Supporting Information

Mechanistic Studies of Adamantylacetophenones with Competing Reaction Pathways in Solution and in the Crystalline Solid State

Vince M. Hipwell and Miguel A. Garcia-Garibay*

Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, United States

*e-mail: <u>mgg@chem.ucla.edu</u>

Contents:	Page Number
¹ H NMR and ¹³ C{ ¹ H} NMR spectra of compounds 1-10	S2 – S11
Infrared spectra	S12 – S15
UV-Vis spectra	S16- S18
Phosphorescence spectra	S18 – S20
Photoproduct analysis summary	S21
NMR spectra of isolated photoproducts	S22 – S29
Photochemical deuteration experiments	S30 – S32
DLS and SEM characterization of nanocrystalline suspensions	S33 – S37
PXRD patterns of bulk powders and dried aqueous suspensions	S38 – S40
Transient absorption spectra	S41 – S42
Crystallographic data and thermal ellipsoid plots	S43 – S44
Computational details and calculated structure of 5	S45 - S47

Figure S1. ¹H NMR (500 MHz, CDCl₃) of **1**.

Figure S2. ¹³C{¹H} NMR (126 MHz, CDCl₃) of **1**.

Figure S3. ¹H NMR (500 MHz, CDCl₃) of **2**.

Figure S4. ¹³C{¹H} NMR (126 MHz, CDCl₃) of **2**.

Figure S5. ¹H NMR (500 MHz, CDCl₃) of **8**.

Figure S6. ¹³C{¹H} NMR (126 MHz, CDCl₃) of **8**.

Figure S7. ¹H NMR (500 MHz, CDCl₃) of **3**.

Figure S8. ¹³C{¹H} NMR (126 MHz, CDCl₃) of **3**.

Figure S9. ¹H NMR (500 MHz, CDCl₃) of 4.

Figure S10. ¹³C{¹H} NMR (126 MHz, CDCl₃) of **4**.

Figure S11. ¹H NMR (500 MHz, CDCl₃) of **9**.

Figure S12. ¹³C{¹H} NMR (126 MHz, CDCl₃) of **9**.

Figure S13. ¹H NMR (500 MHz, CDCl₃) of **5**.

Figure S14. ¹³C{¹H} NMR (126 MHz, CDCl₃) of **5**.

Figure S15. ¹H NMR (500 MHz, CDCl₃) of **10**.

Figure S16. ¹³C{¹H} NMR (126 MHz, CDCl₃) of **10**.

Figure S17. ¹H NMR (500 MHz, CDCl₃) of **6**.

Figure S18. ¹³C{¹H} NMR (126 MHz, CDCl₃) of **6**.

Figure S19. ¹H NMR (500 MHz, CDCl₃) of **7**.

Figure S20. ¹³C{¹H} NMR (126 MHz, CDCl₃) of **7**.

Figure S21. IR (powder) of 1.

Figure S24. IR (film) of 3.

Figure S31. UV-Vis Spectra of **1** : 0.01 mg/mL MeCN solution and 0.01 mg/mL nanocrystalline suspension at 0, 10, 20, and 30 minutes.

Figure S32. UV-Vis Spectra of **2** : 0.05 mg/mL MeCN solution and 0.05 mg/mL nanocrystalline suspension at 0, 10, 20, and 30 minutes.

Figure S33. UV-Vis Spectra of **3** : 0.02 mg/mL MeCN solution and 0.02 mg/mL nanocrystalline suspension at 0, 10, 20, and 30 minutes.

Figure S34. UV-Vis Spectra of **4** : 0.025 mg/mL MeCN solution and 0.025 mg/mL nanocrystalline suspension at 0, 10, 20, and 30 minutes.

Figure S35. UV-Vis Spectra of **5** : 0.05 mg/mL MeCN solution and 0.05 mg/mL nanocrystalline suspension at 0, 10, 20, and 30 minutes.

