mL})$ was stirred at $30^{\circ} \mathrm{C}$ for 72 h . The reaction was monitored by TLC. After completion, the intermediate was obtained by flash chromatography on silica gel $($ EtOAc/petroleum ether $=1 / 12-1 / 9)$. After that, the activated alkene $\mathbf{4 a}(14.9 \mathrm{mg}, 0.1 \mathrm{mmol})$, DIPEA $(12.9 \mathrm{mg}, 0.1 \mathrm{mmol})$ and o-xylene $(1.0 \mathrm{~mL})$ were added and the reaction was stirred at $50^{\circ} \mathrm{C}$ for 48 h. After completion, purification by flash chromatography on silica gel $(\mathrm{EtOAc} /$ petroleum ether $=$ $1 / 9-1 / 7)$ gave product 12d: 40.1 mg , as a white solid, yield $74 \% ;[\alpha]_{\mathrm{D}}{ }^{25}=+105.7\left(c=0.14\right.$ in $\left.\mathrm{CHCl}_{3}\right)$; 92:8 er, determined by HPLC analysis [Daicel chiralcel OD-H, n-hexane $/ i$ - $\mathrm{PrOH}=80 / 20,1.0 \mathrm{~mL}$ $\left.\min ^{-1}, \lambda=254 \mathrm{~nm}\right]: \mathrm{t}($ minor $)=26.49 \mathrm{~min}, \mathrm{t}($ major $\left.)=33.03 \mathrm{~min}\right] ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ (ppm) 7.89-7.85 (m, 1H), 7.55-7.47 (m, 3H), 7.36-7.29 (m, 3H), 7.25-7.20 (m, 2H), 7.13-7.09 (m, $1 \mathrm{H}), 7.02-6.98(\mathrm{~m}, 2 \mathrm{H}), 6.43(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.95(\mathrm{dd}, J=12.4,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{dd}, J=26.0$, $13.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.43-3.35(\mathrm{~m}, 1 \mathrm{H}), 3.14(\mathrm{dd}, J=13.2 \mathrm{~Hz}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.86-2.79(\mathrm{~m}, 1 \mathrm{H})$, $2.72-2.60(\mathrm{~m}, 1 \mathrm{H}), 2.41-2.31(\mathrm{~m}, 1 \mathrm{H}), 2.07-2.00(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})$ $211.4,194.6,136.9,133.5,133.4,132.6,132.2,130.2,129.4,129.1,129.0,128.1,127.7,126.6,118.7$, 85.4, 60.4, 51.6, 48.0, 44.2, 39.8, 36.5, 21.4; ESI-HRMS: calcd. for $\mathrm{C}_{29} \mathrm{H}_{23}{ }^{79} \mathrm{BrN}_{2} \mathrm{O}_{4}+\mathrm{Na}^{+} 565.0733$, found 565.0737, $\mathrm{C}_{29} \mathrm{H}_{23}{ }^{81} \mathrm{BrN}_{2} \mathrm{O}_{4}+\mathrm{Na}^{+} 567.0713$, found 567.0723.

Synthesis of 12e: A solution of 2-cyclopentenone $\mathbf{1 a}(16.4 \mathrm{mg}, 0.2 \mathrm{mmol}),(E)-$ 2-benzoyl-3-(3-bromophenyl)acrylonitrile ($31.0 \mathrm{mg}, 0.1 \mathrm{mmol}$), quinine C6 ($6.4 \mathrm{mg}, 0.02 \mathrm{mmol}$), thiol $\mathbf{T 1}(1.5 \mathrm{mg}, 0.01 \mathrm{mmol})$ in o-xylene $(1.0 \mathrm{~mL})$ was stirred at $30^{\circ} \mathrm{C}$ for 48 h . The reaction was monitored by TLC. After completion, the intermediate was obtained by flash chromatography on silica gel $($ EtOAc/petroleum ether $=1 / 12-1 / 9)$. After that, the activated alkene $\mathbf{4 a}(14.9 \mathrm{mg}, 0.1 \mathrm{mmol})$, DIPEA $(12.9 \mathrm{mg}, 0.1 \mathrm{mmol})$ and o-xylene $(1.0 \mathrm{~mL})$ were added and the reaction was stirred at $50^{\circ} \mathrm{C}$ for 48 h. After completion, purification by flash chromatography on silica gel (EtOAc/petroleum ether $=$ $1 / 9-1 / 7)$ gave product 12e: 43.9 mg , as a white solid, yield 81%; $[\alpha]_{\mathrm{D}}{ }^{25}=+85.0\left(c=0.28\right.$ in $\left.\mathrm{CHCl}_{3}\right)$; 90:10 er, determined by HPLC analysis [Daicel chiralcel OD-H, n-hexane $/ i-\mathrm{PrOH}=60 / 40,1.0 \mathrm{~mL}$ $\left.\min ^{-1}, \lambda=254 \mathrm{~nm}\right]: \mathrm{t}($ minor $)=14.70 \mathrm{~min}, \mathrm{t}($ major $\left.)=28.45 \mathrm{~min}\right] ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$
(ppm) 7.43-7.23 (m, 9H), $7.16(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.45(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, $5.91(\mathrm{dd}, J=12.8,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.70-3.66(\mathrm{~m}, 1 \mathrm{H}), 3.45-3.32(\mathrm{~m}, 2 \mathrm{H})$, $2.67(\mathrm{dd}, J=18.8,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.58-2.47(\mathrm{~m}, 1 \mathrm{H}), 2.42-2.33(\mathrm{~m}, 1 \mathrm{H}), 2.04-2.00(\mathrm{~m}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta(\mathrm{ppm}) 211.3,195.9,136.7,133.5,132.5,132.1,130.3,129.4,129.0,127.7$, 126.9, 122.8, 117.8, 85.2, 61.7, 49.2, 47.4, 46.4, 39.5, 36.5, 21.1; ESI-HRMS: calcd. for $\mathrm{C}_{29} \mathrm{H}_{23}{ }^{79} \mathrm{BrN}_{2} \mathrm{O}_{4}+\mathrm{Na}^{+} 565.0733$, found 565.0733, $\mathrm{C}_{29} \mathrm{H}_{23}{ }^{81} \mathrm{BrN}_{2} \mathrm{O}_{4}+\mathrm{Na}^{+} 567.0713$, found 567.0718.

Synthesis of 12f: A solution of 2-cyclopentenone $\mathbf{1 a}(16.4 \mathrm{mg}, 0.2 \mathrm{mmol}),(E)-$ 2-benzoyl-3-(4-bromophenyl)acrylonitrile ($31.0 \mathrm{mg}, 0.1 \mathrm{mmol}$), quinine C6 ($6.4 \mathrm{mg}, 0.02 \mathrm{mmol}$), thiol $\mathbf{T 1}(1.5 \mathrm{mg}, 0.01 \mathrm{mmol})$ in o-xylene $(1.0 \mathrm{~mL})$ was stirred at $30^{\circ} \mathrm{C}$ for 48 h . The reaction was monitored by TLC. After completion, the intermediate was obtained by flash chromatography on silica gel $($ EtOAc/petroleum ether $=1 / 12-1 / 9)$. After that, the activated alkene $\mathbf{4 a}(14.9 \mathrm{mg}, 0.1 \mathrm{mmol})$, DIPEA $(12.9 \mathrm{mg}, 0.1 \mathrm{mmol})$ and o-xylene $(1.0 \mathrm{~mL})$ were added and the reaction was stirred at $50^{\circ} \mathrm{C}$ for 48 h. After completion, purification by flash chromatography on silica gel $(\mathrm{EtOAc} /$ petroleum ether $=$ $1 / 9-1 / 7)$ gave product 12f: 42.8 mg , as a white solid, yield 79%; $[\alpha]_{\mathrm{D}}{ }^{25}=+92.0\left(c=0.15\right.$ in $\left.\mathrm{CHCl}_{3}\right)$; 96.5:3.5 er, determined by HPLC analysis [Daicel chiralcel OD-H, n-hexane $/ i-\mathrm{PrOH}=60 / 40,1.0 \mathrm{~mL}$ $\left.\min ^{-1}, \lambda=254 \mathrm{~nm}\right]: \mathrm{t}($ minor $)=13.98 \mathrm{~min}, \mathrm{t}($ major $\left.)=49.31 \mathrm{~min}\right] ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ (ppm) 7.43-7.41 (m, 4H), 7.33-7.21 (m, 6H), $7.01(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.41(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.91$ (dd, $J=12.4,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.72-3.69(\mathrm{~m}, 1 \mathrm{H}), 3.45-3.32(\mathrm{~m}, 2 \mathrm{H}), 2.69-2.48$ $(\mathrm{m}, 2 \mathrm{H}), 2.42-2.33(\mathrm{~m}, 1 \mathrm{H}), 2.04-1.97(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 211.5,196.0$, 136.7, 132.5, 132.3, 132.1, 131.3, 129.4, 129.4, 129.0, 127.7, 126.8, 123.2, 117.9, 85.2, 61.6, 49.3, $47.4,46.3,39.5,36.5,21.1$; ESI-HRMS: calcd. for $\mathrm{C}_{29} \mathrm{H}_{23}{ }^{79} \mathrm{BrN}_{2} \mathrm{O}_{4}+\mathrm{Na}^{+} 565.0733$, found 565.0731, $\mathrm{C}_{29} \mathrm{H}_{23}{ }^{81} \mathrm{BrN}_{2} \mathrm{O}_{4}+\mathrm{Na}^{+} 567.0713$, found 567.0717.

Synthesis of 12g: A solution of 2-cyclopentenone 1a ($16.4 \mathrm{mg}, 0.2 \mathrm{mmol}$), (E)-2-benzoyl-3-(thiophen-2-yl)acrylonitrile ($23.9 \mathrm{mg}, 0.1 \mathrm{mmol}$), quinine C6 (6.4 $\mathrm{mg}, 0.02 \mathrm{mmol})$, thiol $\mathbf{T 1}(1.5 \mathrm{mg}, 0.01 \mathrm{mmol})$ in o-xylene (1.0 mL) was stirred at $30^{\circ} \mathrm{C}$ for 72 h . The reaction was monitored by TLC. After completion, the intermediate was obtained by flash chromatography on silica gel (EtOAc/petroleum ether $=1 / 12-$
$1 / 9)$. After that, the activated alkene $\mathbf{4 a}(14.9 \mathrm{mg}, 0.1 \mathrm{mmol})$, DIPEA ($12.9 \mathrm{mg}, 0.1 \mathrm{mmol}$) and o xylene (1.0 mL) were added and the reaction was stirred at $50{ }^{\circ} \mathrm{C}$ for 48 h . After completion, purification by flash chromatography on silica gel ($\mathrm{EtOAc} /$ petroleum ether $=1 / 9-1 / 7$) gave product 12g: 37.1 mg , as a white solid, yield $79 \% ;[\alpha]_{\mathrm{D}}{ }^{25}=+35.2\left(c=0.75\right.$ in $\left.\mathrm{CHCl}_{3}\right)$; 91.5:8.5 er, determined by HPLC analysis [Daicel chiralcel OD-H, n-hexane $/ i-\operatorname{PrOH}=60 / 40,1.0 \mathrm{~mL} \mathrm{~min}{ }^{-1}, \lambda=254 \mathrm{~nm}$]: t $($ minor $)=18.02 \mathrm{~min}, \mathrm{t}($ major $)=53.62 \mathrm{~min}] ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 7.42-7.40(\mathrm{~m}$, 2H), 7.31-7.21 (m, 5H), 7.06-7.01 (m, 3H), 6.91 (dd, $J=5.2 \mathrm{~Hz}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.51(\mathrm{~d}, J=7.2$ $\mathrm{Hz}, 2 \mathrm{H}), 5.90(\mathrm{dd}, J=12.8,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H})$, $3.41-3.27(\mathrm{~m}, 2 \mathrm{H}), 2.72-2.65(\mathrm{~m}, 1 \mathrm{H}), 2.57-2.46(\mathrm{~m}, 1 \mathrm{H}), 2.41-2.33(\mathrm{~m}, 1 \mathrm{H}), 2.02-1.95(\mathrm{~m}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 210.9,196.3,136.9,135.5,132.6,132.4,129.4,129.3,128.5$, 127.7, 127.0, 126.8, 126.3, 117.9, 85.2, 62.5, 51.4, 47.2, 42.7, 39.7, 36.3, 21.0; ESI-HRMS: calcd. for $\mathrm{C}_{27} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}+\mathrm{Na}^{+} 493.1192$, found 493.1188.

