SUPPORTING INFORMATION

Local Structure and Electronic State of Atomically Dispersed Pt Supported on Nanosized CeO₂

Matthew Kottwitz,¹ Yuanyuan Li,² Robert M. Palomino,³ Zongyuan Liu,³ Guangjin Wang,⁴ Qin Wu,⁵ Jiahao Huang,² Janis Timoshenko,² Sanjaya D. Senanayake,³ Mahalingam Balasubramanian,⁶ Deyu Lu,⁵ Ralph G. Nuzzo,^{*,1,7} Anatoly I. Frenkel^{*,2,3}

¹Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States ²Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States

³Division of Chemistry, Brookhaven National Laboratory, Upton, New York 11973, United States

⁴College of Chemistry and Materials Science, Hubei Engineering University, Xiaogan 432000, China

⁵Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York, 11973, United States

⁶Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, United States

⁷Surface and Corrosion Science, School of Engineering Sciences in Chemistry,
Biotechnology and Health, KTH Royal Institute of Technology, Drottning Kristinasväg
51, 100 44 Stockholm, Sweden

*E-mail: r-nuzzo@illinois.edu, anatoly.frenkel@stonybrook.edu

Contents

Figure S1	Additional STEM images of prepared samples			
Figure S2	STEM images of a sample prepared via the sol-gel-based synthesis with the Pt			
	precursor excluded.			
Figure S3	WT-EXAFS of prepared samples			
Figure S4	Top view of various slab models for DFT calculations			
Figure S5	Side view of various slab models for DFT calculations			
Figure S6	Structure model of the Pt passivated CeO ₂ (100) surface. Solid lines indicate th			
	unit cell.			
Table S1	Bond lengths and Bader charge of various slab models			
Table S2	Formation energies of proposed model			

Estimation on the Pt density on (100) surface of nano ceria for the SAC sample

Figure S1. Additional STEM images of PtO_x clusters deposited on CeO_2 (a-c) and Pt single atoms deposited on CeO_2 (d-f). Scale bars are 10 nm (a-c) and 5 nm (d-f).

Figure S2. STEM images of a sample prepared via the sol-gel-based synthesis with the Pt precursor excluded.

Figure S3. Wavelet Transform (WT) – EXAFS of (a) Pt foil, (b) α -PtO₂, (c) Pt NPs/CeO₂, and (d) Pt SACs/CeO₂ data. The comparison shows the similarity between the WT-EXAFS map of Pt NPs/CeO₂ and Pt foil and the uniqueness of Pt SACs/CeO₂.

Figure S4. Top views of six slab models containing a small ceria cluster mimicking the {100} nanofacets on the ceria (111) surface as well as a cluster model. The unit cell contains two Pt atoms (Pt₂/CeO₂) (a), one Pt atom and one oxygen vacancy on three different locations of the ceria {100} cluster (Pt-O_{V1}/CeO₂, Pt-O_{V2}/CeO₂, and Pt-O_{V3}/CeO₂) (b-d), one Pt atom and one oxygen vacancy on the ceria (111) surface (Pt-O_{SV}/CeO₂) (e), one Pt atom and two reduced Ce atoms (Pt-2Ce³⁺/CeO₂) (f), and the PtCe₄₀O₈₀ nanoparticle (g) respectively. Red, white, gray and light blue balls represent O, Ce, Pt and trivalent Ce atoms, respectively. Orange, pink and blue balls represent the top-layer O atoms in the first shell, the top-layer Ce atoms in the second shell, and the second-layer O atoms in the third shell of the Pt atoms, respectively. In (b)-(e), Black spheres represent the O vacancy.

Figure S5. Side views of the same slab models in Figure S4. The dashed rectangular box in (a) indicates the bulk region of CeO₂, where atoms are fixed during the structure optimization.

Figure S6. Structure model of the Pt passivated $CeO_2(100)$ surface. Solid lines indicate the unit cell.