Figure S36. Phosphorescence spectrum of **1** : 0.01 mg/mL in methylcyclohexane at 77 K.

Figure S37. Phosphorescence spectrum of **2** : 0.05 mg/mL in methylcyclohexane at 77 K.

Figure S38. Phosphorescence spectrum of **3** : 0.05 mg/mL in methylcyclohexane at 77 K. 14 ¬

Figure S40. Phosphorescence spectrum of 5 : 0.05 mg/mL in methylcyclohexane at 77 K.

Compound	Medium	Reaction Time (min.)	% Conversion	% cis-ACB	% trans-ACB	% BCB	% Deuteration
1 -	MeCN	10	29	36	64	N/A	N/A
		120	96	38	62	N/A	N/A
	Suspension	10	47	75	25	N/A	N/A
		120	72	69	31	N/A	N/A
		10	2	0	0	100	4
2	MeCN	120	26	0	0	100	13
2		10	5	0	0	100	N/A
	Suspension	120	43	0	0	100	N/A
3 -	MeCN	10	<1	<1	<1	0	0
		120	6	70	30	0	0
	Suspension	10	<1	<1	<1	0	N/A
		120	6	78	22	0	N/A
4	MeCN	10	5	41	18	41	5
		120	21	16	21	63	23
	Suspension	10	6	24	28	48	N/A
		120	22	13	49	37	N/A
5	MeCN	10	0	0	0	0	N/A
		120	0	0	0	0	N/A
	Suspension	10	0	0	0	0	N/A
		120	0	0	0	0	N/A

Table S1. Photoproduct distributions of 1-5 in MeCN solutions and aqueous suspensions.

Figure S42. ¹³C{¹H} NMR (126 MHz, CDCl₃) of *trans*-ACB-1.

Figure S44. ¹³C{¹H} NMR (126 MHz, CDCl₃) of *cis*-ACB-1

Figure S45. ¹H NMR (500 MHz, CDCl₃) of **BCB-2**.

Figure S46. ¹³C{¹H} NMR (126 MHz, CDCl₃) of **BCB-2**.

Figure S47. ¹H NMR (500 MHz, CDCl₃) of elimination product of *cis*- and *trans*-ACB-3.

Figure S48. ¹³C{¹H} NMR (126 MHz, CDCl₃) of elimination product of *cis*- and *trans*-ACB-3.

Figure S49. ¹H NMR (500 MHz, CDCl₃) of elimination product of **BCB-3**.

Figure S50. ¹³C{¹H} NMR (126 MHz, CDCl₃) of elimination product of **BCB-3**.

Figure S51. ¹H NOESY NMR (500 MHz, CDCl₃) of elimination product of **BCB-3**.

Figure S52. ¹H NMR (500 MHz, CDCl₃) of elimination product of *trans*-ACB-4.

Figure S53. ¹³C{¹H} NMR (126 MHz, CDCl₃) of elimination product of *trans*-ACB-4.

Figure S55. ¹³C{¹H} NMR (126 MHz, CDCl₃) of *cis*-ACB-4.

An oven-dried NMR tube was charged with **2** (5.2 mg) in MeCN- d_3 (0.9 mL) and D₂O (0.1 mL). The solution was sparged with argon and irradiated for 2 hrs. Partial deuteration of the indicated benzylic positions was confirmed by ¹H NMR spectroscopy (**Figure S56**), in which the integration of the peak corresponding to the methyl groups ortho to the ketone (δ 2.13) was reduced by a percentage as indicated in **Table S1**.

Figure S56. ¹H NMR (500 MHz, CDCl₃) of **2** (recovered starting material) after 2 hrs. irradiation in MeCN- d_3 : D₂O (9:1).

An oven-dried NMR tube was charged with **3** (5.5 mg) in MeCN- d_3 (0.9 mL) and D₂O (0.1 mL). The solution was sparged with argon and irradiated for 2 hrs. Partial deuteration of the indicated benzylic positions was confirmed by ¹H NMR spectroscopy (**Figure S58**).

