Supporting Information

Discovery of N-substituted 3-amino-4-(3-boronopropyl)pyrrolidine-3carboxylic acids as highly potent third generation inhibitors of human arginase I and II

Michael C. Van Zandt,[†] G. Erik Jagdmann, Darren L. Whitehouse, Minkoo Ji, Jennifer Savoy, Olga Potapova, Alexandra Cousido-Siah, Andre Mitschler, Eduardo I. Howard, Anna Marie Pyle, and Alberto D. Podjarny

Table of Contents

Molecular Formula Strings Spreadsheet	S2
¹ H NMR, ¹³ C NMR and LC/MS data for target compounds 30-49	S2
¹ H NMR, ¹³ C NMR and elemental analysis data for sulfamate intermediates	S11
Analytical Purity: HPLC summary data	S15
Optical Purity Determination	S16
Example arginase inhibition IC ₅₀ curves	S18
X-ray crystallography data collection and refinement statistics	S19
Example 2D diagrams of contacts	S21

¹H NMR, ¹³C NMR and ESI-LCMS Summary Data for Target Compounds 30-49

(**3R,4S**)-**3**-amino-**4**-(**3**-boronopropyl)-1-isobutylpyrrolidine-**3**-carboxylic acid dihydrochloride (**30**). ¹H NMR (600 MHz, D₂O): δ 4.05 - 3.94 (m, 3 H), 3.26 (t, *J* = 12.3 Hz, 1 H), 3.21 - 3.10 (m, 2 H), 2.71 - 2.62 (m, 1 H), 2.06 - 1.97 (m, 1 H), 1.69 - 1.61 (m, 1 H), 1.42 - 2.21 (m, 3 H), 0.93 (d, *J* = 6.1 Hz, 6 H), 0.76 - 0.65 (m, 2 H); ¹³C NMR (600 MHz, D₂O): δ 170.38, 64.81, 63.42, 59.56, 57.58, 45.55, 28.94, 24.72, 22.03, 19.02, 13.98, 10.47. MS (CI): *m/z* for C₁₂H₂₅BN₂O₄: expected 272.2; found: 297.3 (M+i-PrOH-2H₂O+1), 255.2 (M-H₂O+1), 237.2 (M-2H₂O+1).

(3R,4S)-3-amino-1-benzyl-4-(3-boronopropyl)pyrrolidine-3-carboxylic acid dihydrochloride (31). ¹H NMR (600 MHz, CDCl₃): δ 7.54 -7.47 (m, 5 H), 4.57 (d, *J*=12.9 Hz, 1 H), 4.48 (d, *J*= 12.9 Hz, 1 H), 4.12 - 3.99 (m, 1 H), 3.92 - 3.75 (m, 1 H), 3.79 (dd, *J*₁ = 11.7 Hz, *J*₂ = 7.5Hz, 1 H), 3.50 - 3.27 (m, 1 H), 2.75 - 2.49 (m, 1 H), 1.72 - 1.63 (m, 1 H), 1.42 - 1.24 (m, 3 H), 0.80 - 0.67 (m, 2 H); ¹³C NMR (600 MHz, CDCl₃): δ 170.46, 130.37, 130.20, 129.33, 129.18, 64.69, 59.34, 58.62, 56.60, 45.41, 29.01, 21.94, 13.92. MS (CI): *m/z* for C₁₅H₂₃BN₂O₄: expected 306.2; found: 331.2 (M+i-PrOH-2H₂O+1), 289.1 (M-H₂O+1), 271.1 (M-2H₂O+1).

(3R,4S)-3-amino-4-(3-boronopropyl)-1-(pyridin-4-ylmethyl)pyrrolidine-3-carboxylic acid dihydrochloride (32). ¹H NMR (600 MHz, D₂O): δ 8.93 (d, *J* = 6.8 Hz, 1 H), 8.27 (d, *J* = 6.8 Hz, 1 H), 4.97 (d, *J* = 14.1 Hz, 1 H), 4.89 (d, *J* = 14.0 Hz, 1 H), 4.14 (d, *J* = 13.1 Hz, 1 H), 3.98 - 3.92 (m, 2 H), 3.57 (t, *J* = 11.7 Hz, 1 H), 2.80 - 2.73 (m, 1 H), 1.74 - 1.67 (m, 1 H), 1.43 - 1.28 (m, 3 H), 0.81 - 0.69 (m, 2 H); ¹³C NMR (600 MHz, D₂O): δ 170.22, 149.53, 142.25, 128.39, 64.65, 59.37, 57.84, 57.30, 44.87, 29.19, 21.98, 13.95. MS (CI): *m/z* for C₁₄H₂₂BN₃O₄: expected 307.2; found: 332.2 (M+i-PrOH-2H₂O+1), 290.2 (M-H₂O+1), 272.1 (M-2H₂O+1).

(3R,4S)-3-amino-4-(3-boronopropyl)-1-(pyridin-2-ylmethyl)pyrrolidine-3-carboxylic acid dihydrochloride (33). ¹H NMR (600 MHz, D₂O): δ 8.79 (dd, $J_1 = 5.6$ Hz, $J_2 = 1.6$ Hz, 1 H), 8.46 (td, $J_1 = 7.9$ Hz, $J_2 = 1.6$ Hz, 1 H), 8.04 (d, J = 8.0 Hz, 1 H), 7.95 (m, 1 H), 4.83 (d, J = 14.7 Hz, 1 H), 4.76 (d, J = 14.6 Hz, 1 H), 4.03 (d, J = 12.9 Hz, 1 H), 3.89 - 383 (m, 2 H), 3.37 (t, J = 11.4 Hz, 1 H), 2.74 - 2.66 (m, 1 H), 1.74 - 1.62 (m, 1 H), 1.42 - 1.26 (m, 3 H), 0.80 - 0.66 (m, 2 H); ¹³C NMR (600 MHz, D₂O): δ 170.26, 146.08, 145.38, 144.64, 127.60, 127.14, 64.95, 59.33, 57.62, 55.94, 45.33, 29.43, 21.96, 13.91. MS (CI): *m/z* for C₁₄H₂₂BN₃O₄: expected 307.2; found: 332.2 (M+i-PrOH-2H₂O+1), 290.2 (M-H₂O+1), 272.1 (M-2H₂O+1).

