SUPPORTING INFORMATION

Determination of femtogram level plutonium isotopes in environmental and forensic samples with high-level uranium using chemical separation and ICP-MS/MS measurement

Xiaolin Hou^{1,2, 3, 5*}, Weichao Zhang^{1,4}, Yanyun Wang^{1,4}

- 1 State Key Laboratory of Loess and Quaternary Geology, Shaanxi Key Laboratory of Accelerator Mass Spectrometry Technology and Application, Xi'an AMS Center, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
- 2 Center for Nuclear Technologies, Technical University of Denmark, DTU Nutech, Roskilde DK-4000, Denmark
- 3 CAS center of Excellence in Quaternary Science and Global Change, Xi'an 710061, China
- 4 University of Chinese Academy of Sciences, Beijing 100049, China
- 5 Open Studio for Oceanic-Continental Climate and Environment Changes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266061, China

Supporting information includes a description of chemical separation of plutonium from environmental samples, 4 Tables and 3 Figures.

^{*} Corresponding author at: DTU Nutech, E-mail: xiho@dtu.dk (Xiaolin Hou). Fax:45 46775357

Chemical separation of plutonium from environmental samples

A chemical separation procedure using acid leaching, co-precipitation and chromatographic separation (Fig. S2) was used for separation of plutonium from sample matrix and interfering radionuclides. For the environmental soil samples, small stones and vegetation root were first removed, the samples were then dried, ground and sieved through an 80-mesh sieve. 1-30 g of soil samples, soil and sediment certified reference materials (depending on the level of plutonium) was weighed to a beaker, it was heated at 450 °C and remained overnight to remove the organic substance in the samples. After spiked a known amount of ²⁴²Pu (3.4 pg) as chemical yield tracer, the sample was leached with aqua regia at 150°C on a hotplate for 30 minutes, followed by leaching at 200°C for 2 hours. The leachate containing plutonium was separated by filtration through a glass fiber filter. Ammonium was added to the leachate to pH 8.5 to form hydroxides precipitation of plutonium with iron and other metals ions. The precipitate was separated by centrifuge and washed with 2 mol/L NaOH to remove the amphoteric elements (e.g. Al, V, etc.). The precipitate was then dissolved with HCl, and 0.2-1 g of $K_2S_2O_5$ (depending on sample size) was added to reduce plutonium to Pu³⁺, meanwhile iron was reduced to Fe²⁺. Ammonium was added to pH 8.5 to precipitate Pu³⁺ and Fe²⁺ as hydroxides, which was then separated by centrifuge. Concentrated HNO₃ was then added to dissolve the precipitate and meanwhile oxidize Pu³⁺ to Pu⁴⁺ using nitrite presents in the concentrated HNO₃, and the sample solution was adjusted to 1.0 mol/L HNO₃ medium. The prepared sample solution was loaded to a TEVA column (2 mL, 0.70 cm in diameter and 5 cm in length) which has been conditioned with 30 mL of 1.0 mol/l HNO₃. The column was rinsed with 120 mL of 1.0 mol/L HNO₃ and 60 mL of 6 mol/L HCl to remove matric elements, uranium and thorium. Plutonium on the column was finally eluted with 40 mL of 0.1 mol/L NH₂OH·HCl in 2 mol/L HCl. The eluate was evaporated to dryness on a hotplate, 5 mL of concentrated HNO₃ was added and the solution was evaporated to dryness again to decompose NH₂OH·HCl and remove HCl in the sample. The residue was finally

dissolved in 0.5 mol/L HNO $_3$ and prepared in 3.5 mL for measurement of plutonium isotopes using ICP-MS/MS.

Conditions	Parameter	Value
ICP	RF Power	1500W
	RF Matching	1.60V
	Sampling Depth	5.1mm
	Carries Gas	0.70L/min
	Temperature of Spray Chamber	2°C
	Makeup Gas	0.36L/min
Lens	Extraction Lens 1	-190.0V
	Extraction Lens 2	-10.0V
	Omega Bias	-110V
	Omega Lens	19.5V
	Q1 Entrance	3.7V
	Q1 Exit	-3.7V
	CRC focus	6.7V
	CRC Entrance	-135V
	CRC Exit	-134V
	Deflect	9.3V
	Plate Bias	-136V
Q1	Q1 Bias	1.6V
	Q1 Prefilter Bias	-1.5V
	Q1 Postfilter Bias	-9.9V
CRC	Octopole Bias	-7.6V
	Octopole RF	180V
	Energy Discrimination	-19.9V

Table S1 ICP-MS/MS instrument settings for the measurement of Pu isotopes

Table S2 The standard solutions and setting values of Q1(m/z) and Q2(m/z) and possible ions measured for elimination of $^{238}U^{1}H^{+}$ ions using different reaction gasses

