| 1        | Supporting Information                                                                                                                                                            |  |  |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 2        | For                                                                                                                                                                               |  |  |
| 3        | Organotin Release from Polyvinyl Chloride Microplastics and                                                                                                                       |  |  |
| 4        | Concurrent Photodegradation in Water: Impacts from Salinity,                                                                                                                      |  |  |
| 5        | <b>Dissolved Organic Matter, and Light Exposure</b>                                                                                                                               |  |  |
| 6        |                                                                                                                                                                                   |  |  |
| 7        | Chunzhao Chen, <sup>a,d,e</sup> Ling Chen, <sup>b,c</sup> Ying Yao, <sup>d</sup> Francisco Artigas, <sup>d</sup> Qinghui Huang, <sup>a,c</sup> Wen Zhang <sup>e*</sup>            |  |  |
| 8        |                                                                                                                                                                                   |  |  |
| 9<br>10  | <sup>a</sup> Key Laboratory of Yangtze River Water Environment of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, China |  |  |
| 11       | <sup>b</sup> Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China.                                                                                    |  |  |
| 12<br>13 | <sup>c</sup> State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China.                  |  |  |
| 14<br>15 | <sup>d</sup> Rutgers University Newark, Department of Earth and Environmental Science, Meadowlands Environmental Research Institute, Lyndhurst, New Jersey, USA                   |  |  |
| 16<br>17 | <sup>e</sup> John A. Reif, Jr. Department of Civil and Environmental Engineering, New Jersey Institute of Technology,<br>Newark, New Jersey, USA.                                 |  |  |
| 18       |                                                                                                                                                                                   |  |  |
| 19       | Corresponding author:                                                                                                                                                             |  |  |
| 20       | Wen Zhang. Phone: +1- (973) 596-5520; Fax: (973) 596-5790; Email: wen.zhang@njit.edu;                                                                                             |  |  |
| 21       |                                                                                                                                                                                   |  |  |
| 22       | This document contains:                                                                                                                                                           |  |  |
| 23       | Eight Figures: Figure S1-Figure S8                                                                                                                                                |  |  |
| 24       | One Tables: Table S1                                                                                                                                                              |  |  |
| 25       |                                                                                                                                                                                   |  |  |

S1



Small PVC particles Medium PVC particles Large PVC particles **Fig. S1.** Pictures for three different sized PVC microplastics used in the experiments.



**Fig. S2.** Experimental setup for OTC release from PVC microplastics in artificial seawater magnetic stirred under UV or visible light irradiation, as well as under darkness. (a) Schematics and (b) Experimental setup.



**Fig. S3.** SEM micrograph of three sized PVC microplastics before and after being magnetic stirred in artificial seawater for 56 h. (a) Pristine PVC microplastics; (b) Dark-treated PVC microplastics; (c) Visible light-irradiated PVC microplastics and (d) UV-irradiated PVC microplastics.



**Fig. S4.** EDS surface mapping for small PVC microplastics before and after being magnetic stirred in artificial seawater for 56 h. (a) Pristine PVC microplastics; (b) Dark-treated PVC microplastics; (c) Visible light-irradiated PVC microplastics and (d) UV-irradiated PVC microplastics.



**Fig. S5.** Temporal variation of mono-substituted OTCs remaining in the aqueous phase of PVC suspension under darkness: (a, b) Small PVC microplastics and (c, d) Medium PVC microplastics. No MMT or MBT was found to release from large PVC microplastics.



**Fig. S6.** Release rate constant  $(K_1, \mu g \cdot m^{-2} \cdot h^{-1})$  and degradation rate constant  $(K_2, h^{-1})$  of DMT in aqueous phase of the PVC suspension under UV or visible light irradiation via the best model fitting. \* The  $K_1$  values obtained from large PVC microplastics were significantly lower than those from small and medium PVC particles.



**Fig. S7.** Total tin concentrations in the aqueous phase of PVC suspension under various halide ions ( $Cl^-$  or  $Br^-$ ) conditions and with/without humic acid. During the experiments they were irradiated by UV light for 24 h. (a, b) Small PVC microplastics and (c, d) Medium PVC microplastics.



**Fig. S8.** PVC microplastics of the same concentration in DI water (left) and artificial seawater (right).

|               | Zeta potential (mV) |                      |                           |             |
|---------------|---------------------|----------------------|---------------------------|-------------|
| Particle size | Pristine PVC        | UV light<br>(365 nm) | Visible light<br>(400 nm) | Darkness    |
| Small         | -28.5±0.44          | -36.1±3.78*          | -40.2±0.58*               | -40.8±0.53* |
| Medium        | -27.0±0.59          | -35.4±4.36*          | -34.4±1.71*               | -37.5±2.06* |
| Large         | -23.3±0.88          | -25.7±0.86           | -27.2±1.42*               | -28.0±2.62* |

**Table S1.** Zeta potentials for PVC microplastics in DI water after immersion in artificial seawater for 56 h with/without UV or visible light irradiation.

\* Significant differences between the pristine and treated PVC microplastics with same sizes (p < 0.05).

| $PO_2H \xrightarrow{hv} PO^{\bullet} + {}^{\bullet}OH$        | (Eq. S1)  |
|---------------------------------------------------------------|-----------|
| $^{\bullet}OH + P - H \xrightarrow{hv} P^{\bullet} + H_2O$    | (Eq. S2)  |
| $\bullet OH + Cl^- \to OH^- + Cl^\bullet$                     | (Eq. S3)  |
| $\bullet OH + Br^- \to OH^- + Br^{\bullet}$                   | (Eq. S4)  |
| $Cl^{\bullet} + Cl^{-} \rightarrow Cl_{2}^{\bullet-}$         | (Eq. S5)  |
| $Br^{\bullet} + Br^{-} \rightarrow Br_{2}^{\bullet-}$         | (Eq. S6)  |
| $Br_2^{\bullet-} + Cl^- \rightarrow ClBr^{\bullet-} + Br^-$   | (Eq. S7)  |
| $Cl_2^{\bullet-} + Br^- \rightarrow ClBr^{\bullet-} + Cl^-$   | (Eq. S8)  |
| $Br^{\bullet} + Cl^- \rightarrow ClBr^{\bullet-}$             | (Eq. S9)  |
| $DOM + hv \rightarrow {}^{1}DOM^{*}$                          | (Eq. S10) |
| $^{1}DOM^{*} + hv \rightarrow ^{3}DOM^{*}$                    | (Eq. S11) |
| $^{3}DOM^{*} + Cl^{-} \rightarrow ^{1}DOM^{*} + Cl^{\bullet}$ | (Eq. S12) |
| $^{3}DOM^{*} + Br^{-} \rightarrow ^{1}DOM^{*} + Br^{\bullet}$ | (Eq. S13) |