(**3R,4S**)-**3**-amino-**4**-(**3**-boronopropyl)-**1**-((**3**-fluoropyridin-**2**-yl)methyl)pyrrolidine-**3**carboxylic acid dihydrochloride (**34**). ¹H NMR (600 MHz, D₂O): δ 8.43 (dt, *J*₁ = 4.8 Hz, *J*₂ = 1.3 Hz, 1 H), 7.70 (ddd, *J*₁ = 9.6 Hz, *J*₂ = 8.4 Hz, *J*₃ = 1.3 Hz, 1 H), 7.54 (dt, *J*₁ = 8.8 Hz, *J*₂ = 4.6 Hz, 1 H), 4.19 (d, *J* = 13.5 Hz, 1 H), 4.06 - 3.93 (m, 2 H), 3.56 (t, *J* = 11.9 Hz, 1 H), 2.84 - 2.71 (m, 1 H), 1.74 - 1.67 (m, 1 H), 1.43 - 1.27 (m, 3 H), 0.80 - 0.67 (m, 2 H); ¹³C NMR (600 MHz, D₂O): δ 169.97, 158.56, 156.85, 145.45, 145.42, 137.36, 137.26, 126.83, 126.80, 125.11, 124.99, 64.59, 59.04, 57.44, 53.97, 44.83, 29.07, 21.95, 13.89. MS (CI): *m/z* for C₁₄H₂₁BFN₃O₄: expected 325.2; found: 350.2 (M+i-PrOH-2H₂O+1), 308.2 (M-H₂O+1), 290.1 (M-2H₂O+1).

(3R,4S)-3-amino-4-(3-boronopropyl)-1-((5-methyl-1H-pyrazol-4-yl)methyl)pyrrolidine-3carboxylic acid dihydrochloride (35). ¹H NMR (400 MHz, D₂O): δ 8.19 (s, 1 H), 4.55 (q, J = 14.2 Hz, 2 H), 4.07 (d, J = 13.2 Hz, 1 H), 3.88 (dd, $J_I =$ 11.5 Hz, $J_2 =$ 7.6 Hz, 1 H), 3.90 - 3.76 (m, 1 H), 3.43 (t, J = 11.7 Hz, 1 H), 2.75 - 2.63 (m, 1 H), 2.47 (s, 3 H), 1.75 - 1.64 (m, 1 H), 1.47 - 1.26 (m, 3 H), 0.84 - 0.67 (m, 2 H); ¹³C NMR (600 MHz, D₂O): δ 172.78, 148.26, 138.52, 111.27, 67.19, 60.66, 58.87, 50.36, 47.48, 31.71, 24.54, 16.48, 11.55. MS (CI): *m/z* for C₁₃H₂₃BN₄O₄: expected 310.2; found: 335.2 (M+i-PrOH-2H₂O+1), 293.2 (M-H₂O+1), 275.2 (M-2H₂O+1).

(3R,4S)-3-amino-4-(3-boronopropyl)-1-((1,3,5-trimethyl-1H-pyrazol-4-yl)methyl)pyrrolidine-3-carboxylic acid dihydrochloride (36). ¹H NMR (400 MHz, D₂O): 4.55 (d, J = 14.5 Hz, 1 H), 4.48 (d, J = 14.5 Hz, 1 H), 4.01 (d, J = 13.0 Hz, 1 H), 3.92 - 3.78 (m, 2 H), 3.87 (s, 3 H), 3.36 (t, J = 11.5 Hz, 1 H), 2.73 - 2.54 (m, 1 H), 2.43 (s, 3 H), 2.40 (s, 3 H), 1.76 - 1.64 (m, 1 H), 1.49 - 1.26 (m, 3 H), 0.85 - 0.69 (m, 2 H); ¹³C NMR (600 MHz, D₂O): δ 170.31, 146.31, 146.01, 107.82, 64.63, 58.41, 56.32, 47.09, 45.08, 35.18, 29.12, 22.00, 13.93, 9.51, 9.35. MS (CI): *m/z* for C₁₅H₂₇BN₄O₄: expected 338.2; found: 361.2 (M+Na), 339.2 (M+1), 321.2 (M-2H₂O+1).

(3R,4S)-3-amino-4-(3-boronopropyl)-1-((1-methyl-1H-imidazol-2-yl)methyl)pyrrolidine-3carboxylic acid dihydrochloride (37). ¹H NMR (400 MHz, D₂O): 7.53 - 7.41 (m, 2 H), 4.44 (q, J = 15.6 Hz, 2 H), 3.91 (s, 3 H), 3.61 - 3.44 (m, 3 H), 2.79 (t, J = 10.1 Hz, 1 H), 2.56 - 2.43 (m, 1 H), 1.68 - 1.52 (m, 1 H), 1.49 - 1.26 (m, 3 H), 0.77 (d, J = 8.9 Hz, 2 H); ¹³C NMR (600 MHz, D₂O): δ 170.59, 138.36, 124.99, 119.68, 65.47, 59.73, 57.86, 46.23, 46.00, 34.76, 29.83, 22.01, 13.92. MS (CI): *m/z* for C₁₃H₂₃BN₄O₄: expected 310.2; found: 335.2 (M+i-PrOH-2H₂O+1), 293.2 (M-H₂O+1), 275.1 (M-2H₂O+1).