Standard	Q1(m/z)	Q2(m/z) and possible ions species						
²³⁸ U(20	779 (2381 I+)	237, $238(^{238}U^+)$, $239(^{238}UH^+)$, $240(^{238}UH_2^+)$, $252(^{238}UN^+)$,						
ng/ml)	238(2500*)	253(²³⁸ UNH ⁺), 254(²³⁸ UO ⁺ , ²³⁸ UNH ₂ ⁺), 255(²³⁸ UOH ⁺ , ²³⁸ UNH ₃ ⁺)						
²³⁸ U(1000	22 0/2381 11 1+)	$238(^{238}U^+), 239(^{238}UH^+), 240(^{238}UH_2^+), 252(^{238}UN^+),$						
ng/ml)	239(200017)	253(²³⁸ UNH ⁺), 254(²³⁸ UO ⁺ , ²³⁸ UNH ₂ ⁺), 255(²³⁸ UOH ⁺ , ²³⁸ UNH ₃ ⁺)						
²³⁹ Pu(10	$220(239D_{11}+)$	238, 239(²³⁹ Pu ⁺), 240(²³⁹ PuH ⁺), 253(²³⁹ PuN ⁺), 254(²³⁹ PuNH ⁺),						
pg/ml)	239(²³ , Pu ⁺)	255(²³⁹ PuO ⁺ , ²³⁹ PuNH ₂ ⁺), 256(²³⁹ PuOH ⁺ , ²³⁹ PuNH ₃ ⁺)						

			Itatti	on gasses				
Standard	Setting of N	Aass and possible ions	Intensities of the measured signals, cps/ppb					
solution	Q1(m/z)	Q2(m/z)	He	NH ₃ /He	O_2	CO ₂ /He		
			(8.0 mL/min)	(0.6/8.8 mL/min)	(2.0 mL/min)	(1.2/8.0 mL/min)		
²³⁸ U(20ppb)	²³⁸ (238U+)	237	64.65	4.52	9.48×10 ²	0.05		
	× /	238(²³⁸ U ⁺)	6.29×10 ⁵	4.78×10 ⁴	0.01	2.89×10^{2}		
		239(²³⁸ UH ⁺)	9.45	2.66×10 ²	0.01	< 0.001		
		240(²³⁸ UH ₂ ⁺)	0.07	0.48	54.17	< 0.001		
		252(²³⁸ UN ⁺)	< 0.001	6.93×10 ²	< 0.001	< 0.001		
		253(²³⁸ UNH ⁺)	< 0.001	9.24×10 ⁴	< 0.001	< 0.001		
		254(²³⁸ UO ⁺ , ²³⁸ UNH ₂ ⁺)	< 0.001	1.30×10 ⁴	3.40×10 ⁴	2.46×10 ⁵		
		255(²³⁸ UOH ⁺ ,	< 0.001	4.09×10 ²	13.80	99.44		
		²³⁸ UNH ₃ ⁺)						
		256(²³⁸ UOH ₂ ⁺)	< 0.001	< 0.001	66.10	< 0.001		
²³⁸ U(1000ppb)	239(²³⁸ UH ⁺)	238(²³⁸ U ⁺)	15.94	0.22	0.01	0.001		
		239(²³⁸ UH ⁺)	16.96	1.60	0.04	0.006		
		252(²³⁸ UN ⁺)	< 0.001	0.15	< 0.001	< 0.001		
		253(²³⁸ UNH ⁺)	< 0.001	0.33	< 0.001	< 0.001		
		254(²³⁸ UO+,	< 0.001	5.90	0.99	2.43		
		²³⁸ UNH ₂ ⁺)						
		255(²³⁸ UOH ⁺ ,	< 0.001	< 0.001	0.06	0.008		
		²³⁸ UNH ₃ ⁺)						
		256(²³⁸ UOH ₂ ⁺)	< 0.001	< 0.001	0.002	0.005		

Table S3 Results of measurement of intensity and fractions of the possible formed ions of ²³⁸U in the DRC using ICP-MS/MS with the different reaction gasses

Standard	Setting of two quadrupole		Intensities of the measured signals, cps/ppb				
solution	Q1(m/z)	Q2(m/z)	He NH ₃ /He		O ₂	CO ₂ /He	
			(8.0 mL/min)	(0.6/8.8 mL/min)	(2.0 mL/min)	(1.2/8.0 mL/min)	
²³⁹ Pu(10ppt)	239(²³⁹ Pu ⁺)	238	0.14	0.25	< 0.001	0.04	
		239(²³⁹ Pu ⁺)	1.03×10 ³	1.17×10 ³	3.47	3.48×10 ²	
		240(²³⁹ PuH ⁺)	< 0.001	2.32	< 0.001	0.04	
		253(²³⁹ PuN ⁺)	< 0.001	0.04	< 0.001	< 0.001	
		254(²³⁹ PuNH ⁺)	< 0.001	7.32	< 0.001	< 0.001	
		255(²³⁹ PuO ⁺ , ²³⁹ PuNH ₂ ⁺)	< 0.001	5.63	2.33×10^{2}	2.33×10 ²	
		256(²³⁹ PuOH ⁺ , ²³⁹ PuNH ₃ ⁺)	< 0.001	2.49	1.53	0.06	