Synthesis of 12h: A solution of 2-cyclopentenone $\mathbf{1 a}(16.4 \mathrm{mg}, 0.2 \mathrm{mmol}),(E)-$ 3-(4-bromophenyl)-2-(4-methylbenzoyl)acrylonitrile ($32.5 \mathrm{mg}, 0.1 \mathrm{mmol}$), quinine $\mathbf{C 6}(6.4 \mathrm{mg}, 0.02 \mathrm{mmol})$, thiol $\mathbf{T 1}(1.5 \mathrm{mg}, 0.01 \mathrm{mmol})$ in o-xylene (1.0 mL) was stirred at $30^{\circ} \mathrm{C}$ for 72 h . The reaction was monitored by TLC. After completion, the intermediate was obtained by flash chromatography on silica gel $($ EtOAc/petroleum ether $=1 / 12-1 / 9)$. After that, the activated alkene $\mathbf{4 a}(14.9 \mathrm{mg}, 0.1 \mathrm{mmol})$, DIPEA ($12.9 \mathrm{mg}, 0.1 \mathrm{mmol}$) and o-xylene $(1.0 \mathrm{~mL})$ were added and the reaction was stirred at $50^{\circ} \mathrm{C}$ for 48 h . After completion, purification by flash chromatography on silica gel (EtOAc/petroleum ether $=1 / 9-1 / 7)$ gave product 12h: 45.6 mg , as a white solid, yield $82 \% ;[\alpha]_{\mathrm{D}}{ }^{25}=+85.0(c=0.24$ in CHCl_{3}); 96:4 er, determined by HPLC analysis [Daicel chiralcel OD-H, n-hexane $/ i$-PrOH $=60 / 40$, $\left.1.0 \mathrm{~mL} \mathrm{~min}^{-1}, \lambda=254 \mathrm{~nm}\right]: \mathrm{t}($ minor $)=13.56 \mathrm{~min}, \mathrm{t}($ major $\left.)=46.91 \mathrm{~min}\right] ;{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 7.42-7.39(\mathrm{~m}, 4 \mathrm{H}), 7.31-7.20(\mathrm{~m}, 5 \mathrm{H}), 6.81(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.40(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 5.91(\mathrm{dd}, J=12.8,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.72-3.69(\mathrm{~m}, 1 \mathrm{H}), 3.44-3.31(\mathrm{~m}$, 2H), 2.68-2.48 (m, 2H), 2.42-2.32 (m, 1H), 2.19 (s, 3H), 2.03-1.96 (m, 1H); ${ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 211.6,195.3,143.7,134.1,132.6,132.3,132.0,131.2,129.4,129.3,129.0,128.5$, 127.1, 123.1, 118.0, 85.2, 61.4, 49.3, 47.3, 46.1, 39.5, 36.5, 21.5, 21.1; ESI-HRMS: calcd. for $\mathrm{C}_{30} \mathrm{H}_{25}{ }^{79} \mathrm{BrN}_{2} \mathrm{O}_{4}+\mathrm{Na}^{+} 579.0890$, found 579.0891, $\mathrm{C}_{30} \mathrm{H}_{25}{ }^{81} \mathrm{BrN}_{2} \mathrm{O}_{4}+\mathrm{Na}^{+} 581.0869$, found 581.0873.

Synthesis of 12i: A solution of 2-cyclopentenone $\mathbf{1 a}(16.4 \mathrm{mg}, 0.2 \mathrm{mmol}),(E)-$ 2-(3-bromobenzoyl)-3-phenylacrylonitrile ($31.0 \mathrm{mg}, 0.1 \mathrm{mmol}$), quinine C6 $(6.4 \mathrm{mg}, 0.02 \mathrm{mmol})$, thiol $\mathbf{T 1}(1.5 \mathrm{mg}, 0.01 \mathrm{mmol})$ in o-xylene $(1.0 \mathrm{~mL})$ was stirred at $30^{\circ} \mathrm{C}$ for 48 h . The reaction was monitored by TLC. After completion, the intermediate was obtained by flash chromatography on silica gel $($ EtOAc/petroleum ether $=1 / 12-1 / 9)$. After that, the activated alkene $\mathbf{4 a}(14.9 \mathrm{mg}, 0.1 \mathrm{mmol})$, DIPEA $(12.9 \mathrm{mg}, 0.1 \mathrm{mmol})$ and o-xylene $(1.0 \mathrm{~mL})$ were added and the reaction was stirred at $50{ }^{\circ} \mathrm{C}$ for 48 h. After completion, purification by flash chromatography on silica gel (EtOAc/petroleum ether $=$ $1 / 9-1 / 7$) gave product 12i: 45.0 mg , as a white solid, yield $83 \% ; 17: 1 \mathrm{dr},[\alpha]_{\mathrm{D}}{ }^{25}=+55.5(c=0.22 \mathrm{in}$ CHCl_{3}); 95:5 er, determined by HPLC analysis [Daicel chiralcel OD-H, n-hexane $/ i$ - $\mathrm{PrOH}=80 / 20$, $\left.1.0 \mathrm{~mL} \mathrm{~min}{ }^{-1}, \lambda=254 \mathrm{~nm}\right]: \mathrm{t}($ minor $)=27.17 \mathrm{~min}, \mathrm{t}($ major $\left.)=54.73 \mathrm{~min}\right] ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 7.41-7.33(\mathrm{~m}, 11 \mathrm{H}), 6.82(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.23(\mathrm{~s}, 1 \mathrm{H}), 6.09(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $5.90(\mathrm{dd}, J=12.4,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.71-3.68(\mathrm{~m}, 1 \mathrm{H}), 3.43-3.37(\mathrm{~m}, 2 \mathrm{H})$, $2.66(\mathrm{dd}, J=18.8,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.60-2.49(\mathrm{~m}, 1 \mathrm{H}), 2.42-2.32(\mathrm{~m}, 1 \mathrm{H}), 2.04-1.97(\mathrm{~m}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 211.4,195.5,138.5,134.9,134.9,133.0,132.5,129.5,129.3,129.2$, 129.1, 124.6, 124.6, 121.8, 117.7, 85.3, 62.5, 49.4, 47.3, 46.9, 39.5, 36.4, 21.1; ESI-HRMS: calcd. for $\mathrm{C}_{29} \mathrm{H}_{23}{ }^{79} \mathrm{BrN}_{2} \mathrm{O}_{4}+\mathrm{Na}^{+}$565.0733, found 565.0734, $\mathrm{C}_{29} \mathrm{H}_{23}{ }^{81} \mathrm{BrN}_{2} \mathrm{O}_{4}+\mathrm{Na}^{+}$567.0713, found 567.0707.

Synthesis of 12j: A solution of 2-cyclopentenone $\mathbf{1 a}(16.4 \mathrm{mg}, 0.2 \mathrm{mmol})$, (E)-2-(4-bromobenzoyl)-3-phenylacrylonitrile $(31.0 \mathrm{mg}, \quad 0.1 \mathrm{mmol})$, quinine $\mathbf{C 6}(6.4 \mathrm{mg}, 0.02 \mathrm{mmol})$, thiol $\mathbf{T 1}(1.5 \mathrm{mg}, 0.01 \mathrm{mmol})$ in o-xylene $(1.0 \mathrm{~mL})$ was stirred at $30^{\circ} \mathrm{C}$ for 48 h . The reaction was monitored by TLC. After completion, the intermediate was obtained by flash chromatography on silica gel $($ EtOAc/petroleum ether $=1 / 12-1 / 9)$. After that, the activated alkene $\mathbf{4 a}(14.9 \mathrm{mg}, 0.1$ $\mathrm{mmol})$, DIPEA ($12.9 \mathrm{mg}, 0.1 \mathrm{mmol}$) and o-xylene $(1.0 \mathrm{~mL})$ were added and the reaction was stirred at $50{ }^{\circ} \mathrm{C}$ for 48 h . After completion, purification by flash chromatography on silica gel $($ EtOAc/petroleum ether $=1 / 9-1 / 7)$ gave product $\mathbf{1 2 j}: 43.9 \mathrm{mg}$, as a white solid, yield $81 \% ;[\alpha]_{\mathrm{D}}{ }^{25}=$ $+56.0\left(c=0.2\right.$ in CHCl_{3}); 91:9 er, determined by HPLC analysis [Daicel chiralcel OD-H, n-hexane/i-
$\left.\operatorname{PrOH}=60 / 40,1.0 \mathrm{~mL} \mathrm{~min}^{-1}, \lambda=254 \mathrm{~nm}\right]: \mathrm{t}($ minor $)=15.55 \mathrm{~min}, \mathrm{t}($ major $\left.)=37.73 \mathrm{~min}\right] ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 7.41-7.30(\mathrm{~m}, 10 \mathrm{H}), 7.10(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.16(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, $5.91(\mathrm{dd}, J=12.8,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.72-3.69(\mathrm{~m}, 1 \mathrm{H}), 3.43-3.37(\mathrm{~m}, 2 \mathrm{H})$, 2.69-2.49 (m, 2H), 2.41-2.32 (m, 1H), 2.03-1.96 (m, 1H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})$ $211.4,195.6,135.6,133.0,132.6,131.0,129.4,129.1,129.0,128.1,127.5,117.9,85.3,62.1,49.4$, 47.3, 46.8, 39.5, 36.4, 21.1, ESI-HRMS: calcd. for $\mathrm{C}_{29} \mathrm{H}_{23}{ }^{79} \mathrm{BrN}_{2} \mathrm{O}_{4}+\mathrm{Na}^{+} 565.0733$, found 565.0731, $\mathrm{C}_{29} \mathrm{H}_{23}{ }^{81} \mathrm{BrN}_{2} \mathrm{O}_{4}+\mathrm{Na}^{+} 567.0713$, found 567.0717.

Synthesis of 12k: A solution of 2-cyclopentenone $\mathbf{1 a}(16.4 \mathrm{mg}, 0.2 \mathrm{mmol})$, (E)-2-(2-naphthoyl)-3-phenylacrylonitrile ($28.3 \mathrm{mg}, 0.1 \mathrm{mmol}$), quinine C6 ($6.4 \mathrm{mg}, 0.02 \mathrm{mmol}$), thiol $\mathbf{T 1}(1.5 \mathrm{mg}, 0.01 \mathrm{mmol})$ in o-xylene $(1.0 \mathrm{~mL})$ was stirred at $30^{\circ} \mathrm{C}$ for 48 h . The reaction was monitored by TLC. After completion, the intermediate was obtained by flash chromatography on silica gel (EtOAc/petroleum ether $=1 / 12-1 / 9)$. After that, the activated alkene $\mathbf{4 a}(14.9 \mathrm{mg}, 0.1 \mathrm{mmol})$, DIPEA ($12.9 \mathrm{mg}, 0.1$ $\mathrm{mmol})$ and o-xylene $(1.0 \mathrm{~mL})$ were added and the reaction was stirred at $50^{\circ} \mathrm{C}$ for 48 h . After completion, purification by flash chromatography on silica gel (EtOAc/petroleum ether $=1 / 9-1 / 7$) gave product 12k: 41.6 mg , as a white solid, yield $81 \% ;[\alpha]_{\mathrm{D}}{ }^{25}=+64.0\left(c=0.5 \mathrm{in}_{\mathrm{CHCl}}^{3}\right.$); $90: 10 \mathrm{er}$, determined by HPLC analysis [Daicel chiralpak AD-H, n-hexane $/ i$-PrOH $=60 / 40,1.0 \mathrm{~mL} \mathrm{~min}^{-1}, \lambda=$ $254 \mathrm{~nm}]: \mathrm{t}($ minor $)=12.31 \mathrm{~min}, \mathrm{t}($ major $)=21.15 \mathrm{~min}] ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})$ $7.63-7.61(\mathrm{~m}, 2 \mathrm{H}), 7.47-7.36(\mathrm{~m}, 7 \mathrm{H}), 7.34-7.25(\mathrm{~m}, 5 \mathrm{H}), 6.72(\mathrm{~s}, 1 \mathrm{H}), 6.46(\mathrm{dd}, J=8.4,1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 5.95(\mathrm{dd}, J=12.4,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.49-3.39$ $(\mathrm{m}, 2 \mathrm{H}), 2.72-2.54(\mathrm{~m}, 2 \mathrm{H}), 2.43-2.33(\mathrm{~m}, 1 \mathrm{H}), 2.05-1.98(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ (ppm) 211.6, 196.2, 134.5, 134.3, 133.3, 132.9, 131.2, 129.4, 129.3, 129.0, 128.5, 128.4, 127.6, 127.4, 126.7, 122.5, 118.1, $85.4,62.3,49.5,47.4,46.9,39.6,36.4,21.1$; ESI-HRMS: calcd. for $\mathrm{C}_{33} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{4}+\mathrm{Na}^{+} 537.1785$, found 537.1786 .

8. Reaction at a $1.0 \mathbf{~ m m o l}$ scale

A solution of 2-cyclopentenone $1 \mathbf{1 a}$ ($164 \mathrm{mg}, 2.0 \mathrm{mmol}$), (E)-2-benzoyl-3-(4-bromophenyl) acrylonitrile ($310 \mathrm{mg}, 1.0 \mathrm{mmol}$), quinine $\mathbf{C 6}(64 \mathrm{mg}, 0.2 \mathrm{mmol})$, thiol $\mathbf{T 1}(15 \mathrm{mg}, 0.1 \mathrm{mmol})$ in o xylene (10.0 mL) was stirred at $30^{\circ} \mathrm{C}$ for 72 h . The reaction was monitored by TLC. After completion, the intermediate was obtained by flash chromatography on silica gel (EtOAc/petroleum ether $=1 / 10$).

Then the activated alkene $\mathbf{4 a}(149 \mathrm{mg}, 1.0 \mathrm{mmol}), N, N$-diisopropylenthylamine (DIPEA, $129 \mathrm{mg}, 1.0$ $\mathrm{mmol})$ and o-xylene $(10.0 \mathrm{~mL})$ were added and the reaction was stirred at $50^{\circ} \mathrm{C}$ for 48 h (monitored by TLC). After completion, the product $\mathbf{1 2 f}$ was obtained by flash chromatography on silica gel $(\mathrm{EtOAc} /$ petroleum ether $=1 / 8): 406 \mathrm{mg}$, as a white solid, yield 75%, 94.5:5.5 er.

