Lignin-based Magnesium Hydroxide Nanocomposite. Synthesis and Application for the Removal of Potentially Toxic Metals from Aqueous Solution

Nikolai Ponomarev ^{1*}, Olga Pastushok ¹, Eveliina Repo ², Bhairavi Doshi ¹, Mika Sillanpää ¹ ¹ Department of Green Chemistry, School of Engineering Science, Lappeenranta-Lahti University of Technology LUT, Sammonkatu 12, FI-50130 Mikkeli, Finland

² Department of Separation and Purification Technology, School of Engineering Science, Lappeenranta-Lahti University of Technology LUT, P.O. Box 20, FI-53851 Lappeenranta, Finland *Corresponding Author (Email: <u>nikolai.ponomarev@lut.fi</u>, <u>pnn92@mail.ru</u>)

Figure S1. Extruder for making granules of lignin-based nanocomposite: 1 – seal; 2 – piston; 3 –housing; 4 – orifices (5 pcs).

Figure S2. Granules of lignin-based nanocomposite.

Figure S3. Uptake of cations in singlecomponent system and multicomponent system with competing ions: Na⁺, K⁺, Mg²⁺ and Ca²⁺.

Figure S4. The FTIR spectra of lignin-based nanocomposite with various added MgCl₂ amount (g).

Figure S5. The van't Hoff plot.

Figure S6. (a) EDS spectrum and elemental mapping of the LH-MH after adsorption of Ni²⁺: (b) SEM image; (c) Ni; (d) O.

Figure S7. (a) EDS spectrum and elemental mapping of the LH-MH after adsorption of Cd²⁺: (b) SEM image; (c) Cd; (d) O.

Figure S8. (a) EDS spectrum and elemental mapping of the LH-MH after adsorption of Pb²⁺: (b) SEM image; (c) Pb; (d) O.

Figure S9. Regeneration of lignin-based nanocomposite after adsorption of Ni²⁺, Cd²⁺ and Pb²⁺ using 0.01 mol/L HCl, 0.001 mol/L HCl and sequential regeneration: 0.01 mol/L HCl – 1 M $MgCl_2 - 0.05$ mol/L NaOH.

Figure S10. Adsorption isotherms of Ni²⁺, Cd²⁺ and Pb²⁺ using lignin.

Table S1. The uptake of cations using lignin-based nanocomposites with various added amount of MgCl₂.

Added MgCl ₂ amount (g)	Uptake (%)		
to the lignin suspension	Ni ²⁺	Cd ²⁺	Pb ²⁺
1.0	79.89	84.83	86.55
2.5	84.06	91.98	97.79
5.0	98.95	99.57	99.60
10.0	99.69	99.87	99.60

	Ni	Cd	Pb
Lignin (this study)	0.11	0.12	0.15
Lignin-based	1.05	0.92	1.08
nanocomposite			
(this study)			
lignin grafted carbon			1.13
nanotubes ¹			
Si/lignin hybrid ¹	1.31	0.75	
As-received	0.034/0.170	-	-
ACF/Oxidized ACF ²			
GAC-HD 400 ³	-	-	0.14
GAC-Filtrasorb 400 ⁴	-	0.07	-

Table S2. Compared adsorption capacities (mmol/g) of lignin based-nanocomposite and some other adsorbents (recalculated values from mg/g to mmol/L using corresponding molar masses).

References

- Ge, Y.; Li, Z. Application of Lignin and Its Derivatives in Adsorption of Heavy Metal Ions in Water: A Review. ACS Sustain. Chem. Eng. 2018, 6 (5), 7181–7192. https://doi.org/10.1021/acssuschemeng.8b01345.
- Babel, S.; Kurniawan, T. A. Low-Cost Adsorbents for Heavy Metals Uptake from Contaminated Water: A Review. J. Hazard. Mater. 2003, 97 (1–3), 219–243. https://doi.org/10.1016/S0304-3894(02)00263-7.
- (3) Shim, J. W.; Park, S. J.; Ryu, S. K. Effect of Modification with HNO₃ and NaOH on Metal Adsorption by Pitch-Based Activated Carbon Fibers. *Carbon N. Y.* 2001, *39* (11), 1635–1642. https://doi.org/10.1016/S0008-6223(00)00290-6.
- (4) Leyva-Ramos, R.; Rangel-Mendez, J. R.; Mendoza-Barron, J.; Fuentes-Rubio, L.; Guerrero-Coronado, R. M. Adsorption of Cadmium(II) from Aqueous Solution onto Activated Carbon. *Water Sci. Technol.* 1997, 35 (7), 205–211. https://doi.org/10.1016/S0273-1223(97)00132-7.