Supplementary Information

Inter-comparison of the Radio-chronometric Ages of Plutonium Certified Reference Materials with Distinct Isotopic Compositions

Kattathu Mathew^{1*}, Theresa Kayzar-Boggs², Zsolt Varga³, Amy Gaffney⁴, Joanna Denton², James Fulwyler¹, Katherine Garduno¹, Andrew Gaunt², Jeremy Inglis², Russ Keller¹, William Kinman², Dana Labotka¹, Elmer Lujan¹, Joel Maassen², Tara Mastren², Iain May², Klaus Mayer³, Adrian Nicholl³, Chelsea Ottenfeld¹, Tashi Parsons-Davis⁴, Donivan Porterfield¹, Jung Rim¹, John Rolison⁴, Floyd Stanley^{1a}, Rob Steiner², Lav Tandon^{1b}, Mariam Thomas¹, Richard Torres⁵, Kerri Treinen⁴, Maria Wallenius³, Allison Wende², Ross Williams⁴, Josh Wimpenny⁴

¹Actinide Analytical Chemistry, Los Alamos National Laboratory, MS G740, Los Alamos, NM 87545, USA
 ²Nuclear and Radiochemistry, Los Alamos National Laboratory, MS J514, Los Alamos, NM 87545, USA
 ³European Commission, Joint Research Centre (JRC), Directorate for Nuclear Safety and Security, P.O. Box 2340, 76125 Karlsruhe, Germany
 ⁴Lawrence Livermore National Laboratory, Nuclear and Chemical Sciences Division, 7000 East Avenue, L-231, Livermore, CA 94550, USA
 ⁵Lawrence Livermore National Laboratory, Material Sciences Division, 7000 East Avenue, L-231, Livermore, CA 94550, USA
 *Corresponding Author: kmathew@lanl.gov

ABSTRACT: A brief history of the primary plutonium isotopic reference materials investigated here is included. Table S1 shows the certified isotope ratios of the Pu certified reference materials investigated here. Figure S1 shows the decay schematics utilized in this investigation for estimating the model purification (radio-chronometric) ages. Uncertainty budgets for the different radio-chronometric ages using C-AAC and C-NR data are shown as Tables S2 and S3.

Brief History of the Plutonium Isotopic Standards

Three of the four Pu isotopic reference materials investigated here were originally named by National Bureau of Standards (NBS – US certifying body and predecessor to National Institute of Standard and Technology, NIST) as Standard Reference Materials (SRMs) 946, 947, and 948³¹⁻³³. These SRMs were re-named CRMs 136, 137, and 138 in the 1980s when NBS formally transferred the production, certification, maintenance of adequate supply, storage, and distribution of nuclear reference materials responsibilities to NBL. The fourth isotopic standard, CRM 126-A³⁴, was produced in July 2003 at Los Alamos National Laboratory (LANL). A brief summary of the history of each of these primary Pu isotopic standards is included in the following paragraphs.

The processing steps for SRMs 946, 947, and 948 were similar, as the present chemical form of these isotopic standards are plutonium sulfate tetrahydrate. The Pu starting materials for SRMs 946 and 947 originated from commercial power reactor spent fuel. In an effort to produce two fuel grade (high-burn-up) Pu isotopic standards, these materials were processed, purified, and certified at the same facility. SRM 948 pre-dates SRMs 946 and 947 by approximately 5 years. SRM 948 material originated from reactors that were used to produce weapons grade (low-burn-up) Pu.

The Pu starting material for SRM 946 was reprocessed fuel at the Yankee Atomic Electric Company (Rowe, Massachusetts). The spent fuel was reprocessed at the Nuclear Fuel Service (NFS) West Valley, New York in the late 1960s, utilizing the Plutonium Uranium Redox Extraction (PUREX) process^a. The material was purified via ion exchange chemistry between March and April 1970 (to remove americium and impurities), and converted to plutonium sulfate tetrahydrate³⁵. For both SRMs 946 and 947, this two-month period can be considered a conservative uncertainty associated with the production date of the material.