Figure S57. ¹H NMR (500 MHz, CDCl₃) of **3** (recovered starting material) after 2 hrs. irradiation in MeCN- d_3 : D₂O (9:1).

An oven-dried NMR tube was charged with **4** (5.9 mg) in MeCN- d_3 (0.8 mL), D₂O (0.1 mL), and TFA-d (0.1 mL). The solution was sparged with argon and irradiated for 2 hrs. Deuteration of the benzylic position is confirmed by ¹H NMR (**Figure S57**).

Figure S58. ¹H NMR (400 MHz, MeCN- d_3) of **4** after 2 hrs. irradiation in MeCN- d_3 : D₂O : TFA-d (8:1:1).

Figure S59. SEM micrographs and DLS unimodal size distribution analysis of nanocrystalline suspension of **1**.

Figure S60. SEM micrographs and DLS unimodal size distribution analysis of nanocrystalline suspension of **2**.

Figure S61. SEM micrographs and DLS unimodal size distribution analysis of nanocrystalline suspension of **3**.

Figure S62. SEM micrographs and DLS unimodal size distribution analysis of nanocrystalline suspension of **4**.

Figure S63. SEM micrographs and DLS unimodal size distribution analysis of nanocrystalline suspension of **5**.

Figure S64. Simulated and experimental PXRD patterns of 1.

Figure S65. Simulated and experimental PXRD patterns of 2.

Figure S66. Simulated and experimental PXRD patterns of 3.

Figure S67. Simulated and experimental PXRD patterns of 4.

Figure S68. Simulated and experimental PXRD patterns of 5.

Figure S69. Transient absorption spectra of **1** : 0.01 mg/mL MeCN solution.

Figure S71. Transient absorption spectra of **3** : 0.02 mg/mL MeCN solution. 14 **7 7 9 1**

Figure S72. Transient absorption spectra of **4** : 0.025 mg/mL nanocrystalline suspension.

Figure S73. Transient absorption spectra of **5** : 0.05 mg/mL MeCN solution.

Ketone	1 ^b	2	3	4
Space Group	P2 ₁ /m	P 1	P1	Pbca
a (Å)	6.417	6.819	6.873	7.678
b (Å)	21.991	11.296	10.713	20.557
c (Å)	10.566	11.941	12.302	24.693
α (°)	90.00	112.70	77.26	90
β(°)	90.02	97.57	74.20	90
γ(°)	90.00	90.14	87.04	90
Z	4	2	2	8
Volume (Å ³)	1491.0(3)	839.74	849.9(6)	3897.7(9)
GoF	1.039	1.132	1.011	1.035
R (%)	4.17	4.73	4.58	7.39
Rw (%)	10.60	11.75	12.21	14.48

Table S2. Selected crystal structure data for ketones 1-4.^a

^aCrystals of **2**, **3**, and **4** were obtained by slow evaporation of ethanol solutions. X-ray diffraction data was acquired on a Bruker Smart ApexII CCD-single crystal X-ray Diffractometer. ^bData obtained from reference **7**.

Figure S74. Crystal structure of **2** with thermal ellipsoids drawn at the 50% probability level.

Figure S75. Crystal structure of **3** with thermal ellipsoids drawn at the 50% probability level.

Figure S76. Crystal structure of **4** with thermal ellipsoids drawn at the 50% probability level.

Computational Details: The calculated structure of **5** was produced using the Spartan '16 program. A conformational search using the force-field method MMFF resulted in 6 conformers with energies within 2 kcal/mol. These conformers were nearly identical, differing only by rotation of the t-butyl groups. Conformers in which the adamantane group was placed closer to the aromatic ring displayed much higher energies (>30 kcal/mol increase). The lowest energy conformer was submitted to the DFT method B3LYP/6-31G* for equilibrium geometry calculation. The structure obtained from this calculation is shown in Figure S77 and the corresponding atomic positions are listed in Table S3.