(3R,4S)-3-amino-4-(3-boronopropyl)-1-(thiazol-2-ylmethyl)pyrrolidine-3-carboxylic acid dihydrochloride (38). ¹H NMR (600 MHz, D₂O): 9.69 - 9.55 (m, 1 H), 8.40 - 8.29 (m, 1 H), 4.96 (d, J = 14.4 Hz, 1 H), 4.91 (d, J = 14.4 Hz, 1 H), 4.13 (d, J = 13.3 Hz, 1 H), 3.92 (dd, $J_I = 11.6$ Hz, $J_2 = 7.7$ Hz, 1 H), 3.87 (d, J = 13.3 Hz, 1 H), 3.56 - 3.45 (m, 1 H), 2.80 - 2.67(m, 1 H), 1.73 - 1.62 (m, 1 H), 1.41 - 1.24 (m, 3 H), 0.77 - 0.64 (m, 2 H); ¹³C NMR (600 MHz, D₂O): δ 169.70, 159.96, 141.44, 128.03, 64.46, 58.23, 56.73, 49.94, 44.87. MS (CI): m/z for C₁₂H₂₀BN₃O₄S: expected 313.1; found: 338.6 (M+i-PrOH-2H₂O+1), 296.5 (M-H₂O+1), 278.4 (M-2H₂O+1).

(3R,4S)-3-amino-1-((S)-2-aminopropyl)-4-(3-boronopropyl)pyrrolidine-3-carboxylic acid dihydrochloride (39). ¹H NMR (600 MHz, D₂O): δ 4.17 (d, *J* = 13.2 Hz, 1 H), 4.07 (dd, *J*_{*I*} =11.6 Hz, *J*₂ = 7.8 Hz, 1 H), 4.00 (d, *J* = 13.3 Hz, 1 H), 3.85 (h, *J* = 6.7 Hz, 1 H), 3.72 (dd, *J*_{*I*} =13.4 Hz, $J_2 = 5.9$ Hz, 1 H), 3.64 (dd, $J_1 = 13.5$ Hz, $J_2 = 7.2$ Hz, 1 H), 3.51 (t, J = 11.8 Hz, 1 H), 2.84 - 2.76 (m, 1 H), 1.72 - 1.65 (m, 1 H), 1.44 (d, J = 6.7 Hz, 3 H), 1.43 - 1.24 (m, 3 H), 0.81 - 0.66 (m, 2 H); ¹³C NMR (600 MHz, D₂O): δ 170.13, 64.63, 59.96, 58.11, 58.09, 45.03, 43.89, 28.99, 21.96, 16.49, 13.92. MS (CI): m/z for C₁₁H₂₄BN₃O₄: expected 273.19; found 298.6 (M+i-PrOH-2H₂O+1), 281.6 (M+i-PrOH-2H₂O-NH2+1), 256.5 (M-H₂O+1), 238.5 (M-2H₂O+1), 221.4 (M-2H₂O-NH₂+1).

(3R,4S)-3-amino-1-((R)-2-amino-2-phenylethyl)-4-(3-boronopropyl)pyrrolidine-3-carboxylic acid dihydrochloride (40). ¹H NMR (600 MHz, D₂O): δ 7.61 - 7.54 (m, 5 H), 4.86 (dd, $J_I = 10.2$ Hz, $J_2 = 4.9$ Hz, 1 H), 4.13 (dd, $J_I = 13.1$ Hz, $J_2 = 10.2$ Hz, 1 H), 4.08 (dd, $J_I = 13.1$ Hz, $J_2 = 4.9$ Hz, 1 H), 4.03 (d, J = 12.9 Hz, 1 H), 3.79 (d, J = 12.7 Hz, 1 H), 3.74 (dd, $J_I = 11.5$ Hz, $J_2 = 7.9$ Hz, 1 H), 3.30 (t, J = 11.5 Hz, 1 H), 2.63 - 2.56 (m, 1 H), 1.66 - 1.56 (m, 1 H), 1.32 - 1.22 (m, 2 H), 1.22 - 1.13 (m, 1 H), 0.74 - 0.63 (m, 2 H); ¹³C NMR (600 MHz, D₂O): δ 170.27, 131.18, 131.12, 130.14, 127.81, 64.31, 59.39, 58.73, 56.78, 51.11, 44.44, 29.26, 21.87, 13.86. MS (CI): *m/z* for C₁₆H₂₆BN₃O₄: expected 335.20; found 343.7 (M+i-PrOH-2H₂O-NH₂+1), 318.6 (M-H₂O+1), 301.6 (M-H₂O-NH₂+1), 283.5. (M-2H₂O-NH₂+1).