9. Procedure for the cross $R C$ reaction-initiated $[4+2]$ annulation

A solution of 2-cyclohexenone $\mathbf{2 b}$ ($1.0 \mathrm{mmol}, 10.0$ equiv), α-cyanochalcone $\mathbf{1 1 b}(0.1 \mathrm{mmol}, 1.0$ equiv), quinine $\mathbf{C 6}(20 \mathrm{~mol} \%)$, thiol $\mathbf{T 1}(10 \mathrm{~mol} \%)$ in o-xylene $(0.4 \mathrm{~mL})$ was stirred at $30^{\circ} \mathrm{C}$ for 72 h. The reaction was monitored by TLC. The product $\mathbf{1 3}$ was obtained by flash chromatography on silica gel (EtOAc/petroleum ether): 20.8 mg , as a white solid, yield 41%; $[\alpha]_{\mathrm{D}}{ }^{25}=+84.0(c=0.3$ in CHCl_{3}); 79.5:20.5 er, determined by HPLC analysis [Daicel chiralpak AD-H, n-hexane $/ i-\mathrm{PrOH}=$ $\left.60 / 40,1.0 \mathrm{~mL} \mathrm{~min}^{-1}, \lambda=254 \mathrm{~nm}\right]: \mathrm{t}$ (minor) $=8.85 \mathrm{~min}, \mathrm{t}($ major $\left.)=20.00 \mathrm{~min}\right] ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 7.84-7.83(\mathrm{~m}, 1 \mathrm{H}), 7.81-7.78(\mathrm{~m}, 1 \mathrm{H}), 7.62-7.59(\mathrm{~m}, 1 \mathrm{H}), 7.53-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.32$ $(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.15-7.12(\mathrm{~m}, 2 \mathrm{H}), 4.59(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{~s}, 1 \mathrm{H}), 2.73(\mathrm{~d}, J=3.2 \mathrm{~Hz}$, $1 \mathrm{H}), 2.56-2.52(\mathrm{~m}, 1 \mathrm{H}), 2.44-2.36(\mathrm{~m}, 2 \mathrm{H}), 2.07-2.03(\mathrm{~m}, 2 \mathrm{H}), 1.95-1.86(\mathrm{~m}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 205.2,164.0,140.4,134.3,134.0,132.3,130.9,129.9,129.7,127.0,122.4$, $121.8,118.9,85.0,74.4,54.3,40.7,37.6,29.2,21.6$; ESI-HRMS: calcd. for $\mathrm{C}_{22} \mathrm{H}_{17}{ }^{79} \mathrm{BrNO}_{2}+\mathrm{Na}^{+}$ 507.9518, found 507.9516. $\mathrm{C}_{22} \mathrm{H}_{17}{ }^{81} \mathrm{BrNO}_{2}+\mathrm{Na}^{+} 509.9498$, found 509.9503.

10. More attempts for the cross RC reaction-initiated [4+2] annulations

The $[4+2]$ annulation reactions between 2 -cyclohexenone $\mathbf{2 b}$ and α-cyano chalcone derivatives $\mathbf{1 1}$ generally proceeded not well, and excess $\mathbf{2 b}$ (10.0 equiv) was required for better conversions. For simple α-cyano chalcone 11a, the desired product could not be isolated due to the low yield and some inseparable impurities. Similar phenomena were observed for some other α-cyano chalcone derivatives $\mathbf{1 1}$ with electron-withdrawing groups on the phenyl ring. We have made efforts to optimize the reaction conditions by employing 11a as the substrate, and a better yield with a low er value was obtained under the catalysis of C27 and T18. In addition, cyclohept-2-enone $\mathbf{1 c}$ and α^{\prime}-benzylidene 2-cyclopentenone 6 were also applied to the $[4+2]$ annulation, but the reaction were not satisfactory.

11. Synthetic transfomations of the annulation products 5 a and 12a

A solution of $5 \mathbf{a}(0.1 \mathrm{mmol}, 44.0 \mathrm{mg}, 93: 7 \mathrm{er}), \mathrm{Boc}_{2} \mathrm{O}(0.15 \mathrm{mmol}, 32.7 \mathrm{mg})$ in the solvent of EtOH $(0.5 \mathrm{~mL})$ and EtOAc (0.5 mL) was combined with Raney $\mathrm{Ni}(\mathrm{W} 2 ; 50.0 \mathrm{mg}$, wet weight). The mixture was stirred at room temperature under hydrogen (1 atm) for 12 h . The mixture was filtered through a bed of celite and concentrated under reduced pressure. The residue was purified by flash
chromatography ($\mathrm{EtOAc} /$ petroleum ether $=1: 5$) to gived compound $\mathbf{1 4}: 40.8 \mathrm{mg}$, as a white solid, yield $80 \% ;[\alpha]_{\mathrm{D}}{ }^{25}=+66.2\left(c=0.65\right.$ in $\left.\mathrm{CHCl}_{3}\right)$; 93:7 er, determined by HPLC analysis [Daicel chiralpak OD-H, n-hexane $/ i$ - $\mathrm{PrOH}=60 / 40,1.0 \mathrm{~mL} \mathrm{~min}^{-1}, \lambda=254 \mathrm{~nm}$]: t (minor) $=8.04 \mathrm{~min}, \mathrm{t}$ (major) $=9.17 \mathrm{~min}] ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 7.72(\mathrm{dd}, J=7.8 \mathrm{~Hz}, 1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.56-7.50(\mathrm{~m}$, 2H), 7.49-7.35 (m, 4H), 7.28-7.22 (m, 1H), 6.91 (d, J=7.8 Hz, 1H), 5.14-5.09 (m, 1H), 4.74 (brs, $1 \mathrm{H}), 4.66(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.40-3.26(\mathrm{~m}, 1 \mathrm{H}), 3.22(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.18(\mathrm{~s}, 3 \mathrm{H}), 2.67-2.56$ (m, 1H), 2.45-2.38 (m, 1H), 2.31-2.21 (m, 1H), 2.11-2.04 (m, 1H), 1.31 (s, 9H); ${ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 214.8,173.1,155.1,143.3,133.2,130.9,129.7,129.4,129.0,126.2,124.7$, 124.2, 112.1, 111.5, 109.2, 80.1, 53.3, 49.3, 49.1, 48.3, 42.8, 39.4, 38.5, 28.2, 26.9, 22.4; ESI-HRMS: calcd. for $\mathrm{C}_{30} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{O}_{4}+\mathrm{Na}^{+} 533.2159$, found 533.2158.

A solution of 12a ($0.1 \mathrm{mmol}, 46.4 \mathrm{mg}, 91.5: 8.5 \mathrm{er}), \mathrm{Boc}_{2} \mathrm{O}(0.15 \mathrm{mmol}, 32.7 \mathrm{mg})$ in the solvent of EtOH (0.5 mL) and EtOAc (0.5 mL) was combined with Raney Ni (W2; 50.0 mg , wet weight). The mixture was stirred at room temperature under hydrogen (1 atm) for 12 h . The mixture was filtered through a bed of celite and condensed under reduced pressure. The residue was purified by flash chromatography ($\mathrm{EtOAc} /$ petroleum ether $=1: 5$) to gived compound $\mathbf{1 5}: 46.4 \mathrm{mg}$, as a white solid, yield $87 \% ;[\alpha]_{\mathrm{D}}{ }^{25}=+37.1\left(c=0.75\right.$ in $\left.\mathrm{CHCl}_{3}\right)$; 91.5:8.5 er, determined by HPLC analysis [Daicel chiralpak AD-H, n-hexane $/ i$ - $\left.\mathrm{PrOH}=80 / 20,1.0 \mathrm{~mL} \mathrm{~min}^{-1}, \lambda=254 \mathrm{~nm}\right]: \mathrm{t}$ (minor) $=8.95 \mathrm{~min}, \mathrm{t}$ (major) $=10.13 \mathrm{~min}] ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 7.47-7.20(\mathrm{~m}, 10 \mathrm{H}), 7.16(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $6.92(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.31-6.22(\mathrm{~m}, 2 \mathrm{H}), 5.04(\mathrm{brs}, 1 \mathrm{H}), 4.32(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{~d}, J=12.7$ $\mathrm{Hz}, 1 \mathrm{H}), 3.62(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.31(\mathrm{dd}, J=13.3,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.17-3.14(\mathrm{~m}, 1 \mathrm{H}), 2.63-2.51(\mathrm{~m}$, 1H), 2.41-2.13 (m, 3H), $1.29(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 213.9,198.0,155.0$, 137.5, 134.4, 134.3, 131.8, 129.9, 128.9, 128.8, 128.6, 127.4, 126.6, 118.3, 80.0, 63.6, 50.5, 49.8, 46.9, 40.3, 36.6, 28.2, 20.3; ESI-HRMS: calcd. for $\mathrm{C}_{34} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{4}+\mathrm{Na}^{+} 557.2411$, found 557.2409.

A solution of $\mathbf{1 2 a}(0.1 \mathrm{mmol}, 46.4 \mathrm{mg}, 91.5: 8.5 \mathrm{er}), \mathrm{Boc}_{2} \mathrm{O}(0.15 \mathrm{mmol}, 32.7 \mathrm{mg})$ in the solvent of EtOH (0.5 mL) and EtOAc (0.5 mL) was combined with Raney $\mathrm{Ni}(\mathrm{W} 2 ; 50.0 \mathrm{mg}$, wet weight). The mixture was stirred at room temperature under hydrogen (20 atm) for 48 h . The mixture was filtered through a bed of celite and condensed under reduced pressure. The residue was purified by flash chromatography ($\mathrm{EtOAc} /$ petroleum ether $=1: 4$) to gived compound 16: 44.0 mg , as a white solid, yield $82 \% ;[\alpha]_{\mathrm{D}}{ }^{25}=-12.6\left(c=0.35\right.$ in $\left.\mathrm{CHCl}_{3}\right)$; 91.5:8.5 er, $>19: 1 \mathrm{dr}$, determined by HPLC analysis [Daicel chiralpak AD-H, n-hexane $/ i-\mathrm{PrOH}=80 / 20,1.0 \mathrm{~mL} \mathrm{~min}^{-1}, \lambda=254 \mathrm{~nm}$]: t (major) $=8.67 \mathrm{~min}$, $\mathrm{t}($ minor $)=12.18 \mathrm{~min}] ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 7.51-7.00(\mathrm{~m}, 11 \mathrm{H}), 6.85(\mathrm{t}, J=7.7$ $\mathrm{Hz}, 2 \mathrm{H}), 6.18$ (d, J=7.8 Hz, 2H), 4.81 (brs, 1H), 4.37-4.33 (m, 2H), 3.69-3.60 (m, 2H), 3.17-3.02 $(\mathrm{m}, 1 \mathrm{H}), 2.96-2.82(\mathrm{~m}, 1 \mathrm{H}), 2.10-2.07(\mathrm{~m}, 1 \mathrm{H}), 2.00-1.85(\mathrm{~m}, 1 \mathrm{H}), 1.81-1.72(\mathrm{~m}, 2 \mathrm{H}), 1.22(\mathrm{~s}, 9 \mathrm{H})$,
 $128.8,128.3,128.1,127.3,126.6,119.0,79.5,76.0,64.4,50.9,49.7,47.1,44.5,40.0,28.2,20.9$; ESIHRMS: calcd. for $\mathrm{C}_{34} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{O}_{4}+\mathrm{H}^{+} 537.2748$, found 537.2750.

To a solution of $\mathbf{1 2 a}(0.1 \mathrm{mmol}, 46.4 \mathrm{mg}, 91.5: 8.5 \mathrm{er})$ in the solvent of $\mathrm{MeOH}(0.5 \mathrm{~mL})$ and DCM $(0.5 \mathrm{~mL})$ was added $\mathrm{NaBH}_{4}(0.15 \mathrm{mmol}, 5.7 \mathrm{mg})$ at $0^{\circ} \mathrm{C}$. After 2 h , the mixture was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The phases were separated and the aqueous phase was extracted with DCM $(2 \times 5 \mathrm{~mL})$. The combined organic phases were washed with brine $(10 \mathrm{~mL})$ before being dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuum. The residue was purified by flash chromatography $(E t O A c /$ petroleum ether $=1: 6)$ to gived compound $17: 35.9 \mathrm{mg}$, as a white solid, yield $77 \% ;[\alpha]_{\mathrm{D}}{ }^{25}=$ $-26.7\left(c=0.15\right.$ in CHCl_{3}); 91.5:8.5 er, >19:1 dr, determined by HPLC analysis [Daicel chiralpak AD-
H, n-hexane $/ i$ - $\left.\mathrm{PrOH}=80 / 20,1.0 \mathrm{~mL} \mathrm{~min}^{-1}, \lambda=254 \mathrm{~nm}\right]: \mathrm{t}$ (major) $=6.88 \mathrm{~min}, \mathrm{t}($ minor $)=10.74$ $\mathrm{min}] ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 7.38-7.14(\mathrm{~m}, 10 \mathrm{H}), 7.13-7.08(\mathrm{~m}, 1 \mathrm{H}), 6.86(\mathrm{t}, J=7.9$ $\mathrm{Hz}, 2 \mathrm{H}), 6.19(\mathrm{dd}, J=8.2,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.72(\mathrm{dd}, J=12.6,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.48-4.42(\mathrm{~m}, 1 \mathrm{H}), 4.31(\mathrm{~d}$, $J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.30-3.23(\mathrm{~m}, 1 \mathrm{H}), 3.10-3.02(\mathrm{~m}, 1 \mathrm{H}), 2.33-2.22(\mathrm{~m}$, $1 \mathrm{H}), 2.19-2.10(\mathrm{~m}, 1 \mathrm{H}), 1.88-1.79(\mathrm{~m}, 1 \mathrm{H}), 1.60-1.51(\mathrm{~m}, 1 \mathrm{H}), 0.64$ (brs, 1 H$) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 197.6,137.5,137.6,133.5,132.3,129.7,128.8,127.8,127.0,119.0,86.4,76.1,63.4$, 47.4, 47.4, 44.8, 40.8, 30.6, 21.6; ESI-HRMS: calcd. for $\mathrm{C}_{29} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{4}+\mathrm{Na}^{+} 489.1785$, found 489.1786 .