Table S1. The average Pt-O bond length (d_{Pt-O} , Å) between the platinum atom and the first-shell O atoms, the average Pt-Ce distance (d_{Pt-Ce} , Å) between the platinum atom and the second-shell Ce atoms, and the Bader charge (BC) of platinum atoms on the surface of Pt₂/CeO₂, Pt-O_{V1}/CeO₂, Pt-O_{V2}/CeO₂, Pt-O_{V3}/CeO₂, Pt-O_{V3}/CeO₂ and Pt-2Ce³⁺/CeO₂ model. Values in the parentheses (Δ , %) are the percentage deviation of the theory with respect to the corresponding experimental values.

Model	d _{Pt} -o(Δ)	dPt-Ce(Δ)	Bader Charge
Experiment	1.995	3.34	
Pt ₂ /CeO ₂ *	2.028(1.65)	3.075(-7.93)	0.888/0.919
Pt-Ov1/CeO2	2.028(1.65)	3.073(-7.99)	1.103
Pt-Ov2/CeO2	2.026(1.55)	3.075(-7.93)	0.876
Pt-Ov ₃ /CeO ₂	2.027(1.57)	3.081(-7.75)	0.782
Pt-O _{sv} /CeO ₂	2.030(1.75)	3.075(-7.93)	0.966
Pt-2Ce ³⁺ /CeO ₂	2.027(1.50)	3.072(-8.02)	0.862
PtO			0.944
PtO ₂			1.770

* The two platinum atoms in this model have the same structural parameters, but slightly different Bader charge.

Table S2. Formation energies pertinent to the stability of the $Pt_4/O_4/CeO_2(100)$ model. With these energies, we calculate two formation energies per Pt atom: $\frac{1}{4}(E[Pt_4/O_4/CeO_2(100)] - E[CeO_2(100)] - 2*E[PtO bulk (Pt_2O_2)]) = -0.52 eV; \frac{1}{4}(E[Pt_4/O_4/CeO_2(100)] - E[CeO_2(100)] - E[Pt bulk (Pt_4)]/2 - E[PtO_2 bulk (Pt_2O_4)]) = -0.28 eV. Both show <math>Pt_4/O_4/CeO_2(100)$ is stable.

Model	# of CeO ₂ /Unit	# of Pt/Unit	# of O/Unit	Total energy (eV)	
	Cell	Cell	Cell		
Pt ₄ /O ₄ /CeO ₂ (100)	14	4	4	-383.22	
CeO ₂ (100)	14	0	0	-334.94	
Pt bulk (Pt ₄)	0	4	0	-24.39	
PtO bulk (Pt ₂ O ₂)	0	2	2	-23.11	
PtO ₂ bulk (Pt ₂ O ₄)	0	2	4	-34.94	

Estimation on the Pt density on (100) surface of nano ceria for the SAC sample

The Pt density of Pt on (100) of nano ceria could be obtained by using the Equation (1):

Surface density of Pt on (100) of nano ceria =
$$\frac{\frac{W_{Pt}}{M_{Pt}} \cdot N_A}{W_{nano ceria} \cdot S_{100}} \qquad \text{Eq. (1)}$$

In Equation (1), W_{Pt} ($W_{nano\ ceria}$) is the weight of Pt atoms (nano\ ceria) in the sample. In our SAC sample, there are two types of ceria: 25% of them is nano ceria which supports Pt single atoms and 75% of them is commercial ceria which supports hybrid Pt/ nano CeO₂. The weight loading of Pt (over all ceria) is about 1.8% and then about 7.2% for $W_{Pt}/W_{nano\ ceria}$ in Equation (1). M_{Pt} is the molecular weight of Pt and it is 195.084 g/mol. N_A is Avogadro's number. S_{100} is the (100) surface area of nano ceria per unit mass.

We performed the Brunauer–Emmett–Teller (BET) measurements on the as-prepared SAC sample and the obtained surface area of the sample is about 33 m²/g. For estimation, we assume there is only ceria in the sample: commercial ceria (the surface area is about 33 m²/g) and nano ceria, and for nano ceria, the dominating surface is (100). Then the surface area of (100) surface in nano ceria is also about 33 m²/g. By applying 33 m²/g for S₁₀₀ in Equation (1), the obtained Pt density is 6.6 atoms/nm² which is also the Pt density obtained from the model in Figure 6.