(**3R,4S**)-**3**-amino-1-((**S**)-**2**-amino-**2**-phenylethyl)-4-(**3**-boronopropyl)pyrrolidine-**3**-carboxylic acid dihydrochloride (**41**). ¹H NMR (600 MHz, D₂O): δ 7.65 - 7.52 (m, 5 H), 4.85 (dd, *J*₁ = 10.7 Hz, *J*₂ = 4.6 Hz, 1 H), 4.18 (dd, *J*₁ = 12.9 Hz, *J*₂ = 10.8 Hz, 1 H), 4.08 (dd, *J*₁ = 13.0 Hz, *J*₂ = 4.6 Hz, 1 H), 3.95 - 3.86 (m, 2 H), 3.73 (d, *J* = 13.1 Hz, 1 H), 3.46 (t, *J* =11.7 Hz, 1 H), 2.63 - 2.52 (m, 1 H), 1.69 - 1.60 (m, 1 H), 1.41 - 1.20 (m, 3 H), 0.78 - 0.65 (m, 2 H); ¹³C NMR (600 MHz, D₂O): δ 170.14, 131.18, 130.86, 130.17, 127.87, 64.39, 60.43, 57.74, 56.87, 50.89, 44.71, 29.16, 21.95, 13.94. MS (CI): *m/z* for C₁₆H₂₆BN₃O₄: expected 335.20; found 343.7 (M+i-PrOH-2H₂O-NH₂+1), 318.6 (M-H₂O+1), 301.6 (M-H₂O-NH₂+1), 283.5 (M-2H₂O-NH₂+1).

(3R,4S)-3-amino-1-((R)-2-amino-3-phenylpropyl)-4-(3-boronopropyl)pyrrolidine-3carboxylic acid dihydrochloride (42). ¹H NMR (600 MHz, D₂O): δ 7.49 - 7.39 (m, 3 H), 7.39 -7.30 (m, 2 H), 4.02 - 3.87 (m, 2 H), 3.87 - 3.77 (m, 1 H), 3.75 - 3.56 (m, 3 H), 3.11 (d, *J* = 7.4 Hz, 2 H), 3.04 (t, *J* = 10.9 Hz, 1 H), 2.64 - 2.52 (m, 1 H), 1.69 - 1.57 (m, 1 H), 1.40 - 1.26 (m, 2 H), 1.26 - 1.11 (m, 1 H), 0.76 (t, *J* = 7.5 Hz, 2 H); ¹³C NMR (600 MHz, D₂O): δ 170.05, 133.57, 129.54, 129.39, 128.17, 64.44, 59.69, 57.95, 57.18, 49.24, 44.64, 36.76, 29.21, 21.92, 13.90. MS (CI): *m/z* for C₁₇H₂₈BN₃O₄: expected 349.22; found 374.7 (M+i-PrOH-2H₂O+1), 332.6 (M-H₂O+1), 314.6 (M-2H₂O+1), 297.5 (M-2H₂O-NH₂+1).

(3R,4S)-3-amino-1-((S)-2-amino-3-phenylpropyl)-4-(3-boronopropyl)pyrrolidine-3carboxylic acid dihydrochloride (43). ¹H NMR (600 MHz, D₂O): δ 7.46 - 7.41 (m, 2 H), 7.40 -7.37 (m, 1 H), 7.36 (d, *J* = 7.5 Hz, 2 H), 3.98 (qd, *J*₁ = 7.4 Hz, J₂ = 3.9 Hz, 1 H), 3.92 (d, *J* = 12.8 Hz, 1 H), 3.78 (dd, *J*₁ = 14.2 Hz, J₂ = 6.8 Hz, 2 H), 3.66 (dd, *J*₁ = 14.3 Hz, J₂ = 3.9 Hz, 1 H), 3.62 (brs, 1 H), 3.43 (t, *J* = 11.5 Hz, 1 H), 3.11 (d, *J* = 7.5 Hz, 2 H), 2.70 - 2.58 (m, 1 H), 1.68 - 1.59 (m, 1 H), 1.39 - 1.18 (m, 3 H), 0.76 - 0.64 (m, 2 H); ¹³C NMR (600 MHz, D₂O): δ 170.08, 133.51, 129.47, 129.40, 128.22, 64.41, 59.71, 57.64, 57.07, 49.40, 44.20, 36.62, 29.22, 21.94, 13.84. MS (CI): *m/z* for C₁₇H₂₈BN₃O₄: expected 349.22; found 374.8 (M+i-PrOH-2H₂O+1), 332.7 (M-H₂O+1), 314.6 (M-2H₂O+1), 297.6 (M-2H₂O-NH₂+1).

(3R,4S)-3-amino-4-(3-boronopropyl)-1-(((R)-morpholin-3-yl)methyl)pyrrolidine-3-carboxylic acid dihydrochloride (44). ¹H NMR (400 MHz, D₂O): δ 4.18 (dd, J_1 = 13.0 Hz, J_2 = 3.3 Hz, 1 H), 4.05 (dt, J_1 = 13.2 Hz, J_2 = 3.7 Hz, 1 H), 3.96 - 3.82 (m, 4 H), 3.77 (dd, J_1 = 12.9 Hz, J_2 = 8.8 Hz, 2 H), 3.65 - 3.56 (m, 2 H), 3.47 (dt, J_1 = 13.5 Hz, J_2 = 3.3 Hz, 1 H), 3.42 - 3.28 (m, 2 H), 2.71 - 2.56 (m, 1 H), 1.73 - 1.60 (m, 1 H), 1.49 - 1.25 (m, 3 H), 0.87 - 0.69 (m, 2 H); ¹³C NMR (600 MHz, D₂O): δ 172.74, 68.07, 67.07, 65.71, 62.59, 60.54, 56.00, 52.50, 47.35, 45.16, 31.90, 24.55, 16.51. MS (CI): *m/z* for C₁₃H₂₆BN₃O₅: expected 315.20; found 340.7 (M+i-PrOH_2H₂O+1), 298.5 (M-H₂O+1), 280.5 (M-2H₂O+1).

