Supporting Information

A New Mass Spectrometry Based Approach for Organic Synthesis Monitoring

Veronica Termopoli^{1‡}, Elena Torrisi⁴, Giorgio Famiglini¹, Pierangela Palma^{1,2}, Giovanni Zappia⁴, Achille Cappiello^{1,2*}

and

Gregory W. Vandergrift^{2,3‡}, Misha Zvekic², Erik T. Krogh^{2,3}, Chris G. Gill^{2,3,5,6*}

¹ LC-MS Laboratory, Department of Pure and Applied Sciences, University of Urbino Carlo Bo, Urbino, Italy, 61029

² Applied Environmental Research Laboratories (AERL), Chemistry Department, Vancouver Island University, Nanaimo, BC, Canada, V9R 5S5

³ Chemistry Department, University of Victoria, Victoria, BC, Canada, V8P 5C2

⁴ Biomolecular Sciences Department, University of Urbino Carlo Bo, Urbino, Italy, 61029

⁵ Chemistry Department, Simon Fraser University, Burnaby, BC, Canada, V5A 1S6

⁶ Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA, 98195

Corresponding Authors

* Professor Chris G. Gill, Ph.D., P. Chem.
Co-Director, Applied Environmental Research Laboratories (AERL) Chemistry Department Vancouver Island University
900 Fifth Street, Nanaimo, BC
Canada V9R 5S5
Ph: 250-753-3245
Chris,Gill@viu.ca

* Professor Achille Cappiello LC-MS Laboratory, Department of Pure and Applied Sciences University of Urbino Piazza Rinascimento, 6 Urbino, Italy Ph: +390722303344 achille.cappiello@uniurb.it

ORCID Achille Cappiello: 0000-0002-6416-304X Chris G. Gill: 0000-0001-7696-5894

[‡] These authors contributed equally.

Contents

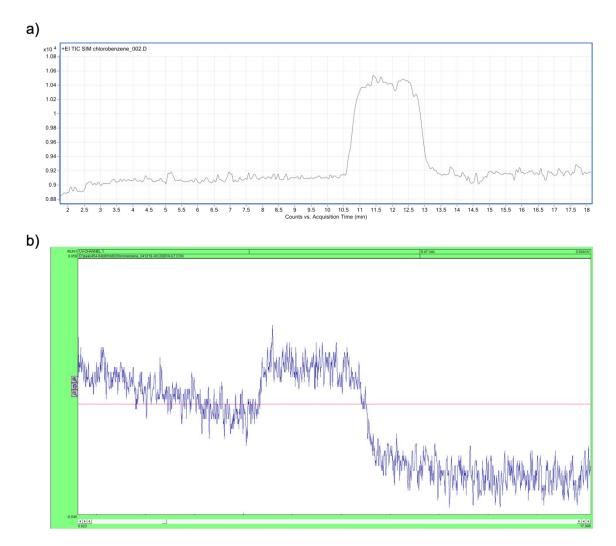
Information on solvent and standard sources and preparation.

Information on the Characterization of alkyl glycinate standards

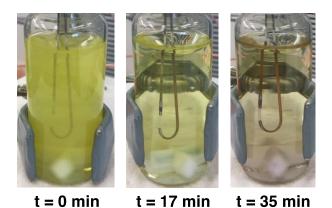
Figure S-1 Figure S-2	Chlorobenzene UV-Vis and MS recorded traces Images of PDMS membrane for monitoring of catalytic conversion of phenylacetylene to acetophenone
Table S-1	MS scan parameters
Table S-2	Biphenyl calibrations and response times for 10-50 mM solute concentrations in various organic solvents
Table S-3	Chlorobenzene calibrations and response times for 10-50 mM solute concentrations in various organic solvents
Table S-4	Reactant and product calibrations and response times for oxidation reaction in methanol
Table S-5	Reactant and product calibrations and response times for the alkylation reaction in acetonitrile