The Pu starting material for SRM 947 was reprocessed fuel at the Commonwealth Edison Dresden reactor #1 located near Morris, Illinois. The spent fuel reprocessing likely took place at the NFS West Valley plant sometime in the late 1960's, utilizing the PUREX process^a. The solution was transferred to Richland, Washington. The material was dissolved, purified via ion exchange chemistry in September 1970, and converted to plutonium sulfate tetrahydrate. For both SRMs (946 and 947), the officially adopted NBS Certificate of Analysis (dated August 18, 1982) used the provisional certificate values obtained in 1971. The values in the provisional certificate were decayed to January 1, 1982, using the half-lives listed on the 1982 Certificate of Analysis³¹⁻³².

The Pu starting material for SRM 948 came from an unknown source. The exact timing of production of this Pu standard is not known. The Pu material for SRM 948 material was either a Hanford or Savannah River reactor. Both sites were producing weapons grade Pu from 1944 (Hanford) and 1955 (Savannah River). The SRM material was likely produced by converting a high-purity metal to the sulfate tetrahydrate sometime in 1963, and the bottling was completed in early 1964. The original certification measurements for isotopic abundances did not include ²³⁸Pu. The average values for the material were decay corrected to June 1, 1964. The uncertainty associated with the production date of this material, SRM 948, is likely larger than the two months stated earlier for SRMs 946 and 947.

CRM 126-A is a plutonium metal assay and isotopic standard³⁵ with nominally weapons grade isotope composition. The source material for CRM 126-A was a double electro-refined metal that was cast into rods prior to being extruded into a wire, cut into 1-gram pieces, and packaged into an inert atmosphere in quartz ampoules for storage and shipment. Per on-site documents, the most recent purification for CRM 126-A material appears to have occurred at LANL in early July 2001.

Table S1 lists the certified isotope ratios of the Pu isotopic standards included in the present study and the dates of the initial certification. The standards included in this study represent a wide range of isotopic compositions from nominally weapons grade plutonium to fuel grade plutonium. Updated certificates for SRMs 946, 947, and 948, did not involve additional measurements or processing of the materials. For discussions, SRMs 946, 947, and 948 is referenced using their modern names CRMs 136, 137, and 138.

Standard		Date of			
	²³⁸ Pu/ ²³⁹ Pu	²⁴⁰ Pu/ ²³⁹ Pu	²⁴¹ Pu/ ²³⁹ Pu	²⁴² Pu/ ²³⁹ Pu	Certification
CRM 136*	0.002747(83)	0.14507(23)	0.029326(59)	0.006796(36)	10/19/1971
CRM 137*	0.003606(78)	0.24141(37)	0.036594(79)	0.015592(52)	10/13/1971
CRM 138*	0.000120(11)	0.08642(12)	0.005111(11)	0.0003604(33)	8/8/1966
CRM 126-A	0.00013022(30)	0.062744(16)	0.00157886(76)	0.00038465(25)	7/30/2003

Table S1: Certified Ratios and Date of initial characterization of the Pu standards included in the present study

*The isotope ratios listed are as of January 1, 1982, as listed in the Certificate of Analysis dated August 19, 1982. These values are obtained by decay correcting the provisional (atom percent) values dated October 19, 1971 (for CRM 136), October 13, 1971 (for CRM 137), and September 1, 1972 (for CRM 138). Note that correlation plays a significant role in uncertainty calculations involving atom percent or weight percent abundances^b (the uncertainty estimates shown above, for the certified isotope ratios, are calculated following a methodology that correctly incorporates such correlations^b).

Figure S1: Decay schematics, starting with the Pu parent isotopes, investigated in the present study. Half-lives applicable to the decay are indicated. Even though 2nd and 3rd generation chronometers are shown, only the primary chronometric pairs are investigated in this study.

