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Molecular Species in the Bio-Rejuvenator Made from Swine Manure and Algae

Decomposition of a lipid-rich source such as swine manure generates compounds with higher molecular 

weight, including long chains of fatty acids and saturated and unsaturated linear hydrocarbons.1, 2 The 

presence of nitrogen-containing components in the form of cyclic and acyclic molecules such as indoles, 

quinolones, amines, and amides is the predominant feature of bio-crude oil from protein-rich biomass, such 

as algae, which is related to amino acid transformation through the HTL process.3-6 Amino acids decompose 

via decarboxylation and deamination reactions and consequently produce amines and amides.7-9 Some 

products (ammonia and amines) undergo a condensation reaction with fatty acids, the building blocks of 

the lipids, to give alkyl amides and nitriles.10, 11 Also, interactions between amines and carbohydrates 

produce the nitrogen-containing rings such as indoles and quinolones in the bio-oil.12, 13 

“Molecular Models of the Swine-Manure-Based Bio-Rejuvenator”
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“Molecular Models of the Algae-Based Bio-Rejuvenator”

Phenol p-Cresol 2-Methyl-2-cyclopenten-1-one 4-Methyl-2-pentanol

Methylpyrazine 2,5-dimethylpyrazine 2- Ethylpyrazine 2,3,5-Trimethylpyrazine

Cyclo(L-prolyl-L-valine) Indole 3-Methylpyridine Pyrrolo[1,2-a]pyrazine-1,4-dione, 
hexahydro-3-(2-methylpropyl)-
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Benzenepropanenitrile Benzylnitrile

Pentanamide N-Ethylarachamide N,3-Diethyl-3-octanamine N-nonyl-2-butylamine

n-Hexadecanoic acid 9,12-Octadecadienoic acid (Z,Z)-

2,4-Dimethylheptane 4-methyloctane 3-ethyl-3-methylpentane 3-Ethyl-3-methylheptane

4,7-Dimethylundecane 3,7-dimethylundecane 5-methylundecane

1-Undecene 1-iodododecane

Figure S1. Molecular structures identified in swine-manure-based and algae-based bio-binders.

Intercalating Potential of the Primary and Secondary Amides, BR1 and BR2

Additional structural features whose impact on deagglomeration should be studied are the different types 

of amides: primary (BR1) and secondary (BR2) (Figure 2). We compared the interacting potential of the 

primary and secondary amides, BR1 and BR2, respectively, at Zone-C. In the secondary amide, the 

functional group is located between two hydrocarbon chains, so it is expected that BR2 would have more 

dispersion interaction from both sides of the molecular structure with the aromatic cores and subsequently 

more penetration into the intersheet gap in comparison with BR1. This expectation was verified in our 

computations for the interacting complex of an oxidized asphaltene dimer and BR2 (Table S1). The 

reduction in the binding energy and the increase in the binding distance of oxidized dimer of asphaltene 
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exposed to secondary amide (Table S1) is more than that of the primary amide (Figure 5-b). It can be 

expected that secondary amide molecules are more effective in the deagglomeration of asphaltene stacks in 

the intercalation step compared to the primary one. 

Table S1. Intercalating Step: Interacting complex to evaluate the penetrating ability and opening impact 

of secondary amide, BR2, on the asphaltene agglomerates. Shown are the binding energy (Ebind, kcal/mol) 

and the binding distance for the oxidized dimer (dbind, Å).

“Penetration of SB2 into the Intermolecular Sheet”

Ebind= -35.9

dbind= 6.16
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Density plot for population of data points falling in each range of average aggregation number

Figure S2. Density plot for data points calculated for average aggregation number from 20 to 40 ns (after 

addition of dopants).
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