Table S4 Results of measurement of intensity and fractions of the possible formed ions of ²³⁹Pu in the DRC using ICP-MS/MS with the different reaction gasses

Solution #	Counts rate 240 u	(cps) at m/z 239 and using ICP-MS	Counts rate (cps) at m/z 239 or 240 by using ICP-MS/MS							
	No Gas		No Gas		He		NH ₃ /He		CO ₂ /He	
	m/z 239	240	239	240	239	240	239	240	239	240
3% HNO ₃	0.77±0.38	0.13±0.12	0.20±0.20	0.03±0.06	0.50±0.10	0.10±0.10	0.27±0.15	0.07 ± 0.06	0.07 ± 0.06	< 0.01
Tl-3%HNO ₃	< 0.01	0.33±0.29	< 0.01	0.03 ± 0.06	< 0.01	< 0.01	< 0.01	0.10 ± 0.10	0.07 ± 0.03	0.03 ± 0.06
Tl-0.1M HCl-3%HNO ₃	0.23±0.04	0.60±0.32	< 0.01	0.07 ± 0.07	< 0.01	< 0.01	< 0.01	0.00 ± 0.00	< 0.01	< 0.01
Pb-3%HNO ₃	< 0.01	0.67 ± 0.05	0.17 ± 0.07	0.13±0.12	< 0.01	< 0.01	0.03 ± 0.02	0.07±0.12	< 0.01	0.07±0.12
Pb-0.1M HCl-3%HNO ₃	0.40±0.17	0.63±0.27	0.03 ± 0.02	< 0.01	< 0.01	< 0.01	$0.20{\pm}0.02$	0.03 ± 0.06	0.03 ± 0.06	< 0.01
Hg-3% HNO ₃	25±1	32±1	13±1	16±1	8.2±0.8	7.5±0.5	0.09 ± 0.04	0.03 ± 0.02	0.04 ± 0.03	0.02 ± 0.02
Hg-0.1M HCl-3% HNO ₃	24±1	26±1	12±1	14±1	6.5±0.6	7.5±0.6	0.20±0.07	0.04±0.03	19±0.3	0.03±0.02

Table S5 Measurement results of the interferences of polyatomic ions of Pb and Tl to the measurement of plutonium isotopes

The concentrations of Tl, Pb and Hg are 500 ppb

			e			
Sample code	Sample mass, mL	Chemical yield, ²⁴² Pu	²³⁹ Pu spiked (10 ⁻¹⁵ g/mL)	²³⁹ Pu intensity, cps	Measured ²³⁹ Pu (10 ⁻¹⁵ g/mL)	Division
Procedure Blank	7.00	93.4%	0	0.15±0.03	0	
Sample-1	7.00	88.2%	4.10±0.05	2.62±0.15	4.12±0.31	0.5%
Sample-2	7.00	92.0%	4.10±0.05	3.02±0.18	4.23±0.32	3.2%
Sample-3	7.00	93.5%	4.10±0.05	2.81±0.20	4.18±0.35	1.4%

Table S6 Analytical results of 239 Pu in simulated samples with high U/Pu ratio by chemical separation and ICP-MS/MS measurement with CO₂-He as the reaction gas

Sample-1, 2 and 3 are the spiked solution containing 4.1×10⁻¹⁵ g/mL ²³⁹Pu and 4.0×10⁻³ g/mL uranium. The samples was

prepared in 3.2-3.5 ml 0.5M HNO3 solution for ICP-MS/MS measurement.

Figure S1 Schematic diagram of ICP-MS/MS for measurement of ²³⁹Pu

Figure S2 Schematic diagram of chemical separation and purification of Pu isotopes in soil or sediment samples from the environment

Figure S3 Variation of the signal intensities of ²³⁸U⁺ and ²³⁹Pu⁺ and their reaction product ions (²³⁸U¹⁶O⁺, ²³⁹Pu¹⁶O⁺) in DRC with the flow rate of O₂ as reaction gas measured in uranium standard solution (²³⁸U) and ²³⁹Pu standard solution using ICP-MS/MS.

Figure S4 Variation of the signal intensities of ²³⁸U⁺, ²³⁸U¹H⁺ and ²³⁹Pu⁺ with the flow rate of NH₃ (mixed with 8.8 ml/min He) as reaction gas measured in uranium standard solution (²³⁸U) and ²³⁹Pu standard solution using ICP-MS/MS.