Figure S77. Calculated Structure of 5.

Table S3. Cartesian Coordinates for Calculated Structure of 5.

С	1.3027	0.8005	1.4405
С	0.9097	-1.7296	2.561
С	2.284	0.1651	2.2103
С	0.0979	0.0833	1.1698
С	-0.1274	-1.1772	1.7892
С	2.1347	-1.1059	2.764
С	3.2809	-1.7399	3.5732
С	4.5371	-1.8598	2.6783
С	3.6098	-0.8472	4.7936
С	2.9259	-3.1466	4.0915

С	1.6841	2.2477	0.9848
С	2.1594	3.0563	2.2243
С	0.5591	3.0974	0.3632
С	2.8423	2.1677	-0.0398
С	-1.4154	-2.064	1.7467
С	-1.0794	-3.4168	1.0673
С	-1.8762	-2.3245	3.2068
С	-2.6484	-1.4909	1.0244
С	-0.872	0.6011	0.1054
0	-1.8366	1.2965	0.3634
Н	-3.4717	-2.2058	1.1379
Н	-2.9707	-0.535	1.4413
Н	-2.4943	-1.3626	-0.0483
Н	-2.1226	-1.3811	3.7065
Н	-2.7761	-2.951	3.2027
Н	-1.9579	-4.0735	1.0801
Н	-0.788	-3.268	0.0205
Н	0.7436	-2.6988	3.0112
Н	3.2165	0.6883	2.3854
Н	2.06	-3.1284	4.7629
Н	3.7714	-3.5559	4.6559
Н	2.7077	-3.841	3.2718
Н	2.7409	-0.7478	5.4544
Н	4.4311	-1.2858	5.3733
Н	3.9154	0.1601	4.4914
Н	5.3685	-2.2958	3.2457
Н	4.8653	-0.8845	2.3041
Н	1.3703	3.103	2.9834
Н	-0.3101	3.1747	1.0206
Н	0.2222	2.7257	-0.6041
Н	0.9456	4.1087	0.1904
Н	2.3968	4.083	1.9219
Н	3.1639	3.1758	-0.3289
Н	2.5295	1.643	-0.9504
Н	4.3435	-2.5019	1.8113
Н	3.0549	2.6458	2.6983
Н	3.7124	1.6392	0.3632
Н	-0.2608	-3.9457	1.5653
Н	-1.1232	-2.8368	3.8114
С	-0.4975	0.1532	-1.3123

С	-1.3543	0.5701	-2.5287
Н	0.5417	0.4797	-1.4714
Н	-0.4222	-0.9449	-1.2774
С	-0.6766	-0.0265	-3.7922
С	-1.43	2.1077	-2.7099
С	-2.7984	0.014	-2.4523
С	-3.5905	0.3735	-3.7265
С	-2.2218	2.4688	-3.9844
С	-1.4629	0.3299	-5.0678
Н	0.353	0.353	-3.8712
Н	-0.6033	-1.1192	-3.6897
Н	-2.7686	-1.0796	-2.3358
Н	-3.3013	0.4218	-1.5688
Н	-0.9572	-0.1082	-5.939
Н	-0.4128	2.5191	-2.7843
Н	-1.9038	2.5618	-1.8337
С	-3.6536	1.9064	-3.8749
С	-1.5247	1.8627	-5.2179
С	-2.8939	-0.2343	-4.9601
Н	-0.5102	2.2739	-5.3203
Н	-2.0699	2.1315	-6.1335
Н	-2.2613	3.5619	-4.083
Н	-4.2363	2.1765	-4.7667
Н	-4.1665	2.3481	-3.0097
Н	-3.4635	-0.0022	-5.8709
Н	-2.8621	-1.3297	-4.8745
Н	-4.6082	-0.0303	-3.6403