To a solution of $\mathbf{1 2 a}(0.1 \mathrm{mmol}, 46.4 \mathrm{mg}, 91.5: 8.5 \mathrm{er})$ in dry $\mathrm{DCM}(1.0 \mathrm{~mL})$ was added $\mathrm{Et}_{3} \mathrm{~N}(0.2$ $\mathrm{mmol}, 20.2 \mathrm{mg}$) at room temperature. The mixture was stirred for 15 min and Eschensomer's salt (0.2 $\mathrm{mmol}, 37 \mathrm{mg}$) was added, and then continuously stirred for 24 h at $30^{\circ} \mathrm{C}$. The mixture was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The phases were separated and the aqueous phase was extracted with DCM $(2 \times 5 \mathrm{~mL})$. The combined organic phases were washed with brine $(10 \mathrm{~mL})$ before being dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuum. The residue was purified by flash chromatography $(E t O A c /$ petroleum ether $=1: 12)$ to gived compound 18: 41.1 mg , as a white solid, yield $86 \% ;[\alpha]_{\mathrm{D}}{ }^{25}$ $=+46.8(c=0.8$ in MeOH); 91.5:8.5 er, determined by HPLC analysis [Daicel chiralpak IE, $n-$ hexane $\left./ i-\mathrm{PrOH}=80 / 20,1.0 \mathrm{~mL} \mathrm{~min}^{-1}, \lambda=254 \mathrm{~nm}\right]: \mathrm{t}($ minor $)=12.32 \mathrm{~min}, \mathrm{t}($ major $\left.)=14.68 \mathrm{~min}\right] ;$ ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta(\mathrm{ppm}) 7.47-7.46$ (m, 3H), 7.35-7.20 (m, 8H), $6.94(\mathrm{t}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 6.30(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.09-6.04(\mathrm{~m}, 2 \mathrm{H}), 5.61(\mathrm{~s}, 1 \mathrm{H}), 3.80(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{dd}, J$ $=13.2,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.49-3.45(\mathrm{~m}, 1 \mathrm{H}), 3.40-3.32(\mathrm{~m}, 1 \mathrm{H}), 2.62(\mathrm{dd}, J=16.4,6.8 \mathrm{~Hz}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right): \delta(\mathrm{ppm}) 200.8,196.2,142.0,137.3,134.0,133.4,131.7,128.8,128.7,128.4$, 128.3, 127.1, 126.5, 120.3, 117.8, 85.2, 62.1, 53.4, 49.7, 36.8, 27.5; ESI-HRMS: calcd. for $\mathrm{C}_{30} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{4}+\mathrm{Na}^{+} 499.1628$, found 499.1624.

12. Crystal data and structure refinement for enantiopure 5 g and 12 f

Identification code
Empirical formula
Formula weight
Temperature/K
Crystal system
Space group
a/Å
b/Å
c/A
$\alpha{ }^{\circ}$
$\beta /{ }^{\circ}$
$\gamma /{ }^{\circ}$
Volume/ ${ }^{3}$
Z
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$
μ / mm^{-1}
F(000)
Crystal size/ mm^{3}
Radiation
2Θ range for data collection $/{ }^{\circ}$
Index ranges
Reflections collected
Independent reflections
Data/restraints/parameters
$\mathbf{5 g}$ (CCDC 1877057)
$\mathrm{C}_{29} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{O}_{6}$
530.57

136
orthorhombic
P2 ${ }_{1} 2_{1} 2_{1}$
9.25485(18)
9.9771(2)
29.5378(5)

90
90
90
2727.40(9)

4
1.292
0.754
1120.0
$0.5 \times 0.4 \times 0.1$
$\mathrm{CuK} \alpha(\lambda=1.54184)$
9.356 to 134.152
$-10 \leq \mathrm{h} \leq 11,-11 \leq \mathrm{k} \leq 11,-25 \leq 1 \leq 35$
14563
$4852\left[\mathrm{R}_{\text {int }}=0.0372, \mathrm{R}_{\text {sigma }}=0.0337\right]$
4852/0/364

Goodness-of-fit on F^{2}
Final R indexes [$I>=2 \sigma(\mathrm{I})]$
Final R indexes [all data]
Largest diff. peak/hole / e \AA^{-3}
Flack parameter
1.034
$\mathrm{R}_{1}=0.0444, \mathrm{wR}_{2}=0.1159$
$\mathrm{R}_{1}=0.0471, \mathrm{wR}_{2}=0.1190$
0.22/-0.25
0.09 (10)

Identification code
Empirical formula
Formula weight
Temperature/K
Crystal system
Space group
a/Å
b/Å
c/Å
$\alpha /{ }^{\circ}$
$\beta /{ }^{\circ}$
$\gamma /{ }^{\circ}$
Volume/ \AA^{3}
Z
$\rho c a l c g / \mathrm{cm}^{3}$
μ / mm^{-1}
F(000)
Crystal size/mm ${ }^{3}$
Radiation
2Θ range for data collection $/{ }^{\circ}$
Index ranges
Reflections collected
Independent reflections

12 f (CCDC 1877058)
$\mathrm{C}_{29} \mathrm{H}_{23} \mathrm{BrN}_{2} \mathrm{O}_{4}$
543.40

142
orthorhombic
P212121
7.6578(2)
11.9171(4)
27.6310(7)

90
90
90
2521.56(13)

4
1.431
2.536
1112.0
$0.65 \times 0.4 \times 0.3$
$\mathrm{CuK} \alpha(\lambda=1.54184)$
9.802 to 145.462
$-5 \leq \mathrm{h} \leq 9,-13 \leq \mathrm{k} \leq 14,-34 \leq 1 \leq 22$
11266
$4854\left[\mathrm{R}_{\text {int }}=0.0326, \mathrm{R}_{\text {sigma }}=0.0371\right]$

Data/restraints/parameters	$4854 / 0 / 325$
Goodness-of-fit on F^{2}	1.026
Final R indexes [I>=2 $\sigma(\mathrm{I})]$	$\mathrm{R}_{1}=0.0550, \mathrm{wR}_{2}=0.1472$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0569, \mathrm{wR}_{2}=0.1501$
Largest diff. peak/hole $/ \mathrm{e} \AA^{-3}$	$1.23 /-0.96$
Flack parameter	$-0.005(12)$

13. DFT calculations of the key intermediates for the asymmetric cross

Rauhut-Currier reaction and proposed catalytic mechanism

C2-A
$0.0 \mathrm{kcal} / \mathrm{mol}$

C2-B
$3.1 \mathrm{kcal} / \mathrm{mol}$

C2-C
$9.0 \mathrm{kcal} / \mathrm{mol}$

C2-D
$6.6 \mathrm{kcal} / \mathrm{mol}$

Figure S1. The conformations and energies of PTC C2.
The conformations and energies of chiral PTC C2 were calculated as outlined Figure S1. The structure as C2-A with the lowest energy was selected as the most favorable conformation for the following calculations.

We have investigated the possible double salts after the early sulfur addition to enone 1a. However, we could not identify any stable intermediate assembled from enone 1a, thiol T1 and two equivalent of ammonium cation of $\mathbf{C 2}$. Therefore, it suggests that the double salt might be unstable and not be generated in the catalytic process. In contrast, we could successfully identify the complexes assembled from one equivalent of enone 1a, thiol T1 and PTC C2. As shown in the following Figure S2, the carboxylic anion might be better to combine with cation center of $\mathbf{C 2}$, because the energy of INT1-R-A is $8.9 \mathrm{kcal} / \mathrm{mol}$ higher that of INR1-R-B. We also tried different complex conformations, while their energies are higher than that of INR1-R-B. To explain the stereoselectivity, the pose employing the lowest energy of S-configuration (sulfide moiety) was calculated as INT1-S-B, whose energy was $2.0 \mathrm{kcal} / \mathrm{mol}$ lower than INT1-R-B, suggesting that the $\mathbf{C} 2$-catalyzed sulfur addition of T1 to enone 1a prefers to produce S-intermediate, which might be the key species for the subsequent stereoselective RC reaction. In addition, the enolate anion-complexed one INT1-S-A also has a higher
energy than that of the carboxylic anion-related INT1-S-B. Nevertheless, INT1-S-A might be the more reliable active intermediate involved in the key $R C$ reaction.

Figure S2. The structures and energies of the key ion pair INT1.

Since the subsequent addition of the chiral intermediate INT1-S-A to activated alkene $\mathbf{2}$ would generate the complicated intermediate with three stereogenic centers, and there are a lot of conformation possibilities for the ion pairs in the PTC-based reaction, we were unable to successfully conduct the DFT calculation studies on the following catalytic process [in fact, in comparison with well-established Lewis base catalysis (covalent bonding catalysis), there are very few examples involving DFT calculations of PTC catalysis; for a relatively simple asymmetric alkylation reaction, see: Petrova, G. P.; Li, H.-B.; Maruoka, K.; Morokuma, K. J. Phys. Chem. B 2014, 118, 5154]. As a result, based on the preliminary DFT calculations, a possible catalytic mechanism was proposed. As outlined in the following scheme, in the presence of PTC C2 and $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathbf{T} \mathbf{1}$ attacks enone 1a from Si-face, generating carboxylate ion pair intermediate I. After proton transfer, the more reactive enolate ion pair intermediated II is formed, followed by another Si-face attack to acceptor $\mathbf{2 g}$. Then $\mathbf{3 g}$ is afforded after elimination of thiol T1, and then undergoes diastereoselective Michael addition and annulation with nitroolefin $\mathbf{4 a}$ to give final product $\mathbf{5 g}$, with the assistance of bases.

Proposed mechanism for the double activation catalysis

Computational method:

All calculations were carried out with the GAUSSIAN 09 packages. ${ }^{2}$ The M06-2X functional, together with a basis set $6-31 \mathrm{G}(\mathrm{d})$, were used for optimizing the geometry of all the minima and transition states. All the optimized structures were confirmed by frequency calculations to minima states using the same level of theory. To take solvent effects into account, solution-phase single-point calculations were performed on the gas-phase geometries. ${ }^{3}$ The solution-phase single point energy were done using M06-2X method with a basis set $6-311++G(2 d, p)$. Solvent effect was accounted for using self-consistent reaction field (SCRF) method, using SMD model and UAKS radii. ${ }^{4}$ Toluene was used as the solvent. Solution-phase single-point energies corrected by the gas-phase Gibbs free energy corrections were used to describe all the reaction energetics. All of these energies correspond
to the reference state of $1 \mathrm{~mol} / \mathrm{L}, 298 \mathrm{~K}$. All energetics reported throughout the text are in $\mathrm{kcal} / \mathrm{mol}$. Structures were generated using GaussView5.0.8 and CYLview.
(2) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Gaussian, Inc.: Wallingford, CT, USA, 2009.
(3) Um, J. M.; DiRocco, D. A.; Noey, E. L.; Rovis, T.; Houk, K. N. J. Am. Chem. Soc. 2011,133, 11249-11254.
(4) (a) Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. B 2009,113, 6378-6396. (b) Ribeiro, R. F.; Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. B 2011,115, 1455614562.