(3R,4S)-3-amino-4-(3-boronopropyl)-1-(((S)-morpholin-3-yl)methyl)pyrrolidine-3-carboxylic acid dihydrochloride (45). ¹H NMR (400 MHz, D₂O): δ 4.17(dd, J_1 = 13.0 Hz, J_2 = 3.3 Hz, 1 H), 4.05 (dt, J_1 = 13.2 Hz, J_2 = 3.7 Hz, 1 H), 3.99 - 3.80 (m, 4 H), 3.80 - 3.66 (m, 2 H), 3.65 - 3.51 (m, 2 H), 3.46 (dt, J_1 = 13.3 Hz, J_2 = 3.3 Hz, 1 H), 3.38 - 3.20 (m, 2 H), 2.68 - 2.55 (m, 1 H), 1.72 - 1.60 (m, 1 H), 1.48 - 1.26 (m, 3 H), 0.86 - 0.69 (m, 2 H); ¹³C NMR (600 MHz, D₂O): δ 172.69, 68.20, 67.28, 65.70, 62.10, 61.14, 56.03, 52.60, 47.37, 45.17, 31.82, 24.55, 16.49. MS (CI): *m/z* for C₁₃H₂₆BN₃O₅: expected 315.20; found 340.6 (M+i-PrOH-2H₂O+1), 298.5 (M-H₂O+1), 280.5 (M-2H₂O+1).

(3R,4S)-3-amino-4-(3-boronopropyl)-1-(((S)-pyrrolidin-2-yl)methyl)pyrrolidine-3-carboxylic acid dihydrochloride (46). ¹H NMR (400 MHz, D₂O): δ 4.10 (d, *J* = 12.7 Hz, 1 H), 4.07 - 3.99 (m, 2 H), 3.94 - 3.84 (m, 2 H), 3.80 (dd *J*₁ = 13.7 Hz, *J*₂ = 6.2 Hz, 1 H), 3.56 (t, *J* = 11.3 Hz, 1 H), 3.45 (dd *J*₁ = 8.3 Hz, *J*₂ = 6.5 Hz, 2 H), 2.78 - 2.67 (m, 1 H), 2.48 - 2.38 (m, 1 H), 2.25 - 2.00 (m, 2 H), 1.96 - 1.83 (m, 1 H), 1.79 - 1.67 (m, 1 H), 1.53 - 1.27 (m, 3 H), 0.90 - 0.72 (m, 2 H); ¹³C NMR (600 MHz, D₂O): δ 170.33, 64.51, 59.74, 57.75, 56.07, 55.56, 46.14, 44.69, 29.27, 28.75, 22.75, 22.00, 13.97. MS (M+i-PrOH-2H₂O+1): 324.5, (M-H₂O+1): 282.4, (M-2H₂O+1): 264.3.

(3R,4S)-3-amino-4-(3-boronopropyl)-1-(((R)-pyrrolidin-2-yl)methyl)pyrrolidine-3-carboxylic acid dihydrochloride (47). ¹H NMR (400 MHz, D₂O): δ 4.12 (d, J = 12.6 Hz, 1 H), 4.09 - 4.00 (m, 2 H), 3.94 - 3.84 (m, 2 H), 3.80 (dd $J_I = 13.8$ Hz, $J_2 = 5.7$ Hz, 1 H), 3.54 (t, J = 11.4 Hz, 1 H), 3.49 - 3.42 (m, 2 H), 2.77 - 2.68 (m, 1 H), 2.47 - 2.38 (m, 1 H), 2.23 - 2.02 (m, 2 H), 1.94 - 1.82 (m, 1 H), 1.78 - 1.67 (m, 1 H), 1.52 - 1.28 (m, 3 H), 0.88 - 0.72 (m, 2 H); ¹³C NMR (600 MHz, D₂O): δ 170.19, 64.56, 59.47, 58.20, 56.16, 55.52, 46.19, 44.78, 29.16, 28.87, 22.69, 22.00, 13.97. MS (M+i-PrOH-2H₂O+1): 324.5, (M-H₂O+1): 282.4, (M-2H₂O+1): 264.3.

(**3R,4S**)-**3**-amino-**4**-(**3**-boronopropyl)-**1**-(((**S**)-piperidin-**2**-yl)methyl)pyrrolidine-**3**-carboxylic acid dihydrochloride (**48**). ¹H NMR (400 MHz, D₂O): δ 4.10 (d, *J* = 12.8 Hz, 1H), 4.04 (dd, *J*₁ = 11.3 Hz, *J*₂ = 7.8 Hz, 1 H), 3.98 (d, *J* = 12.9 Hz, 1 H), 3.80 - 3.60 (m, 3 H), 3.56 - 3.46 (m, 2 H), 3.08 (td, *J*₁ = 12.6 Hz, *J*₂ = 3.1 Hz, 1 H), 2.83 - 2.72(m, 1 H), 2.18 - 2.07 (m, 1 H), 1.98 - 1.87 (m, 2 H), 1.79 - 1.55 (m, 4 H), 1.52 - 1.29 (m, 3 H), 0.88 - 0.72 (m, 2 H); ¹³C NMR (600 MHz, D₂O): δ 170.15, 64.50, 59.92, 57.96, 57.36, 52.19, 45.07, 44.72, 29.19, 26.52, 21.98, 21.10, 20.75, 13.93. MS (CI): *m/z* for C₁₄H₂₈BN₃O₄: expected 313.21; found 338.5 (M+i-PrOH-2H₂O+1), 296.2 (M-H₂O+1), 278.2 (M-2H₂O+1).