Standards and Solvents

All stock analyte solutions were prepared gravimetrically. Analyte sub-stocks and online additions of analytes were done volumetrically using a mechanical micropipette. Acetophenone (99%), biphenyl (99.5%), chlorobenzene (99.5%), and phenylacetylene (98%) were obtained from Sigma Aldrich (Oakville, ON, Canada). (*R*)- α -methyl benzylamine was obtained from Sigma Aldrich (Milan, Italy). Cyclohexane, NaCl, Na₂SO₄ were obtained from Carlo Erba Reagents (Milan, Italy). Ethyl bromoacetate and triethylamine were purchased from VWR International (Milan, Italy). Acetonitrile, methanol, (HPLC grade) and ethyl acetate (99.9%) were obtained from VWR International (Edmonton, AB, Canada). Reagent alcohol (90% ethanol, 5% 2-propanol, 4.5% methanol, HPLC grade) and N,N-dimethylformamide (99.9%) were obtained from Fisher Scientific (Ottawa, ON, Canada). Reagent alcohol is referred to as ethanol for the purposes of this study. Dichloromethane (≥99.5%) was obtained from Sigma Aldrich. All analytical standards and reactants were ACS grade or better.


Characterization of Alkyl Glycinate Standards

TLC (Cyclohexane:AcOEt, 60:40 v/v): $R_f = 0.72$; $[\alpha]_D = + 33.56$ (c = 0.015 M in CHCl₃) [Minor product Spectroscopic Characterization]: ¹H NMR (400 MHz, CDCl₃): δ 7.44 – 7.20 (m, 5H), 4.20 (q, J = 6.9 Hz, 1H), 4.13 (q, J = 7.1 Hz, 4H), 3.57 (s, 4H), 1.35 (d, J = 6.7 Hz, 3H), 1.24 (t, J = 7.1 Hz, 6H); ¹³C NMR (125 MHz, CDCl₃): δ 171.528, 144.100, 128.460, 127.493, 127.284, 77.355, 77.038, 76.720, 60.957, 60.410, 52.400, 20.937, 14.189; MS (m/z): 293


TLC (Cyclohexane:AcOEt, 60:40 v/v): Rf = 0.50; $[\alpha]_D = +70.62$ (c = 0.026 M in CHCl₃); Literature value for (S)- enantiomer = -64.4 (c = 2.27 g/mL in CHCl₃)^{S-1}; [Major product Spectroscopic Characterization]: ¹H NMR (400 MHz, CDCl₃): δ 7.36 – 7.21 (m, 5H, Ar), 4.16 (q, J = 7.1 Hz, 2H), 3.80 (q, J = 6.6 Hz, 1H), 3.35 – 3.16 (m, 2H), 1.99 (s, 1H), 1.39 (d, J = 6.6 Hz, 3H), 1.25 (t, J = 7.2 Hz, 3H), ¹³C NMR (125 MHz, CDCl₃): δ 172.548, 144.581, 128.496, 127.153, 126.742, 77.354, 77.039, 76.719, 60.687, 57.735, 48.863, 24.207, 14.18; MS (*m/z*): 207

References

S-1. Porzi, G. & Sandri, S. Enantioselective synthesis of (R)-and (S)- α -aminoacids using (6S)- and (6R)-6-methyl-morpholine-2,5-dione derivatives. *Tetrahedron: Asymmetry* 7, 189-196 (1996).