Computational data:

C2-A

Zero-point correction=			0.507703 (Hartree/Particle)		
Thermal correction to Energy=			0.531230		
Thermal correction to Enthalpy=			0.532174		
Thermal correction to Gibbs Free Energy=			0.454412		
$\mathrm{E}(\mathrm{sov})=$	-1192.63956	A.U.			
Center	Atomic	Atomic	Coor	ates (Angst	
Number	Number	Type	X	Y	Z
1	8	0	0.402282	1.218742	-1.885185
2	6	0	0.918140	0.210332	-1.047973
3	6	0	0.269875	0.254091	0.356339

4	7	0	-1.266854	0.152375	0.346896
5	6	0	-1.690912	-0.199375	1.756048
6	6	0	-1.094652	0.809697	2.755348
7	6	0	-1.927513	1.468122	-0.008969
8	6	0	-1.566714	2.560010	1.018434
9	6	0	-1.105292	3.858716	0.399399
10	6	0	-1.077396	4.199654	-0.889478
11	6	0	-0.505484	1.994415	1.984307
12	6	0	0.681217	1.499931	1.162062
13	6	0	2.427916	0.242901	-0.875919
14	6	0	3.116462	-0.899646	-0.360822
15	6	0	2.504211	-2.156562	-0.096952
16	6	0	3.237168	-3.206617	0.401069
17	6	0	4.619743	-3.057821	0.665649
18	6	0	5.245113	-1.865654	0.402371
19	6	0	4.515513	-0.767882	-0.124491
20	7	0	5.210331	0.374380	-0.393398
21	6	0	4.555030	1.380219	-0.911008
22	6	0	3.158668	1.365007	-1.169574
23	6	0	-3.161275	-1.309987	-0.567901
24	6	0	-3.584748	-2.360123	0.253764
25	6	0	-4.925222	-2.734643	0.286333
26	6	0	-5.853715	-2.068042	-0.512410
27	6	0	-5.437362	-1.037105	-1.353053
28	6	0	-4.095579	-0.664537	-1.384511
29	6	0	-1.705964	-0.929084	-0.633516
30	1	0	0.695737	2.095846	-1.588588
31	1	0	0.660441	-0.724224	-1.553164
32	1	0	0.577552	-0.648822	0.894430
33	1	0	-2.782427	-0.191226	1.754554
34	1	0	-1.356737	-1.223339	1.943568
35	1	0	-0.313029	0.333780	3.355736
36	1	0	-1.875840	1.142949	3.444235
37	1	0	-3.000273	1.268867	-0.021785
38	1	0	-1.598324	1.699976	-1.019623
39	1	0	-2.460824	2.789964	1.614776
40	1	0	-0.780420	4.597645	1.133355
41	1	0	-0.738934	5.187243	-1.186635
42	1	0	-1.412581	3.550702	-1.695321
43	1	0	-0.186358	2.776490	2.679518
44	1	0	1.529971	1.237906	1.800439
45	1	0	1.026531	2.301669	0.499133
46	1	0	1.452788	-2.315617	-0.324194
47	1	0	2.757241	-4.164219	0.579174
48	1	0	5.183975	-3.896693	1.060912

49	1	0	6.307420	-1.721938	0.572910
50	1	0	5.131844	2.273461	-1.141156
51	1	0	2.710081	2.250517	-1.610831
52	1	0	-2.861715	-2.902897	0.859823
53	1	0	-5.241807	-3.555082	0.922603
54	1	0	-6.897811	-2.364611	-0.493553
55	1	0	-6.153032	-0.533695	-1.995449
56	1	0	-3.770209	0.119254	-2.066085
57	1	0	-1.072176	-1.795126	-0.414794
58	1	0	-1.457043	-0.542099	-1.624287

C2-B

Zero-point correction=			0.507985 (Hartree/Particle)		
Thermal correction to Energy=			0.531384		
Thermal correction to Enthalpy=			0.532328		
Thermal correction to Gibbs Free Energy=			0.455409		
$\mathrm{E}(\mathrm{sov})=$	1192.6356	A.U.			
Center	Atomic	Atomic	Coo	nates (Angs	oms)
Number	Number	Type	X	Y	Z
1	8	0	-0.029794	0.550276	-2.968068
2	6	0	0.792373	-0.108816	-2.024001
3	6	0	-0.065588	-1.219149	-1.357275
4	7	0	-1.253686	-0.827260	-0.460577
5	6	0	-2.164799	-2.037618	-0.381114
6	6	0	-1.362808	-3.298567	-0.030008
7	6	0	-0.763456	-0.513105	0.936453
8	6	0	-0.263828	-1.789544	1.635965
9	6	0	0.962421	-1.571516	2.488960
10	6	0	1.656485	-0.447420	2.664639
11	6	0	-0.018666	-2.859687	0.549398
12	6	0	0.805915	-2.209102	-0.559345
13	6	0	1.538352	0.874732	-1.123836
14	6	0	2.831139	0.586194	-0.577518
15	6	0	3.619643	-0.554584	-0.903184
16	6	0	4.843294	-0.759651	-0.316344
17	6	0	5.352285	0.158145	0.635374
18	6	0	4.638787	1.285942	0.946944
19	6	0	3.381821	1.538025	0.334982
20	7	0	2.764652	2.709907	0.654429
21	6	0	1.639921	2.990626	0.046069

22	6	0	0.993275	2.110613	-0.855998
23	6	0	-3.293327	0.714035	-0.293329
24	6	0	-4.530322	0.157511	-0.634590
25	6	0	-5.687988	0.541589	0.037670
26	6	0	-5.621320	1.496799	1.051326
27	6	0	-4.398116	2.078023	1.381009
28	6	0	-3.242449	1.691943	0.706631
29	6	0	-2.041380	0.342881	-1.044452
30	1	0	0.525498	1.062376	-3.576018
31	1	0	1.539405	-0.711029	-2.560990
32	1	0	-0.549402	-1.724335	-2.201151
33	1	0	-2.910707	-1.795971	0.378790
34	1	0	-2.671418	-2.115609	-1.346415
35	1	0	-1.206151	-3.919413	-0.918304
36	1	0	-1.929285	-3.896364	0.689669
37	1	0	-1.597877	-0.061744	1.473669
38	1	0	0.020595	0.234031	0.813508
39	1	0	-1.058791	-2.163989	2.296773
40	1	0	1.291028	-2.470141	3.011711
41	1	0	2.531257	-0.437379	3.307349
42	1	0	1.399797	0.505737	2.207754
43	1	0	0.519291	-3.711637	0.974677
44	1	0	1.208221	-2.954998	-1.252937
45	1	0	1.651158	-1.692394	-0.098709
46	1	0	3.269901	-1.273335	-1.637675
47	1	0	5.432087	-1.629151	-0.591941
48	1	0	6.318263	-0.024177	1.095735
49	1	0	5.010169	2.028825	1.645785
50	1	0	1.188245	3.954558	0.272965
51	1	0	0.075104	2.434941	-1.334391
52	1	0	-4.596089	-0.567266	-1.443579
53	1	0	-6.642992	0.105716	-0.238837
54	1	0	-6.524345	1.800164	1.571946
55	1	0	-4.344380	2.839567	2.152819
56	1	0	-2.293321	2.168438	0.948552
57	1	0	-2.254188	0.064975	-2.079113
58	1	0	-1.349488	1.179072	-1.060614

C2-C

Zero-point correction $=$	0.508352 (Hartree/Particle)
Thermal correction to Energy $=$	0.531877
Thermal correction to Enthalpy=	0.532821
Thermal correction to Gibbs Free Energy=	0.455801

41	1	0	-2.596797	-0.998358	4.296712
42	1	0	-1.774071	-0.101183	2.908961
43	1	0	-3.259403	-3.278209	0.631545
44	1	0	-0.975503	-3.166552	-0.151246
45	1	0	-1.061852	-2.045924	1.208922
46	1	0	2.011836	1.487533	0.385373
47	1	0	4.150493	2.450160	1.037930
48	1	0	6.219452	1.064559	1.077909
49	1	0	6.110957	-1.333539	0.396789
50	1	0	2.960646	-4.186757	-1.090339
51	1	0	0.787423	-3.036494	-1.087255
52	1	0	-2.828447	2.821782	0.374192
53	1	0	-1.717304	4.727848	1.420100
54	1	0	0.550836	5.425390	0.685572
55	1	0	1.684183	4.180186	-1.148471
56	1	0	0.595749	2.229141	-2.172261
57	1	0	-2.808305	1.512810	-2.035310
58	1	0	-1.233388	0.882647	-2.523616

16	6	0	-3.704397	-1.502715	-1.908815
17	6	0	-5.019081	-1.158385	-1.512496
18	6	0	-5.228415	-0.494694	-0.330497
19	6	0	-4.135117	-0.136447	0.501496
20	7	0	-4.422413	0.494001	1.675959
21	6	0	-3.425081	0.799239	2.464220
22	6	0	-2.062959	0.548268	2.150044
23	6	0	2.194358	-1.867981	-0.645815
24	6	0	3.498175	-1.822596	-0.138355
25	6	0	3.951725	-2.800241	0.741809
26	6	0	3.118787	-3.857790	1.102910
27	6	0	1.840089	-3.946665	0.558523
28	6	0	1.387004	-2.960928	-0.313709
29	6	0	1.709143	-0.863939	-1.666516
30	1	0	0.516434	0.603333	2.106196
31	1	0	-0.206929	-1.275855	0.147098
32	1	0	-0.666574	0.565941	-1.411729
33	1	0	2.401429	1.343244	-2.914118
34	1	0	0.715268	0.883918	-3.206998
35	1	0	-0.042484	3.034590	-2.633473
36	1	0	1.645389	3.531871	-2.736390
37	1	0	3.443798	0.928219	-0.898867
38	1	0	2.495639	0.553885	0.552600
39	1	0	3.103009	3.183369	-0.706749
40	1	0	2.325474	4.148902	1.450599
41	1	0	2.852425	2.788581	3.346769
42	1	0	2.951925	1.259974	2.323640
43	1	0	0.783184	4.133242	-0.497434
44	1	0	-1.121130	2.566387	-0.370340
45	1	0	-0.056020	2.268290	0.992536
46	1	0	-1.633055	-1.463934	-1.444595
47	1	0	-3.548776	-2.052817	-2.832075
48	1	0	-5.859692	-1.435119	-2.140771
49	1	0	-6.223625	-0.231234	0.013589
50	1	0	-3.676425	1.281581	3.406610
51	1	0	-1.310304	0.835053	2.879345
52	1	0	4.183517	-1.037079	-0.443409
53	1	0	4.963774	-2.745237	1.130419
54	1	0	3.475060	-4.622453	1.785964
55	1	0	1.197196	-4.785724	0.804674
56	1	0	0.396803	-3.062230	-0.755344
57	1	0	2.466063	-0.751956	-2.448775
58	1	0	0.788291	-1.214819	-2.144189

INT1-R-A

Zero-point correction $=$	0.718649 (Hartree/Particle)
Thermal correction to Energy=	0.757193
Thermal correction to Enthalpy=	0.758137
Thermal correction to Gibbs Free Energy=	0.644645

$\mathrm{E}($ sov $)=-2280.52368238 \quad$ A.U.

Center Number	Atomic Number	Atomic Type	Coordinates (Angstroms)		
			X	Y	Z
1	6	0	-7.701189	-0.134783	-0.581587
2	6	0	-6.453435	0.166773	-0.025738
3	6	0	-5.721666	-0.828510	0.653182
4	6	0	-6.285896	-2.106587	0.747871
5	6	0	-7.520522	-2.403594	0.180509
6	6	0	-8.232208	-1.414895	-0.491762
7	1	0	-8.250731	0.651218	-1.088018
8	1	0	-5.730893	-2.870003	1.284416
9	1	0	-7.926693	-3.407046	0.268106
10	1	0	-9.197350	-1.634479	-0.937168
11	16	0	-4.168585	-0.549373	1.489658
12	6	0	-5.941983	1.559230	-0.193989
13	8	0	-4.790899	1.898873	-0.305787
14	6	0	-2.945954	-0.591257	0.070155
15	6	0	-2.795582	-2.010111	-0.505528
16	6	0	-1.593836	-0.301747	0.630850
17	1	0	-3.322995	0.139168	-0.646804
18	6	0	-1.683032	-2.649188	0.333920
19	1	0	-2.457925	-1.913405	-1.544801
20	1	0	-3.733367	-2.573983	-0.511374
21	6	0	-0.882642	-1.447630	0.817970
22	1	0	-1.294436	0.680431	0.982626
23	1	0	-2.080660	-3.189395	1.203012
24	1	0	-1.061878	-3.352903	-0.232739
25	8	0	0.315290	-1.613364	1.318940
26	8	0	1.379731	0.563378	1.764584
27	6	0	1.590415	1.039658	0.481519
28	6	0	3.035867	0.728050	-0.009915
29	7	0	3.329635	-0.765443	-0.242906
30	6	0	4.608467	-0.853056	-1.037295
31	6	0	5.709519	0.001880	-0.389418
32	6	0	3.544418	-1.470310	1.080384
33	6	0	4.854412	-0.986439	1.734207
34	6	0	4.764340	-0.832238	3.234175

35	6	0	3.684121	-0.503200	3.938556
36	6	0	5.282352	0.329412	1.043416
37	6	0	4.080504	1.269361	0.982447
38	6	0	1.445494	2.555070	0.433547
39	6	0	1.369257	3.274481	-0.798663
40	6	0	1.297170	2.659235	-2.077989
41	6	0	1.233513	3.414627	-3.222055
42	6	0	1.238648	4.827147	-3.149500
43	6	0	1.282200	5.451113	-1.929998
44	6	0	1.336465	4.695861	-0.729861
45	7	0	1.346748	5.386802	0.446232
46	6	0	1.365605	4.684917	1.552062
47	6	0	1.417169	3.269911	1.602246
48	6	0	2.407820	-2.849604	-1.391209
49	1	0	3.037609	-3.228667	-2.579603
50	1	0	3.188615	-4.574750	-2.898258
51	1	0	0	1.731488	-5.552096

80	1	0	1.653077	-5.940550	-0.192548
81	1	0	1.364894	-3.520272	0.360063
82	1	0	2.068684	-0.777007	-1.916412
83	1	0	1.316872	-1.339352	-0.375906
84	8	0	-6.950027	2.461771	-0.245942
85	1	0	-6.520687	3.321975	-0.393678

INT1-S-B

Zero-point correction=	0.720418 (Hartree/Particle)
Thermal correction to Energy=	0.758590
Thermal correction to Enthalpy=	0.759534
Thermal correction to Gibbs Free Energy=	0.649767
E (sov) $=-2280.54312107 \quad$ A.U.	