(3R,4S)-3-amino-4-(3-boronopropyl)-1-(((R)-piperidin-2-yl)methyl)pyrrolidine-3-carboxylic acid (49). ¹H NMR (400 MHz, D₂O): δ 4.09 (d, *J* = 12.6 Hz, 1 H), 4.02 (dd, *J*₁ = 11.3 Hz, *J*₂ = 7.9 Hz, 1 H), 3.85 (d, *J* = 12.5 Hz, 1 H), 3.77 - 3.57 (m, 3 H), 3.49 (dd, *J*₁ = 12.5 Hz, *J*₂ = 11.3 Hz, 2 H), 3.08 (td, *J*₁ = 12.6 Hz, *J*₂ = 3.0 Hz, 1 H), 2.76 - 2.64 (m, 1 H), 2.18 - 2.07 (m, 1 H), 1.98 - 1.88 (m, 2 H), 1.78 - 1.56 (m, 4 H), 1.52 - 1.29 (m, 3 H), 0.89 - 0.73 (m, 2 H); ¹³C NMR (600 MHz, D₂O): δ 170.27, 64.66, 59.36, 58.72, 57.55, 52.22, 45.10, 44.63, 29.23, 26.67, 22.00, 21.10, 20.75, 13.96. MS (CI): *m/z* for C₁₄H₂₈BN₃O₄: expected 313.21; found 338.5 (M+i-PrOH-2H₂O+1), 296.2 (M-H₂O+1), 278.2 (M-2H₂O+1).

¹H NMR, ¹³C NMR and LC/MS Summary Data for sulfamate Intermediates

tert-Butyl (S)-4-methyl-1,2,3-oxathiazolidine-3-carboxylate 2,2-dioxide. ¹H NMR (600 MHz, CDCl₃): δ 4.66 (dd, *J*₁ = 9.1 Hz, *J*₂ = 6.0 Hz, 1 H), 4.41 (d, *J*₁ = 6.3 Hz, *J*₂ = 2.9 Hz, 1 H), 4.19 (dd, *J*₁ = 9.1 Hz, *J*₂ = 2.9 Hz, 1 H), 1.55 (s, 9 H), 1.50 (d, *J* = 6.4 Hz, 3 H); ¹³C NMR (600 MHz, CDCl₃): δ 148.59, 85.52, 71.44, 53.94, 28.09, 18.47. Anal. Calcd for C₈H₁₅NO₅S: C 40.50; H, 6.37; N, 5.90. Found C, 40.77; H, 6.36; N, 5.96.

tert-Butyl (R)-4-phenyl-1,2,3-oxathiazolidine-3-carboxylate 2,2-dioxide. ¹H NMR (600 MHz, CDCl₃): δ 7.44 - 7.40 (m, 4 H), 7.40 - 7.36 (m, 1 H), 5.29 (dd, *J*₁ = 6.7 Hz, *J*₂ = 4.2 Hz, 1 H), 4.87 (dd, *J*₁ = 9.3 Hz, *J*₂ = 6.7 Hz, 1 H), 4.40 (dd, *J*₁ = 9.3 Hz, *J*₂ = 4.2 Hz, 1 H), 1.43 (s, 9 H); ¹³C NMR (600 MHz, CDCl₃): δ 148.39, 137.06, 129.38, 129.27, 126.28, 85.71, 71.93, 60.89, 27.95. Anal. Calcd for C₁₃H₁₇NO₅S: C 52.16; H, 5.72; N, 4.68. Found C, 52.24; H, 5.83; N, 4.72.

tert-Butyl (S)-4-phenyl-1,2,3-oxathiazolidine-3-carboxylate 2,2-dioxide. ¹H NMR (600 MHz, CDCl₃): δ 7.44 -7.40 (m, 4 H), 7.40 -7.36 (m, 1 H), 5.29 (dd, *J*₁ = 6.7 Hz, *J*₂ = 4.3 Hz, 1 H), 4.87 (dd, *J*₁ = 9.3 Hz, *J*₂ = 6.7 Hz, 1 H), 4.40 (dd, *J*₁ = 9.3 Hz, *J*₂ = 4.3 Hz, 1 H), 1.43 (s, 9 H); ¹³C NMR

(600 MHz, CDCl₃): δ 148.39, 137.06, 129.38, 129.27, 126.28, 85.71, 71.93, 60.89, 27.95. Anal. Calcd for C₁₃H₁₇NO₅S: C 52.16; H, 5.72; N, 4.68. Found C, 52.19; H, 5.70; N, 4.69.

tert-Butyl (S)-4-benzyl-1,2,3-oxathiazolidine-3-carboxylate 2,2-dioxide. ¹H NMR (600 MHz, CDCl₃): δ 7.35 (dd, J_1 = 8.0 Hz, J_2 = 6.7 Hz, 2 H), 7.31 - 7.27 (m, 1 H), 7.23 (dd, J_1 = 7.0 Hz, J_2 = 1.7 Hz, 2 H), 4.50 - 4.39 (m, 2 H), 4.32 (d, J = 7.7 Hz, 1 H), 3.41 - 3.32 (m, 1 H), 2.92 (dd, J_1 = 13.5 Hz, J_2 = 10.0 Hz, 1 H), 1.56 (s, 9 H); ¹³C NMR (600 MHz, CDCl₃): δ 148.61, 135.25, 129.58, 129.23, 127.64, 85.75, 77.16, 68.85, 58.69, 37.97, 28.08. Anal. Calcd for C₁₄H₁₉NO₅S: C 53.66; H, 6.11; N, 4.47. Found C, 53.71; H, 6.05; N, 4.52.

