Supplemental Data

Tofacitinib is a mechanism-based inactivator of cytochrome P450 3A4

Xiucai Guo[†], Wei Li[†], Qingmei Li[†], Yan Chen[†], Guode Zhao[‡], Ying Peng^{*, †} and Jiang Zheng^{*, †, §}

[†]Wuya College of Innovation, [‡]School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, P.R. China;

[§]State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou, 550004, P. R. China

Table of Contents

Scheme S1.	S2
Figure S1.	S3
Figure S2.	S4
Figure S3.	S5
Figure S4.	S6

Figure S1. Tandem mass spectrometric spectra of TFT and TFT analogs. The MS/MS spectra of TFT and TFT analogs were obtained by MS₂ scanning. MS/MS spectrum of TFT provides fingerprint fragment ions at m/z 313, 272, 246, 229, 201, 173, 165, 149, and 98 (A); MS/MS spectrum of analog **2** provides fingerprint fragment ions at m/z 315, 274, 248, 231, 203, 175, 165, 151, and 98 (B); MS/MS spectrum of analog **3** provides fingerprint fragment ions at m/z 317, 300, 288, 272, 246, 229, 201, 173, 149, and 98 (C).

Figure S2. ¹H NMR (A) and ¹³C NMR (B) spectra of TFT analog **2**. ¹H NMR (600 MHz, DMSO-*d*6) δ 7.84 and 7.81 (d, 1H), 6.53 and 6.52 (d, 1H), 4.50-4.42 (m, 1H), 4.13-3.97 (m, 2H), 3.82-3.77 (m, 1H), 3.66-3.51 (m, 2H), 3.35 (s, 2H), 3.34-3.24 (m, 1H), 3.22-3.10 (m, 2H), 3.01 (s, 3H), 2.26-2.18 (m, 1H), 1.75-1.58 (m, 1H), 1.54-1.45 (m, 1H), and 1.00-0.97 (m, 3H). ¹³C NMR (400 MHz, D₂O): δ 170.2, 161.3, 158.3, 155.7, 116.2, 94.2, 53.2, 52.2, 42.5, 42.1, 33.1, 31.9, 31.0, 28.0, 24.8, and 13.9.

Figure S3. ¹H NMR (A) and ¹³C NMR (B) spectra of TFT analog **3**. ¹H NMR (600 MHz, D₂O) δ 8.29 and 8.26 (d, 1H), 7.39 and 7.38 (d, 1H), 6.84 (s, 1H), 4.79-4.65 (m, 1H), 4.14-3.98 (m, 1H), 3.96-3.89 (m, 1H), 3.68-3.36 (m, 2H), 3.42 (s, 3H), 3.30-3.25 (m, 2H), 2.96-2.85 (m, 2H), 2.57-2.55 (m, 1H), 2.00-1.90 (m, 1H), 1.82-1.73 (m, 1H), and 1.15-1.12 (m, 3H). ¹³C NMR (400 MHz, D₂O): δ 173.5, 145.1, 126.9, 107.8, 104.9, 59.5, 47.4, 45.4, 44.4, 41.4, 38.6, 34.1, 33.2, 32.7, 32.5, and 16.0.

Figure S4. High resolution mass spectra of TFT analogs. A hybrid quadruple time-offlight (Q-TOF) MS system (microQ-TOF; Bruker Corporation, Billerica, MA) was applied to analyze synthetic TFT analogs. Analog **2** showed protonated molecule ion $[M+H]^+$ at m/z 315.1930 in positive ion mode (A), which matches the elemental composition of $[M+H]^+$ C₁₆H₂₂N₆O₁H (m/z 315.1928) with relative error 0.5 ppm (B). Analog **3** showed protonated molecule ion $[M+H]^+$ at m/z 317.2087 in positive ion mode (C), which matches the elemental composition of $[M+H]^+$ C₁₆H₂₄N₆O₁H (m/z317.2084) with relative error 0.8 ppm (D).