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Type	X	Y	Z

1	6	0	0.931409	-4.110948	1.583840
2	6	0	0.146078	-3.017546	1.213301
3	6	0	-0.876935	-3.198953	0.265589
4	6	0	-1.096323	-4.472556	-0.269202
5	6	0	-0.328700	-5.560575	0.135252
6	6	0	0.690189	-5.378709	1.066236
7	1	0	1.738263	-3.944003	2.291601
8	1	0	-1.873409	-4.597139	-1.017548
9	1	0	-0.519723	-6.543761	-0.284693
10	1	0	1.300807	-6.220409	1.379688
11	16	0	-1.840827	-1.830890	-0.373343
12	6	0	0.475881	-1.669273	1.831064
13	8	0	1.682468	-1.323377	1.811328
14	6	0	-3.146399	-1.676915	0.950783
15	6	0	-4.351843	-2.596439	0.673711
16	6	0	-3.749793	-0.306615	0.896578
17	1	0	-2.614649	-1.886634	1.879759
18	6	0	-5.318680	-1.734600	-0.157181
19	1	0	-4.821283	-2.834649	1.635037
20	1	0	-4.069546	-3.535786	0.191412
21	6	0	-4.933867	-0.341165	0.268943
22	1	0	-3.248376	0.570776	1.285796
23	1	0	-5.158616	-1.850997	-1.236755
24	1	0	-6.373253	-1.944845	0.045514
25	8	0	-5.788290	0.659427	-0.030166

26	8	0	0.331170	1.378699	1.861097
27	6	0	0.026221	1.402624	0.504836
28	6	0	1.149987	2.148687	-0.248449
29	7	0	2.437644	1.322966	-0.449883
30	6	0	3.316500	2.081266	-1.411932
31	6	0	3.530538	3.528985	-0.937632
32	6	0	3.174049	1.167277	0.863203
33	6	0	3.686058	2.535808	1.348703
34	6	0	3.496699	2.765477	2.827951
35	6	0	2.862406	1.985412	3.698812
36	6	0	3.026909	3.646222	0.500999
37	6	0	1.513819	3.451823	0.494181
38	6	0	-1.307305	2.099190	0.241477
39	6	0	-2.025567	1.917606	-0.978845
40	6	0	-1.534242	1.182499	-2.089588
41	6	0	-2.301468	0.998900	-3.211104
42	6	0	-3.608085	1.535197	-3.281669
43	6	0	-4.122064	2.233630	-2.221149
44	6	0	-3.346789	2.438530	-1.051009
45	7	0	-3.942521	3.093672	-0.009929
46	6	0	-3.225975	3.288367	1.073434
47	6	0	-1.904271	2.816230	1.247198
48	6	0	3.287539	-0.886850	-1.434160
49	6	0	3.851117	-0.788655	-2.710209
50	6	0	4.915593	-1.605261	-3.076098
51	6	0	5.416307	-2.538392	-2.170092
52	6	0	4.840946	-2.660735	-0.908209
53	6	0	3.774664	-1.844508	-0.537763
54	6	0	2.102673	-0.046562	-1.030279
55	1	0	0.013254	0.474955	2.211526
56	1	0	-0.104901	0.382719	0.118339
57	1	0	0.823156	2.355851	-1.274058
58	1	0	4.252793	1.523573	-1.464893
59	1	0	2.832527	2.029402	-2.391398
60	1	0	2.986221	4.226403	-1.582263
61	1	0	4.593520	3.778329	-1.005583
62	1	0	3.995693	0.475165	0.668938
63	1	0	2.467757	0.682700	1.536378
64	1	0	4.767076	2.593456	1.150440
65	1	0	3.951655	3.690278	3.185537
66	1	0	2.806624	2.277012	4.743240
67	1	0	2.375900	1.051845	3.431703
68	1	0	3.281902	4.626581	0.915733
69	1	0	1.016693	4.292329	0.000752
70	1	0	1.147178	3.382127	1.521024

71	1	0	-0.557667	0.715727	-2.031896
72	1	0	-1.913761	0.417425	-4.041661
73	1	0	-4.207708	1.373572	-4.171912
74	1	0	-5.130682	2.633656	-2.230263
75	1	0	-3.719987	3.813274	1.889165
76	1	0	-1.395444	2.932254	2.197366
77	1	0	3.445580	-0.080127	-3.429628
78	1	0	5.345316	-1.522067	-4.069457
79	1	0	6.244693	-3.179405	-2.455802
80	1	0	5.213871	-3.404011	-0.210595
81	1	0	3.286449	-1.950928	0.431270
82	1	0	1.455846	0.155381	-1.889730
83	1	0	1.551214	-0.572773	-0.251778
84	8	0	-0.479882	-0.996846	2.301471
85	1	0	-5.384978	1.516444	0.202901

INT1-R-A

Zero-point correction=			0.719391 (Hartree/Particle)		
Thermal correction to Energy=			0.757813		
Thermal correction to Enthalpy=			0.758758		
Thermal correction to Gibbs Free Energy=			0.648548		
$\mathrm{E}($ sov $)=$	2280.5450	A.U.			
Center	Atomic	Atomic	Coor	nates (Angs	oms)
Number	Number	Type	X	Y	Z
1	6	0	3.785533	2.287987	-1.927502
2	6	0	2.554484	2.029567	-1.317723
3	6	0	2.177526	2.787888	-0.198157
4	6	0	3.020673	3.806851	0.259566
5	6	0	4.214976	4.090606	-0.392254
6	6	0	4.602406	3.321828	-1.488235
7	1	0	4.083071	1.662501	-2.763868
8	1	0	2.732694	4.367926	1.144258
9	1	0	4.850894	4.894082	-0.032775
10	1	0	5.543786	3.522509	-1.991195
11	16	0	0.686735	2.438447	0.731489
12	6	0	1.717556	0.898685	-1.897914
13	8	0	2.287450	-0.208618	-2.015567
14	6	0	-0.420470	3.841361	0.220499
15	6	0	-0.721414	3.871334	-1.290624
16	6	0	-1.765345	3.604273	0.844286
17	1	0	0.077312	4.752905	0.564445

18	6	0	-2.015720	3.063942	-1.453397
19	1	0	0.094702	3.475513	-1.895679
20	1	0	-0.902898	4.916103	-1.567553
21	6	0	-2.626894	3.162256	-0.083896
22	1	0	-1.965282	3.698214	1.906775
23	1	0	-2.683366	3.456779	-2.226218
24	1	0	-1.804097	2.014470	-1.697852
25	8	0	-3.912454	2.779652	0.052512
26	8	0	-0.749566	-1.026741	-1.974249
27	6	0	-1.178394	-0.830878	-0.665707
28	6	0	-0.844051	-2.084075	0.186519
29	7	0	0.642964	-2.257595	0.540160
30	6	0	0.728394	-3.298507	1.624647
31	6	0	-0.027846	-4.572128	1.209129
32	6	0	1.420467	-2.743612	-0.663165
33	1	0	0.990430	-4.170478	-1.036542
34	1	0	0	-0.861858	-4.378692

63	1	0	1.236526	-2.007118	-1.442388
64	1	0	1.749313	-4.878726	-0.671077
65	1	0	0.615970	-5.404361	-2.804268
66	1	0	0.892466	-3.758341	-4.525367
67	1	0	1.265809	-2.428629	-3.300500
68	1	0	-0.727661	-5.446508	-0.650391
69	1	0	-2.311966	-3.631922	-0.153845
70	1	0	-1.396726	-3.158924	-1.599799
71	1	0	-1.553290	0.391998	1.704164
72	1	0	-2.770006	1.246665	3.645958
73	1	0	-5.262714	1.253511	3.676268
74	1	0	-6.522480	0.396276	1.697321
75	1	0	-5.508842	-1.222533	-2.380145
76	1	0	-3.010434	-1.348229	-2.569887
77	1	0	1.902615	-1.373815	3.632405
78	1	0	4.170976	-1.404961	4.611044
79	1	0	6.149226	-0.993862	3.169875
80	1	0	5.842012	-0.534091	0.750936
81	1	0	3.558892	-0.519631	-0.240228
82	1	0	0.486949	-0.552446	1.752516
83	1	0	1.215861	-0.285692	0.153837
84	8	0	0.525109	1.166855	-2.207761
85	1	0	-4.131974	2.701710	0.995793

INT1-S-B

Zero-point correction=			0.718072 (Hartree/Particle)		
Thermal correction to Energy=			0.756800		
Thermal correction to Enthalpy=			0.757745		
Thermal correction to Gibbs Free Energy=			0.643008		
$\mathrm{E}($ sov $)=$	2280.52572	A.U.			
Center	Atomic	Atomic	Coor	nates (Angst	ms)
Number	Number	Type	X	Y	Z
1	6	0	6.527930	0.057991	-0.600615
2	6	0	5.278326	-0.414885	-0.184622
3	6	0	4.153626	0.433627	-0.226602
4	6	0	4.334028	1.743501	-0.689149
5	6	0	5.580827	2.208797	-1.091861
6	6	0	6.685811	1.363952	-1.045460
7	1	0	7.377972	-0.614665	-0.569344
8	1	0	3.465758	2.395442	-0.723897
9	1	0	5.687958	3.231787	-1.440461

10	1	0	7.663727	1.716822	-1.356805
11	16	0	2.483165	-0.054879	0.171024
12	6	0	5.192539	-1.822303	0.303248
13	8	0	4.413706	-2.258389	1.113106
14	6	0	2.386466	-0.073115	2.068136
15	6	0	2.693972	1.318051	2.635161
16	6	0	0.947222	-0.269832	2.383784
17	1	0	3.076561	-0.857784	2.376024
18	6	0	1.356860	2.056717	2.533305
19	1	0	3.523316	1.821899	2.128797
20	1	0	2.969041	1.187139	3.688285
21	6	0	0.321209	0.934620	2.561580
22	1	0	0.457848	-1.237972	2.363704
23	1	0	1.180051	2.779770	3.336047
24	1	0	1.281499	2.600428	1.580653
25	8	0	-0.941674	1.223691	2.644650
26	8	0	-2.463582	-0.571405	1.811711
27	6	0	-1.846787	-1.006225	0.644330
28	6	0	-2.527654	-0.412702	-0.617976
29	7	0	-2.367385	1.111665	-0.762744
30	6	0	-2.727557	1.469558	-2.180319
31	6	0	-4.080726	0.847676	-2.564250
32	6	0	-3.323044	1.825524	0.169198
33	6	0	-4.778098	1.613758	-0.293610
34	6	0	-5.753808	1.424003	0.843738
35	6	0	-5.498803	0.872627	2.028260
36	6	0	-4.799453	0.422618	-1.280157
37	6	0	-4.029377	-0.740066	-0.659259
38	6	0	-1.935423	-2.518129	0.502751
39	6	0	-1.121029	-3.233106	-0.426753
40	6	0	-0.076625	-2.637154	-1.184155
41	6	0	0.671803	-3.385723	-2.057219
42	6	0	0.410204	-4.765803	-2.225236
43	6	0	-0.576226	-5.373961	-1.492712
44	6	0	-1.354107	-4.630144	-0.567920
45	7	0	-2.291814	-5.305967	0.157026
46	6	0	-2.977539	-4.619337	1.037814
47	6	0	-2.839460	-3.225635	1.251622
48	6	0	-0.621290	2.965884	-0.700300
49	6	0	-0.157558	3.432440	-1.932909
50	6	0	0.146189	4.779560	-2.107423
51	6	0	-0.003392	5.668723	-1.045561
52	6	0	-0.440261	5.206946	0.194132
53	6	0	-0.741855	3.859543	0.370292
54	6	0	-0.928979	1.511295	-0.466649

55	1	0	-1.816521	0.113537	2.279773
56	1	0	-0.784016	-0.734048	0.643452
57	1	0	-2.016826	-0.805295	-1.505224
58	1	0	-2.745117	2.560722	-2.223753
59	1	0	-1.909907	1.116910	-2.814491
60	1	0	-3.932714	-0.020552	-3.214401
61	1	0	-4.669593	1.581323	-3.122580
62	1	0	-3.053292	2.881492	0.141884
63	1	0	-3.116163	1.430495	1.161967
64	1	0	-5.094664	2.503804	-0.854145
65	1	0	-6.770686	1.743514	0.618383
66	1	0	-6.294192	0.756946	2.758127
67	1	0	-4.516398	0.501158	2.311708
68	1	0	-5.832645	0.133635	-1.493511
69	1	0	-4.173452	-1.659335	-1.234154
70	1	0	-4.382555	-0.924857	0.360162
71	1	0	0.175565	-1.590548	-1.036095
72	1	0	1.484788	-2.917565	-2.603445
73	1	0	1.008672	-5.345381	-2.921445
74	1	0	-0.788327	-6.434786	-1.578544
75	1	0	-3.705541	-5.178882	1.623781
76	1	0	-3.434362	-2.712342	1.998983
77	1	0	-0.016128	2.734552	-2.755462
78	1	0	0.509382	5.132782	-3.067447
79	1	0	0.237104	6.718806	-1.180689
80	1	0	-0.531272	5.893402	1.029934
81	1	0	-1.037798	3.470652	1.345000
82	1	0	-0.300096	0.860197	-1.082143
83	1	0	-0.781165	1.285819	0.589319
84	8	0	6.138528	-2.610265	-0.259821
85	1	0	6.024336	-3.485657	0.148736