(S)-tetrahydro-3H-[1,2,3]oxathiazolo[4,3-c][1,4]oxazine 1,1-dioxide. ¹H NMR (600 MHz, CDCl3): δ 4.58 (dd, $J_1 = 8.1$ Hz, $J_2 = 6.4$ Hz, 1H), 4.30 (dd, $J_1 = 9.3$ Hz, $J_2 = 8.1$ Hz, 1 H), 4.01 (dd, $J_1 = 11.6$ Hz, $J_2 = 3.4$ Hz, 1 H), 3.87 (dt, $J_1 = 11.9$ Hz, $J_2 = 3.7$ Hz, 1 H), 3.82 (dddd, $J_1 = 9.5$ Hz, $J_2 = 7.7$ Hz, $J_3 = 6.4$ Hz, $J_4 = 3.4$ Hz, 1 H), 3.74 (ddd, $J_1 = 12.0$ Hz, $J_2 = 9.0$ Hz, $J_3 = 3.2$ Hz, 1 H), 3.60 (dd, $J_1 = 11.6$ Hz, $J_2 = 7.8$ Hz, 1 H), 3.36 (dt, $J_1 = 12.0$ Hz, $J_2 = 3.7$ Hz, 1 H), 3.15 (ddd, $J_1 = 12.2$ Hz, $J_2 = 9.0$ Hz, $J_3 = 3.3$ Hz, 1 H); ¹³C NMR (600 MHz, CDCl3): δ 69.88, 66.65, 64.79, 54.31, 43.56. Anal. Calcd for C₅H₉NO₄S: C 33.51; H, 5.06; N, 7.82. Found C, 33.75; H, 5.05; N, 7.81.

(**R**)-tetrahydro-3H-[1,2,3]oxathiazolo[4,3-c][1,4]oxazine 1,1-dioxide. ¹H NMR (600 MHz, CDCl₃): δ 4.58 (dd, $J_1 = 8.1$ Hz, $J_2 = 6.4$ Hz, 1 H), 4.30 (dd, $J_1 = 9.3$ Hz, $J_2 = 8.1$ Hz, 1 H), 4.01 (dd, $J_1 = 11.6$ Hz, $J_2 = 3.4$ Hz, 1 H), 3.87 (dt, $J_1 = 11.9$ Hz, $J_2 = 3.7$ Hz, 1 H), 3.82 (dddd, $J_1 = 9.5$ Hz, $J_2 = 7.7$ Hz, $J_3 = 6.4$ Hz, $J_4 = 3.4$ Hz, 1 H), 3.74 (ddd, $J_1 = 12.0$ Hz, $J_2 = 9.0$ Hz, $J_3 = 3.2$ Hz, 1 H), 3.60 (dd, $J_1 = 11.6$ Hz, $J_2 = 7.8$ Hz, 1 H), 3.36 (dt, $J_1 = 12.0$ Hz, $J_2 = 3.7$ Hz, 1 H), 3.15 (ddd, $J_1 = 12.2$ Hz, $J_2 = 9.0$ Hz, $J_3 = 3.3$ Hz, 1 H); ¹³C NMR (600 MHz, CDCl₃): δ 69.88, 66.65, 64.79, 54.31, 43.56. Anal. Calcd for C₅H₉NO₄S: C 33.51; H, 5.06; N, 7.82. Found C, 33.79; H, 4.91; N, 7.94.

(S)-tetrahydro-3H-pyrrolo[1,2-c][1,2,3]oxathiazole 1,1-dioxide. ¹H NMR (600 MHz, CDCl₃): δ 4.55(dd, $J_1 = 8.7$ Hz, $J_2 = 6.9$ Hz, 1 H), 4.30 - 4.25 (m, 1 H), 4.04 (dd, $J_1 = 8.8$ Hz, $J_2 = 6.0$ Hz, 1 H), 3.67 (dt, $J_1 = 11.5$ Hz, $J_2 = 6.3$ Hz, 1 H), 3.26 (dt, $J_1 = 11.2$ Hz, $J_2 = 7.1$ Hz, 1 H), 2.22 - 2.13 (m, 1 H), 2.00 - 1.90 (m, 2 H), 1.86 - 1.77 (m, 1 H); ¹³C NMR (600 MHz, CDCl₃): δ 71.88, 62.57, 51.17, 31.35, 25.21.

(**R**)-tetrahydro-3H-pyrrolo[1,2-c][1,2,3]oxathiazole 1,1-dioxide. ¹H NMR (600 MHz, CDCl₃): δ 4.54 (dd, J_1 = 8.7 Hz, J_2 = 6.9 Hz, 1 H), 4.30 - 4.24 (m, 1 H), 4.04 (dd, J_1 = 8.8 Hz, J_2 = 6.0 Hz, 1 H), 3.67 (dt, J_1 = 12.0 Hz, J_2 = 6.3 Hz, 1 H), 3.26 (dt, J_1 = 11.1 Hz, J_2 = 7.1 Hz, 1 H), 2.22 - 2.14 (m, 1 H), 2.00 - 1.89 (m, 2 H), 1.85 - 1.78 (m, 1 H); ¹³C NMR (600 MHz, CDCl₃): δ 71.88, 62.56, 51.16, 31.32, 25.19.

(S)-hexahydro-[1,2,3]oxathiazolo[3,4-a]pyridine 1,1-dioxide. ¹H NMR (600 MHz, CDCl₃): δ 4.57(t, J = 6.8 Hz, 1 H), 4.18 (ddd, $J_I = 9.7$ Hz, $J_2 = 7.7$ Hz, $J_3 = 1.8$ Hz, 1 H), 3.56 (brd, J = 11.2 Hz, 1 H), 3.49 - 3.42 (m, 1 H), 2.77 (td, $J_I = 11.9$ Hz, $J_I = 2.7$ Hz, 1 H), 1.95 - 1.88 (m, 2 H), 1.83 (brd, J = 13.6 Hz, 1 H), 1.68 - 1.59 (m, 1 H), 1.49 - 1.40 (m, 1 H), 1.40 - 1.31 (m, 1 H); ¹³C NMR (600 MHz, CDCl₃): δ 73.73, 57.27, 43.77, 27.87, 23.49, 22.02.