Figure S-1: Chlorobenzene MS and UV-Vis recorded traces at a concentration of 25 mM. a) Data measured by CP-MIMS-LEI (m/z=112); b) simultaneous UV-Vis spectrophotometry detection for 25 mM in methanol (λ =260 nm)

Figure S-2: Images of PDMS membrane during the monitoring of the catalytic conversion of phenylacetylene to acetophenone

Analyte	MW / (g/mol)	Scan Type ^a	(<i>m</i> /z)	Collision Energy / (eV)
Acetophenone	120.15	SIM	105	_
Biphenyl	154.21	SIM	154	-
Chlorobenzene	112.56	SIM	112	-
Phenylacetylene	102.13	SIM	102	-
Ethyl bromoacetate	167.01	MRM (Quant)	121 → 93	10
α-Methylbenzylamine	121.18	MRM (Qual) MRM (Quant)	138→120 106→79	5 10
		MRM (Qual)	106 → 77	10
Mono-alkylated product	207.26	MRM (Quant)	192 → 91	10
		MRM (Qual)	192 → 118	10
Dialkylated product	293.34	MRM (Quant)	220→105	10
· •		MRM (Qual)	278 → 107	5

 Table S-1: MS scan parameters

^a Quant = quantitation transition, Qual = qualifying transition

Table S-2: Biphenyl calibrations and response times for 10-50 mM solute concentrations in various organic solvents

Solvent	Equation	R ²	t _{10-90%} (min)
Acetonitrile	y = 1.13x + 0.83	0.990	0.67
Dichloromethane	y = 5.39x - 4.36	0.999	0.41
N,N-Dimethylformamide	y = 0.50x + 1.70	0.983	0.63
Ethanol	y = 4.23x - 0.68	0.998	1.1
Methanol	y = 2.41x + 3.89	0.994	0.68

Triplicate measurements (intraday)

Risetimes calculated for 50 mM sample

Table S-3: Chlorobenzene calibrations and response times for 10-50 mM solute concentrations in various organic solvents

Equation	R ²	t _{10-90%} (min)
y = 1.78x - 2.79	0.996	0.48
y = 5.24x + 2.83	1.000	0.33
y = 1.62x - 2.27	0.996	0.43
y = 2.78x - 4.27	0.998	0.69
y = 2.57x - 2.42	0.999	0.33
	y = 1.78x - 2.79 y = 5.24x + 2.83 y = 1.62x - 2.27 y = 2.78x - 4.27	y = 1.78x - 2.79 0.996 $y = 5.24x + 2.83$ 1.000 $y = 1.62x - 2.27$ 0.996 $y = 2.78x - 4.27$ 0.998

Triplicate measurements (intraday)

Risetimes calculated for 50 mM sample

Table S-4: Reactant and product calibrations and response times for oxidation reaction in methanol.

Analyte	Equation	R ²	t _{10-90%} (min)
Phenylacetylene	y = 16.8x - 29.7	0.999	0.35
Acetophenone	y = 5.33x - 1.79	1.000	0.40

Single Measurements in 95:4:1 methanol:de-ionized water:sulfuric acid v/v, 4 mM HAuCl₄ with gentle heating (~50°C); 5-200 mM; Risetimes calculated for 90 mM sample

Table S-5: Reactant and product calibrations and response times for alkylation reaction in acetonitrile

Analyte	Equation	RSD (%) ^d	R ²	t _{10-90%} (min)
Ethyl bromoacetate ^a	y = 19.1x + 82.3	4	0.999	0.23
α-Methylbenzylamine ^a	y = 59.6x + 243	4	0.999	0.42
Mono alkylated product ^b	y = 16.1x + 68.3	-	0.999	0.60
Dialkylated product ^c	y = 4.85x + 1.36	-	1.000	1.2

^a Triplicate measurements (interday); Linearity range: 1-500 mM; LOQ: 1 mM; Risetimes calculated for 250 mM sample
^b Duplicate measurements (interday); Linearity range: 1-250 mM; LOQ: 1 mM; Risetime calculated for 250

^b Duplicate measurements (interday); Linearity range: 1-250 mM; LOQ: 1 mM; Risetime calculated for 250 mM sample

^c Single measurements; Linearity range: 10-75 mM; LOQ: 10 mM; Risetime calculated for 75 mM sample ^d Reagents RSD (%) was calculated for 250 mM sample. No available statistical data for mono and dialkylated products.