14. NMR spectra and HPLC chromatograms

Peak	RT (min)	Height	\% Height	Area	\% Area
1	6.283	4083472	93.42	41391473	90.52
2	8.627	287437	6.58	4332692	9.48

Peak	RT (min)	Height	\% Height	Area	\% Area
1	6.747	939051	57.45	10599081	50.29
2	8.590	695641	42.55	10476522	49.71

($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

 . \qquad

Peak	RT (min)	Height	\% Height	Area	\% Area
1	8.065	89818	53.68	1094525	49.69
2	9.488	77502	46.32	1108114	50.31

Peak	RT (min)	Height	\% Height	Area	\% Area
1	8.045	197523	86.94	2518839	92.02
2	9.473	29683	13.06	331093	7.98

Peak	RT (min)	Height	\% Height	Area	\% Area
1	11.150	21.68	58.84	600.22	52.55
2	12.712	18.77	41.16	541.93	47.45

[^2]

Ret Time $[\mathrm{min}]$	Peak Type	Width $[\mathrm{min}]$	Height $[\mathrm{mAU}]$	Area $\left[\mathrm{mAU*s}^{*}\right]$	Area $[\%]$
7.744	BV	0.19	249.9336	3032.8333	53.2981
8.291	VB	0.20	204.9978	2657.4839	46.7019

Ret Time $[\mathrm{min}]$	Peak Type	Width $[\mathrm{min}]$	Height $[\mathrm{mAU}]$	Area $\left[\mathrm{mAU*}^{2}\right]$	Area $[\%]$
7.817	BV R	0.19	224.0534	2728.4934	83.0500
8.341	VB E	0.20	42.7743	556.8672	16.9500

(

	1	1	1	1	1	1	1	1	1	$1{ }^{1}$	1	+	1	1	1	1	1	1	1	1	
210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

Ret Time $[\mathrm{min}]$	Peak Type	Width $[\mathrm{min}]$	Height $[\mathrm{mAU}]$	Area $[\mathrm{mAU*}$]	Area $[\%]$
9.033	BB	0.23	62.2731	936.2390	50.2052
12.122	BB	0.33	44.3350	928.5851	49.7948

Ret Time $[\mathrm{min}]$	Peak Type	Width $[\mathrm{min}]$	Height $[\mathrm{mAU}]$	Area $[\mathrm{mAU*s}]$	Area $[\%]$
9.030	BBA	0.24	17.1948	273.0152	11.7910
12.114	BB	0.33	97.0805	2042.4358	88.2090

5k
（ $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）

$\stackrel{\text { 으N }}{\stackrel{\text { N }}{N}}$	৷ৃ	∞ O 				

Ret Time $[\mathrm{min}]$	Peak Type	Width $[\mathrm{min}]$	Height $[\mathrm{mAU}]$	Area $[\mathrm{mAU}$ *s]	Area [\%]
6.573	BB	0.16	24.2341	255.2037	50.1757
9.308	BB	0.25	15.5648	253.4164	49.8243

Ret Time $[\mathrm{min}]$	Peak Type	Width $[\mathrm{min}]$	Height $[\mathrm{mAU}]$	Area $[\mathrm{mAU*s}]$	Area $[\%]$
6.570	BB	0.16	156.4582	1636.0673	93.1627
9.308	BB	0.25	7.6018	120.0720	6.8373

[^3]

Ret Time $[\mathrm{min}]$	Peak Type	Width $[\mathrm{min}]$	Height $[\mathrm{mAU}]$	Area $\left[\mathrm{mAU*s}^{*}\right]$	Area $[\%]$
6.169 20.389	BB	0.15	34.2513	333.1806	62.2233
	BB	0.62	4.9460	202.2790	37.7767

Ret Time $[\mathrm{min}]$	Peak Type	Width $[\mathrm{min}]$	Height $[\mathrm{mAU}]$	Area $[\mathrm{mAU*}$] $]$	Area $[\%]$
6.160	BB	0.15	105.7407	1029.4650	94.0840
20.207	BB	0.58	1.6240	64.7330	5.9160

Ret Time [min]	Peak Type	Width $[\mathrm{min}]$	Height $[\mathrm{mAU}]$	Area $[\mathrm{mAU*s}]$	Area $[\%]$
6.158	VB	0.15	106.4596	1023.8345	56.8231
8.198	BB	0.20	61.4051	777.9598	43.1769

Ret Time $[\mathrm{min}]$	Peak Type	Width $[\mathrm{min}]$	Height $[\mathrm{mAU}]$	Area $[\mathrm{mAU*}$]	Area $[\%]$
6.157	BB	0.15	139.4192	1330.5614	92.5702
8.195	BBA	0.20	8.1840	106.7920	7.4298

Ret Time $[\mathrm{min}]$	Peak Type	Width $[\mathrm{min}]$	Height $[\mathrm{mAU}]$	Area $[\mathrm{mAU}$ *s]	Area $[\%]$
5.606	BB	0.13	82.6674	716.1127	93.8489
8.606	BB	0.23	3.1776	46.9359	6.1511

Ret Time $[\mathrm{min}]$	Peak Type	Width $[\mathrm{min}]$	Height $[\mathrm{mAU}]$	Area $[\mathrm{mAU*s}]$	Area $[\%]$
15.891	BB	0.60	13.1100	510.7031	50.1822
17.848	BB	0.66	11.8919	506.9955	49.8178

Ret Time $[\mathrm{min}]$	Peak Type	Width $[\mathrm{min}]$	Height $[\mathrm{mAU}]$	Area $[\mathrm{mAU*s}]$	Area $[\%]$
15.871	BB	0.60	11.7712	463.4202	93.5805
17.889	BB	0.50	0.7778	31.7898	6.4195

Ret Time [min]	Peak Type	Width $[\mathrm{min}]$	Height $[\mathrm{mAU}]$	Area $\left[\mathrm{mAU}^{*} \mathrm{~s}\right]$	Area [\%]
7.937	BB	0.22	254.2308	3553.9900	51.6617
17.612	BBA	0.57	91.3677	3325.3596	48.3383

Ret Time $[\mathrm{min}]$	Peak Type	Width $[\mathrm{min}]$	Height $[\mathrm{mAU}]$	Area $[\mathrm{mAU*}$]	Area $[\%]$
8.001	BB	0.22	91.0733	1299.8302	94.2841
17.731	BB	0.54	2.1994	78.8008	5.7159

[^4]

Ret Time $[\mathrm{min}]$	Peak Type	Width $[\mathrm{min}]$	Height $[\mathrm{mAU}]$	Area $[\mathrm{mAU*}$ s]	Area $[\%]$
6.195	BB	0.15	319.6223	3068.2593	62.6669
8.325	BB	0.21	135.8993	1827.8781	37.3331

Ret Time $[\mathrm{min}]$	Peak Type	Width $[\mathrm{min}]$	Height $[\mathrm{mAU}]$	Area $[\mathrm{mAU*}$]	Area $[\%]$
6.203	BBA	0.14	194.7155	1813.7520	92.0495
8.330	BB	0.21	11.6859	156.6579	7.9505

Ret Time $[\mathrm{min}]$	Peak Type	Width $[\mathrm{min}]$	Height $[\mathrm{mAU}]$	Area $[\mathrm{mAU*}$]	Area $[\%]$
4.707	BB	0.11	257.7388	1850.9292	56.9245
5.946	BB	0.14	156.9358	1400.6216	43.0755

Ret Time $[\mathrm{min}]$	Peak Type	Width $[\mathrm{min}]$	Height $[\mathrm{mAU}]$	Area $[\mathrm{mAU*}]$	Area $[\%]$
4.707	BB	0.11	232.7814	1625.1051	92.5136
5.947	BB	0.14	14.8609	131.5076	7.4864

($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\begin{gathered} \stackrel{8}{8} \\ \underset{9}{\mid} \\ \hline \end{gathered}$	$\xrightarrow{8}$		$\stackrel{\text { ® }}{\text { ¢ }}$		$\begin{aligned} & \text { or } \\ & \text { on } \\ & \text { Nos } \\ & 1 \end{aligned}$	-

$\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

[^5]

($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

[^6]

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [\%]
8.618	BB	0.2455	112.76895	1792.55115	33.8867
14.030	BB	0.4322	125.86776	3497.28491	66.1133

Ret Time $[\mathrm{min}]$	Peak Type	Width $[\mathrm{min}]$	Height $[\mathrm{mAU}]$	Area $[\mathrm{mAU*} \mathrm{~s}]$	Area $[\%]$
8.559	BB	0.25	7.5587	123.9443	6.0385
13.813	BB	0.42	71.6338	1928.6392	93.9615

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$	Type	Width [min]	Area		Height		Area
				mAU	*s	[mAU]	8
1	6.060		0.1679	5320	6865	488.	7773	93.491
2	7.463		0.2411		0515		8	6.5

(

1																				
210	200	190	180	170	160	150	140	130	120	$\begin{aligned} & 110 \\ & \mathrm{f1}(\mathrm{ppm}) \end{aligned}$	100	90	80	70	60	50	40	30	20	10

Peak	RetTime	Type	Width	Area	Height	Area
\#	[min]		[min]	mAU *s	[mAU]	\%
1	5. 389	VV R	0. 1286	478.44125	56.59073	46. 4262
2	6. 509	BB	0. 1606	552.10089	52.96700	53.5738

(400MHz, CDCl_{3})
 1

			$\begin{aligned} & \text { T } \\ & \underset{\sim}{\infty} \end{aligned}$		$\begin{aligned} & \text { TT } \\ & \text { O} \\ & \underset{\sim}{2} \end{aligned}$			$\begin{aligned} & \text { T } \\ & \text { 区 } \\ & \hline \end{aligned}$			\bigcirc			$\begin{aligned} & \stackrel{T}{8} \\ & \stackrel{-}{4} \end{aligned}$				
8.5	8.0	7.5	7.	6.5	6.0	5.5	5.0	4.5	4.0		3. 5	3.0	2.5	20	1.5	1.0	0.5	0.6
												3.0	2.5	2.0	1.5	1.0	0.5	O.

药

12a
($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

220	210	200	190	180	170	160																
220	210	200	190	180	170	160	150	140	130	120	$\mathrm{fl}^{110}(\mathrm{ppm})$	100	90	80	70	60	50	40	30	20	10	0

Ret Time $[\mathrm{min}]$	Peak Type	Width $[\mathrm{min}]$	Height $[\mathrm{mAU} \mid$	Area $[\mathrm{mAU*} \mid$	Area $[\%]$
13.712	BB	0.48	145.7370	4502.7183	57.1926
26.797	BB	1.01	51.2258	3370.1804	42.8074
			Totals:	7872.8987	100.0000

Ret Time $[\mathrm{min}]$	Peak Type	Width $[\mathrm{min}]$	Height $[\mathrm{mAU}]$	Area $[\mathrm{mAU}$ s $]$	Area $[\%]$
13.772	BB	0.48	17.4750	539.6851	8.0380
26.671	BB	1.02	93.4017	6174.4922	91.9620
			Totals:	6714.1772	100.0000

\mathbb{Y}

l

1
Mororomnue

Ret Time $[\mathrm{min}]$	Peak Type	Width $[\mathrm{min}]$	Height $[\mathrm{mAU}]$	Area $[\mathrm{mAU*}]$	Area $[\%]$
14.234	BB	0.52	161.8310	5458.3267	41.7577
40.597	BBA	1.64	70.7844	7613.1099	58.2423
			Totals:	13071.4365	100.0000

Ret Time $[\mathrm{min} \mid$	Peak Type	Width $[\mathrm{min}]$	Height $[\mathrm{mAU} \mid$	Area $[\mathrm{mAU*} \mathrm{~s}]$	Area $[\%]$
14.232	BBA	0.52	44.5588	1479.1577	9.4187
40.039	BBA	1.64	132.3924	14225.2979	90.5813
			Totals:	15704.4556	100.0000

12c
(400MHz, CDCl_{3})
Q

Ret Time $[\mathrm{min}]$	Peak Type	Width $[\mathrm{min}]$	Height $[\mathrm{mAU}]$	Area $[\mathrm{mAU*}]$	Area $[\%]$
13.740	BB	0.50	495.3008	15924.6426	46.0731
41.159	BB	1.67	170.3046	18639.2207	53.9269
			Totals:	34563.8633	100.0000

Ret Time $[\mathrm{min}]$	Peak Type	Width $[\mathrm{min}]$	Height $[\mathrm{mAU}]$	Area $[\mathrm{mAU}$: $]$	Area $[\%]$
13.388	BB	0.48	12.5945	386.5583	9.9662
39.981	BB	1.57	34.1107	3492.1396	90.0338
			Totals:	3878.6979	100.0000