(**R**)-hexahydro-[1,2,3]oxathiazolo[3,4-a]pyridine 1,1-dioxide. ¹H NMR (600 MHz, CDCl₃): δ 4.57(t, J = 6.8 Hz, 1 H), 4.18 (ddd, $J_I = 9.7$ Hz, $J_2 = 7.7$ Hz, $J_3 = 1.8$ Hz, 1 H), 3.56 (brd, J = 11.2 Hz, 1 H), 3.49 - 3.42 (m, 1 H), 2.77 (td, $J_I = 11.9$ Hz, $J_I = 2.7$ Hz, 1 H), 1.95 - 1.88 (m, 2 H), 1.83 (brd, J = 13.6 Hz, 1 H), 1.68 - 1.59 (m, 1 H), 1.49 - 1.40 (m, 1 H), 1.40 - 1.31 (m, 1 H); ¹³C NMR (600 MHz, CDCl₃): δ 73.73, 57.27, 43.77, 27.87, 23.49, 22.02.

Analytical Purity: HPLC Summary Data

Analytical purity was determined using a Gilson 215 robotic liquid handler equipped with a Gilson ELSD detector and an Agilent Eclipse XDB-Phenyl analytical HPLC column (3.5 μ m; 4.6 x 150 mm). The standard methods used water (Phase A) with acetonitrile (Phase B), each containing 0.1% TFA for the specified gradient. The measured purities, retention times and method used for each test compound are listed in the table 1 below. Chromatograms are provided in pages S5-S19.

Table S1

Compound	Purity	Retention Time (min)	Method
8	99.7%	5.08	D
9	100.0%	5.07	D
13	95.0%	5.16	D
15	99.2%	4.5	А
23	99.9%	2.73	В
26	99.9%	2.68	В
29	100.0%	3.12	А
30	99.8%	2.98	В
31	100.0%	5.58	С
32	99.9%	2.67	В
33	99.7%	2.89	В
34	99.9%	2.95	В
35	99.9%	2.78	В
36	99.9%	2.86	В
37	99.7%	2.83	В
38	100.0%	2.84	А
39	100.0%	3.14	А
40	99.8%	3.44	А
41	99.9%	3.13	А
42	99.4%	6.03	А
43	99.2%	10.14	А
44	99.8%	3.24	А
45	99.8%	3.24	А
46	100.0%	2.73	В
47	100.0%	2.74	В
48	100.0%	2.77	В
49	100.0%	2.79	В

Method A: 20% to 80% B over 5 min, then holding at 80% for an additional 2 min *Method B*: 25% to 95% B over 5 min, then holding at 95% for an additional 2 min *Method C*: 25% to 100% B over 5 min, then holding at 100% for an additional 2 min *Method D*: 10% to 60% B over 5 min, then holding at 60% for an additional 2 min

Optical Purity Determination

The optical purity of intermediate **21** was determined by HPLC using a Gilson 215 Liquid Handler equipped with a PrepELS II Detector, Daicel Corporation Chiralpak IB $5\mu m$ (4.6 mm x 250 mm) column using 10% ethanol/ hexane (isocratic) over 12 minutes with a flow rate of 1 mL/min.

HPLC Chromatogram of racemic 21

S16

HPLC Chromatogram of resolved 21

Example arginase inhibition IC₅₀ curves

Figure S1. Representative dose-response curves for example compounds. (A) Against Arginase 1.(B) Against Arginase 2. Each point represents the average of duplicate measurements.

X-ray crystallography data collection and refinement statistics

Table S2. Data Collection and Refinement Statistics. Values in parentheses are for the highest resolution shell

	Example 23	Example 49	
	Data collection		
PDB entry	6Q37	6Q39	
X-ray source	Home source	Home source	
Wavelength (Å)	1.5418	1.5418	
Space group	P4 ₂ 2 ₁ 2	P4 ₂ 2 ₁ 2	
Unit-cell parameters	a=b= 128.16 Å c= 158.98Å	a=b= 128.30 Å c= 159.15Å	
Resolution range (Å)	50.0 - 2.20 (2.28 - 2.20)	50.0 - 2.20 (2.28 - 2.20)	
No. of observations	747 806	589 289	
No. of unique reflections	63 433	61 688	
Multiplicity	11.8 (10.2)	9.6 (8.8)	
Completeness (%)	93.8 (60.5)	91.3 (55.4)	
$R_{sym}(\%)$	7.9 (28.5)	12.6 (44.7)	
Mean <i>I/</i> $\sigma(I)$	30.7 (7.9)	16.1 (4.7)	
	Refinement		
Refinement resolution range (Å)	26.49-2.21	29.91-2.21	
R _{work} (%)	14.82	16.23	
$R_{\rm free}$ (%)	18.94	20.98	
No. of reflections for refinement	63 100	61 552	
RMSD _{bonds} (Å)	0.008	0.008	

RMSD _{angles} (°)	1.064	1.105
Protein Atoms in A.U.	7152	7152
Water molecules	849	579
Ramachandran plot favored (%)	97.81	97.70
Ramachandran plot allowed (%)	1.86	1.97
Ramachandran plot outliers (%)	0.33	0.33

Example 2D diagrams of contacts

Example 49

Details of inhibitor signal. The signal of the inhibitors appeared very strongly in the electron density maps, as shown in the figures below, which superpose the inhibitor model with the initial difference maps, calculated with the protein model alone and averaged over the three monomers in the asymmetric unit, contoured at the 5.0 σ level.