Chronometer		Standard					
		CRM 126-A	CRM 136	CRM 137	CRM 138		
	²³⁴ U/ ²³⁸ Pu	99.8 % ²³⁸ Pu abundance	20% ²³⁸ Pu half-life	2% ²³⁸ Pu half-life	97 % ²³⁸ Pu abundance		
			13% ²³⁸ Pu abundance	90% ²³⁸ Pu abundance	3% ²³⁴ U abundance		
			16% Pu assay	1% Pu assay			
			44% U assay	4% U assay			
			7% ²³⁴ U abundance	4% ²³⁴ U abundance			
	²³⁵ U/ ²³⁹ Pu	68% ²³⁹ Pu half-life	21% ²³⁹ Pu half-life	26% ²³⁹ Pu half-life	21% ²³⁹ Pu half-life		
		31% U assay	20% Pu assay	9% Pu assay	20% Pu assay		
			55% U assay	59% U assay	56% U assay		
			2% ²³⁹ Pu abundance	6% ²³⁵ U abundance			
	²³⁶ U/ ²⁴⁰ Pu	50% ²⁴⁰ Pu half-life	15% ²⁴⁰ Pu half-life	17% ²⁴⁰ Pu half-life	16% ²⁴⁰ Pu half-life		
		31% U assay	18% Pu assay	8% Pu assay	20% Pu assay		
		16% ²³⁶ U abundance	51% U assay	53% U assay	55% U assay		
		3% ²⁴⁰ Pu abundance	8% ²⁴⁰ Pu abundance	15% ²⁴⁰ Pu abundance	5% ²⁴⁰ Pu abundance		
			8% ²³⁶ U abundance	7% ²³⁶ U abundance	5% ²³⁶ U abundance		
	²⁴¹ Am/ ²⁴¹ Pu	99.8% Am assay (γ)	Am assay (γ, 99.6%)	Am assay (90%, y) (55%, MS)	Am assay (95%, g) (70%, MS)		
			Am assay (MS, 97%)	²⁴¹ Pu (9%, γ) (45%, MS)	²⁴¹ Pu abundance (5%, g) (28%, MS)		

1 Table S2: Uncertainty budget for the model purification dates (C-AAC data) from the different chronometers.

Chronometer	Standard					
	CRM 126-A	CRM 136	CRM 137	CRM 138		
²³⁴ U/ ²³⁸ Pu	99.8 % ²³⁸ Pu abundance	2% ²³⁸ Pu half-life 90% ²³⁸ Pu abundance 8% ²³⁴ U abundance	1% ²³⁸ Pu half-life 91% ²³⁸ Pu abundance 7% ²³⁴ U abundance	99 % ²³⁸ Pu abundance		
²³⁵ U/ ²³⁹ Pu	100% ²³⁹ Pu abundance	5% ²³⁹ Pu half-life 90% ²³⁹ Pu abundance 5% ²³⁵ U abundance	4% ²³⁹ Pu half-life 90% ²³⁹ Pu abundance 6% ²³⁵ U abundance	 1.7% ²³⁹Pu half-life 97% ²³⁹Pu abundance 1.6% ²³⁵U abundance 		
²³⁶ U/ ²⁴⁰ Pu	1% ²³⁶ U abundance 99% ²⁴⁰ Pu abundance	3% ²⁴⁰ Pu half-life 81% ²⁴⁰ Pu abundance 15% ²³⁶ U abundance	3% ²⁴⁰ Pu half-life 80% ²⁴⁰ Pu abundance 16% ²³⁶ U abundance	1% ²⁴⁰ Pu half-life 94% ²⁴⁰ Pu abundance 5% ²³⁶ U abundance		
²⁴¹ Am/ ²⁴¹ Pu	5% ²⁴¹ Am abundance 94% ²⁴¹ Pu abundance	37% ²⁴¹ Am abundance 58% ²⁴¹ Pu abundance 5% ²⁴¹ Pu half-life	45% ²⁴¹ Am abundance 49% ²⁴¹ Pu abundance 6% ²⁴¹ Pu half-life	24% ²⁴¹ Am abundance 72% ²⁴¹ Pu abundance 4% ²⁴¹ Pu half-life		

Table S3: Uncertainty budget for the model ages (C-NR data) measured from the different chronometers.*

* Pu assay is the dominant contributor to uncertainties in C-NR data, as a ²⁴²Pu activity tracer that is not highly pure is used. Spike subtraction adds uncertainty from converting activity of the tracer to mass and from the calibration of this less than ideal tracer (ideal tracer would be ²⁴⁴Pu).

^aNash K. L.; Lumetta G. Standard and Advanced Separation: PUREX Processes for Nuclear Fuel Reprocessing 2011, Woodhead Publishing, Knovel E-Books (Knovel Corporation)

^bMathew K. J.; Thomas M. Advances in Nuclear Nonproliferation Technology & Policy Conference, 2016, American Nuclear Society, Santa Fe, NM, USA, LA-UR-16-22161.