12d
$\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Ret Time $[\mathrm{min}]$	Peak Type	Width $[\mathrm{min}]$	Height $[\mathrm{mAU} \mid$	Area $[\mathrm{mAU} \mathrm{s}]$	Area $[\% \mid$
26.529	BB	0.88	40.3576	2322.3757	32.8290
33.325	BBA	1.13	63.3756	4751.7910	67.1710
			Totals:	7074.1667	100.0000

Ret Time $[\mathrm{min}]$	Peak Type	Width $[\mathrm{min}]$	Height $[\mathrm{mAU}]$	Area $[\mathrm{mAU} \mathrm{s}]$	Area $[\%]$
26.489	BB	0.78	1.9720	112.1931	7.7414
33.031	BB	1.17	17.2605	1337.0769	92.2586
			Totals:	1449.2701	100.0000

Ret Time $[\mathrm{min}]$	Peak Type	Width $[\mathrm{min}]$	Height $[\mathrm{mAU}]$	Area $[\mathrm{mAU*}]$	Area $[\%]$
14.603	BB	0.53	309.4417	10716.9961	40.0750
28.189	BB	1.11	222.6176	16025.3486	59.9250
			Totals:	26742.3447	100.0000

Ret Time $[\mathrm{min}]$	Peak Type	Width $[\mathrm{min}]$	Height $[\mathrm{mAU}]$	Area $[\mathrm{mAU*}]$	Area $[\%]$
14.705	BBA	0.53	22.8103	768.6624	10.1246
28.448	BB	1.11	95.3737	6823.3579	89.8754
			Totals:	7592.0203	100.0000

$12 f$
(400MHz, CDCl_{3})

Ret Time $[\mathrm{min}]$	Peak Type	Width $[\mathrm{min}]$	Height $[\mathrm{mAU}]$	Area $[\mathrm{mAU*s}]$	Area $[\%]$
14.048	BB	0.51	87.0748	2878.2803	46.1540
49.765	BB	1.82	26.4309	3357.9717	53.8460
			Totals:	6236.2520	100.0000

Ret Time $[\mathrm{min}]$	Peak Type	Width $[\mathrm{min} \mid$	Height $[\mathrm{mAU} \mid$	Area $[\mathrm{mAU}$ s] $]$	Area $[\%]$
13.977	BBA	0.52	8.0256	270.7563	3.6868
49.306	BB	1.90	54.6272	7073.1079	96.3132
			Totals:	7343.8642	100.0000

12g
（400MHz， CDCl_{3} ）

$\begin{aligned} & \infty \\ & \stackrel{\circ}{\infty} \\ & \stackrel{+}{\tau} \end{aligned}$	¢ $\stackrel{8}{8}$ $\stackrel{1}{1}$	 	$\begin{aligned} & \text { N } \\ & \stackrel{N}{\infty} \underset{\sim}{\circ} \mathrm{O} \\ & 1 \end{aligned}$	\％	

Ret Time $[\mathrm{min}]$	Peak Type	Width $[\mathrm{min}]$	Ifcight $[\mathrm{mAU}]$	Area $[\mathrm{mAU*}]$	Area $[\%]$
17.955	BB	0.79	133.0663	6816.8457	40.9767
53.561	BB	2.45	59.0161	9819.0713	59.0233
			Totals:	16635.9170	100.0000

Ret Time $[\mathrm{min}]$	Peak Type	Width $[\mathrm{min}]$	Height $[\mathrm{mAU}]$	Area $[\mathrm{mAU*s}]$	Area $[\% \mid$
18.022	BBA	0.78	18.3559	926.4836	8.5706
53.624	BB	2.44	59.1773	9883.5273	91.4294
			Totals:	10810.0110	100.0000

Ret Time $[\mathrm{min}]$	Peak Type	Width $[\mathrm{min}]$	Height $[\mathrm{mAU}]$	Area $[\mathrm{mAU*s}]$	Area $[\%]$
13.543	BB	0.53	69.7607	2395.4045	45.0591
46.911	BB	1.81	22.4417	2920.7400	54.9409
			Totals:	5316.1445	100.0000

Ret Time $[\mathrm{min}]$	Peak Type	Width $[\mathrm{min}]$	Height $[\mathrm{mAU}]$	Area $[\mathrm{mAU*s}]$	Area $[\%]$
13.560	BB	0.54	7.6879	269.0080	8.9206
46.910	BB	1.79	21.1874	2746.5793	91.0794
			Totals:	3015.5874	100.0000

	\% \% \% \% \% \%	跉		
25 Mu	-490)	\%	97	comomilim

Ret Time $[\mathrm{min}]$	Peak Type	Width $[\mathrm{min}]$	Height $[\mathrm{mAU}]$	Area $[\mathrm{mAU*}]$	Area $[\%]$
27.019	BB	0.93	46.6330	2809.3738	42.8499
55.040	VV R	2.14	25.7241	3746.9434	57.1501
			Totals:	6556.3171	100.0000

Ret Time $[\mathrm{min}]$	Peak Type	Width $[\mathrm{min}]$	Height $[\mathrm{mAU}]$	Area $[\mathrm{mAU}$ *s]	Area $[\%]$
27.173	BBA	0.91	7.0865	413.7141	5.1486
54.731	BB	2.17	51.6717	7621.7832	94.8514
			Totals:	8035.4973	100.0000

Ret Time $\|\mathrm{min}\|$	Peak Type	Width $[\mathrm{min} \mid$	Height $[\mathrm{mAU}]$	Area $[\mathrm{mAU*s}]$	Area $[\%]$
16.221	BB	0.62	209.6729	8408.2002	40.0232
39.393	BB	1.59	121.4745	12600.0928	59.9768
			Totals:	21008.2930	100.0000

Ret Time $[\mathrm{min}]$	Peak Type	Width $[\mathrm{min}]$	Height $[\mathrm{mAU}]$	Area $[\mathrm{mAU} \mathrm{s}]$	Area $[\%]$
15.545	BB	0.58	12.5185	468.5338	9.1841
37.728	BB	1.53	46.6987	4633.0532	90.8159
			Totals:	5101.5871	100.0000

12k
(400MHz, CDCl_{3})

12k
(100MHz, CDCl_{3})

Ret Time $[\mathrm{min}]$	Peak Type	Width $[\mathrm{min}]$	Height $[\mathrm{mAU}]$	Area $[\mathrm{mAU}$ *s]	Area $[\%]$
12.362	BB	0.40	737.8484	18788.9141	54.6366
21.197	BB	0.73	330.5725	15599.9814	45.3634
			Totals:	34388.8955	100.0000

Ret Time $[\mathrm{min}]$	Peak Type	Width $[\mathrm{min}]$	Height $[\mathrm{mAU}]$	Area $[\mathrm{mAU*} \mathrm{~s}]$	Area $[\%]$
12.307	BBA	0.38	22.7717	565.5047	9.8843
21.154	BB	0.70	114.8843	5155.7139	90.1157
			Totals:	5721.2186	100.0000

($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

13
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Ret Time $[\mathrm{min}]$	Peak Type	Width $[\mathrm{min}]$	Height $[\mathrm{mAU}]$	Area $[\mathrm{mAU}$.s]	Area $[\%]$
8.846	BB	0.24	260.5586	3960.1890	46.0579
19.933	BB	0.60	119.8027	4638.1021	53.9421
			Totals:	8598.2910	100.0000

Ret Time $[\mathrm{min}]$	Peak Type	Width $[\mathrm{min}]$	Height $[\mathrm{mAU}]$	Area $[\mathrm{mAU*}]$	Area $[\%]$
8.850	BB	0.24	28.9652	448.3345	20.6686
19.972	BB	0.60	44.9013	1720.8241	79.3314
			Totals:	2169.1586	100.0000

$14\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Ret Time $[\mathrm{min}]$	Peak Type	Width $[\mathrm{min} \mid$	Height $[\mathrm{mAU}]$	Area $[\mathrm{mAU*s}]$	Area $[\%]$
7.992	BV	0.40	191.4076	5003.5518	48.9300
9.195	VB	0.44	180.8650	5222.3867	51.0700
			Totals:	10225.9385	100.0000

Ret Time $[\mathrm{min}]$	Peak Type	Width $[\mathrm{min}]$	Height $[\mathrm{mAU}]$	Area $[\mathrm{mAU*}]$	Area $[\%]$
8.043	VV E	0.42	18.4417	518.0374	6.8868
9.170	VB R	0.44	247.1892	7004.0942	93.1132
			Totals:	7522.1316	100.0000

$\overline{\bar{N}} \mathrm{HB}$ oc
15 ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

	1				1	1		1														
120	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	

Ret Time $\|\mathrm{min}\|$	Peak Type	Width $[\mathrm{min}]$	Height $[\mathrm{mAU}]$	Area $[\mathrm{mAU*}]$	Area $[\%]$
8.835	BB	0.31	244.9575	4879.1611	46.5816
10.022	BB	0.33	257.0048	5595.2871	53.4184
			Totals:	10474.4482	100.0000

Ret Time $[\mathrm{min}]$	Peak Type	Width $[\mathrm{min}]$	Height $[\mathrm{mAU}]$	Area $[\mathrm{mAU}$.s]	Area $[\%]$
8.950	BB	0.33	27.2439	587.9487	8.5186
10.125	BB	0.35	273.8868	6313.9658	91.4814
			Totals:	6901.9145	100.0000

				,		,	+														T
10	200	190	180	170	160	150	140	130	120	$\stackrel{110}{81}$	${ }_{(\mathrm{G} D \mathrm{~m})}^{100}$	90	80	70	60	50	40	30	20	10	0

Ret Time $[\mathrm{min}]$	Peak Type	Width $[\mathrm{min}]$	Height $[\mathrm{mAU}]$	Area $[\mathrm{mAU} \mathrm{s}]$	Area $[\%]$
8.664	BB	0.36	146.8844	3369.2568	55.3245
12.123	BB	0.52	81.1911	2720.7334	44.6755
			Totals:	6089.9902	100.0000

Ret Time $[\mathrm{min}]$	Peak Type	Width $[\mathrm{min}]$	Height $[\mathrm{mAU}]$	Area $[\mathrm{mAU} \mathrm{s}]$	Area $[\%]$
8.674	BB	0.35	308.3178	7006.1206	91.4741
12.180	BBA	0.50	20.6211	653.0064	8.5259
			Totals:	7659.1270	100.0000

17 ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

	1	1	1	1			1	1	1	1		1	1	1	1	1	1	1	1	1	
210	200	190	180	170	160	150	140	130	120	${ }_{\text {f1 }}^{110}$	100	90	80	70	60	50	40	30	20	10	0

Ret Time $[\mathrm{min}]$	Peak Type	Width $[\mathrm{min}]$	Height $[\mathrm{mAU}]$	Area $[\mathrm{mAU*s}]$	Area $[\%]$
6.885	BB	0.17	282.8138	3109.9202	51.8464
10.728	VB R	0.28	159.7134	2888.4150	48.1536
			Totals:	5998.3352	100.0000

Ret Time $\|\mathrm{min}\|$	Peak Type	Width $[\mathrm{min}]$	Height $[\mathrm{mAU}]$	Area $[\mathrm{mAU*s}]$	Area $[\%]$
6.886	VB R	0.17	471.7472	5078.5771	91.3756
10.736	BB	0.27	27.4894	479.3391	8.6244
			Totals:	5557.9163	100.0000

20	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

Signal 1: VWD1 A, Wavelength=254 nm

Peak RetTime Type	Width	Area	Height	Area
$\#$	$[m i n]$	$[m i n]$	mAU ${ }^{*} \mathrm{~s}$	$[\mathrm{mAU} \quad]$

| | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 12.220 | BB | 0.2875 | 2170.83350 | 117.15895 | 46.0619 |
| 2 | 14.579 | BB | 0.3617 | 2542.03101 | 108.69978 | 53.9381 |

Signal 1: VWD1 A, Wavelength=254 nm

[^0]: ${ }^{a}$ Unless noted otherwise, reactions were performed with 2-cyclopentenone $\mathbf{1 a}(0.2 \mathrm{mmol})$, activated olefin $\mathbf{2 a}(0.1 \mathrm{mmol})$,

[^1]: ${ }^{a}$ Unless noted otherwise, reactions were performed with 2-cyclopentenone $1 \mathbf{1 a}(0.2 \mathrm{mmol})$, activated olefin 2 (0.1 mmol), nitroolefin $4(0.1 \mathrm{mmol})$, PTC C2 (20 mol \%), thiol T1 (40 $\mathrm{mol} \%)$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(60 \mathrm{~mol} \%)$ in toluene $(1.0 \mathrm{~mL})$ at $35{ }^{\circ} \mathrm{C}$ for $24-48 \mathrm{~h} .{ }^{b}$ Isolated yield. ${ }^{c}$ Determined by HPLC analysis on a chiral stationary phase.

[^2]:

[^3]:

[^4]: $\begin{array}{llllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ & & & & & & & & & & & f(\mathrm{ppm})\end{array}$

[^5]: $\begin{array}{llllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ \mathrm{f} 1(\mathrm{ppm})\end{array}$

[^6]: $\begin{array}{llllllllllll}220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 \\ \mathrm{f} 1(\mathrm{ppm})\end{array}$

